首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The pharmacological profile and localization of somatostatin (SRIF) receptors were determined in rat, monkey and human cerebellum. In rat cerebellar cortex, low ss1/sst4, intermediate sst2 and very high sst3 receptor mRNA levels were found, sst1 mRNA was also expressed in the deep cerebellar nuclei. [125I]Tyr3-octreotide binding sites in cerebellar membranes correlated with recombinant sst2, but not with sst5 or sst3 receptors and were found in the molecular layer of the cerebellum. [125I]CGP 23996 (in Na+-buffer) binding in rat cerebellum correlated with sst1 or sst4, but not with sst2, sst3 or sst5 receptor binding. Similar data were obtained in rhesus monkey cerebellum. mRNAs for all five receptors were found in the granule cell layer of the human cerebellum and/or in the dentate nucleus. [125I]Tyr3-octreotide binding was strong in the molecular layer and correlated with that of recombinant sst2 receptors, but not with sst3 or sst5 receptors. [125I]CGP 23996 (in Mg++-buffer) binding was heterogeneous (about 75%. to sst2 and 25% to sst1 and/or sst4 receptors). The molecular and granular layers were equally and the dentate nucleus strongly labeled. Thus. SRIF receptors of the sst2, sst1 and/or sst4 subtype are present in the rat, monkey and human cerebellum. In the latter two species, the sst2 type appears to be predominant. Surprisingly, the high expression of sst3 receptor mRNA is not supported by radioligand binding data in any of the species studied. The reason for this discrepancy remains to be elucidated.  相似文献   

2.
Somatostatin mediates inhibitory functions through five G protein–coupled somatostatin receptors (sst1–5). We used immunohistochemistry, immunofluorescence, and RT-PCR to determine the presence of somatostatin receptors sst1, sst2A, sst2B, sst3, sst4, and sst5 in normal and IgA nephropathy human kidney. All somatostatin receptors were detected in the thin tubules (distal convoluted tubules and loops of Henle) and thick tubules (proximal convoluted tubules) in the tissue sections from nephrectomy and biopsy samples. Immunopositive sst1 and sst4 staining was more condensed in the cytoplasm of tubular epithelial cells. In normal kidney tissue sections, podocytes and mesangial cells in the glomeruli stained for sst1, sst2B, sst4 and sst5, and stained weakly for sst3. In IgA kidney tissue, the expression of somatostatin receptors was significantly increased with particular immmunopositive staining for sst1, sst2B, sst4, and sst5 within glomeruli. In the epithelial cells, the staining for sst2B and sst4 in proximal tubules and sst1, sst2B, and sst5 in distal tubules was increased. The mRNA expression of sst1–5 was also detected by RT-PCR. Somatostatin and all five receptor subtypes were ubiquitously distributed in normal kidney and IgA nephropathy. The increased expression of somatostatin receptors in IgA nephropathy kidney might be the potential pathogenesis of inflammatory renal disease. (J Histochem Cytochem 56:733–743, 2008)  相似文献   

3.
Inosine, a naturally occurring purine formed from the breakdown of adenosine, is associated with immunoregulatory effects. Evidence shows that inosine modulates lung inflammation and regulates cytokine generation. However, its role in controlling allergen-induced lung inflammation has yet to be identified. In this study, we aimed to investigate the role of inosine and adenosine receptors in a murine model of lung allergy induced by ovalbumin (OVA). Intraperitoneal administration of inosine (0.001–10 mg/kg, 30 min before OVA challenge) significantly reduced the number of leukocytes, macrophages, lymphocytes and eosinophils recovered in the bronchoalveolar lavage fluid of sensitized mice compared with controls. Interestingly, our results showed that pre-treatment with the selective A2A receptor antagonist (ZM241385), but not with the selective A2B receptor antagonist (alloxazine), reduced the inhibitory effects of inosine against macrophage count, suggesting that A2A receptors mediate monocyte recruitment into the lungs. In addition, the pre-treatment of mice with selective A3 antagonist (MRS3777) also prevented inosine effects against macrophages, lymphocytes and eosinophils. Histological analysis confirmed the effects of inosine and A2A adenosine receptors on cell recruitment and demonstrated that the treatment with ZM241385 and alloxazine reverted inosine effects against mast cell migration into the lungs. Accordingly, the treatment with inosine reduced lung elastance, an effect related to A2 receptors. Moreover, inosine reduced the levels of Th2-cytokines, interleukin-4 and interleukin-5, an effect that was not reversed by A2A or A2B selective antagonists. Our data show that inosine acting on A2A or A3 adenosine receptors can regulate OVA-induced allergic lung inflammation and also implicate inosine as an endogenous modulator of inflammatory processes observed in the lungs of asthmatic patients.  相似文献   

4.
Leukotriene B(4) (LTB(4)) is a lipid mediator of inflammation that was recently shown to exert antiviral activities. In this study, we demonstrate that the release of antimicrobial proteins by neutrophils contribute to an early host defense against influenza virus infection in vitro as well as in vivo. Daily i.v. treatments with LTB(4) lead to a significant decrease in lung viral loads at day 5 postinfection in mice infected with influenza A virus compared with the placebo-treated group. This reduction in viral load was not present in mice deficient in the high-affinity LTB(4) receptor. Viral clearance in lungs was associated with up-regulated presence of antimicrobial peptides such as beta-defensin-3, members of the mouse eosinophil-related RNase family, and the mouse cathelicidin-related antimicrobial peptide. Our results also indicate that neutrophils are important in the antiviral effect of LTB(4). Viral loads in neutrophil-depleted mice were not diminished by LTB(4) administration, and a substantial reduction in the presence of murine cathelicidin-related antimicrobial peptide and the murine eosinophil-related RNase family in lung tissue was observed. Moreover, in vitro treatment of human neutrophil cultures with LTB(4) led rapidly to the secretion of the human cathelicidin LL-37 and eosinophil-derived neurotoxin, known as antiviral peptides. Pretreatment of cell cultures with specific LTB(4) receptor antagonists clearly demonstrate the implication of the high-affinity LTB(4) receptor in the LTB(4)-mediated activity. Together, these results demonstrate the importance of neutrophils and the secretion of antimicrobial peptides during the early immune response mediated by LTB(4) against a viral pathogen.  相似文献   

5.
In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors.This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst1-sst5), one of which is represented by two splice variants (sst2A and sst2B). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst2 and sst5 receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.  相似文献   

6.
Starting from non-peptidic sst1-selective somatostatin receptor antagonists, first compounds with mixed sst1/sst3 affinity were identified by directed structural modifications. Systematic optimization of these initial leads afforded novel, enantiomerically pure, highly potent and sst3-subtype selective somatostatin antagonists based on a (4S,4aS,8aR)-decahydroisoquinoline-4-carboxylic acid core moiety. These compounds can efficiently be synthesized and show promising PK properties in rodents.  相似文献   

7.
The spread of methicillin-resistant Staphylococcus aureus (MRSA) is a critical health issue that has drawn greater attention to the potential use of immunotherapy. Toll-like receptor 2 (TLR2), a pattern recognition receptor, is an essential component in host innate defense system against S. aureus infection. However, little is known about the innate immune response, specifically TLR2 activation, against MRSA infection. Here, we evaluate the protective effect and the mechanism of MRSA murine pneumonia after pretreatment with Pam3CSK4, a TLR2 agonist. We found that the MRSA-pneumonia mouse model, pretreated with Pam3CSK4, had reduced bacteria and mortality in comparison to control mice. As well, lower protein and mRNA levels of TNF-α, IL-1β and IL-6 were observed in lungs and bronchus of the Pam3CSK4 pretreatment group. Conversely, expression of anti-inflammatory cytokine IL-10, but not TGF-β, increased in Pam3CSK4-pretreated mice. Our additional studies showed that CXCL-2 and CXCL1, which are necessary for neutrophil recruitment, were less evident in the Pam3CSK4-pretreated group compared to control group, whereas the expression of Fcγ receptors (FcγⅠ/Ⅲ) and complement receptors (CR1/3) increased in murine lungs. Furthermore, we found that increased survival and improved bacterial clearance were not a result of higher levels of neutrophil infiltration, but rather a result of enhanced phagocytosis and bactericidal activity of neutrophils in vitro and in vivo as well as increased robust oxidative activity and release of lactoferrin. Our cumulative findings suggest that Pam3CSK4 could be a novel immunotherapeutic candidate against MRSA pneumonia.  相似文献   

8.
Somatostatin was discovered four decades ago as hypothalamic factor inhibiting growth hormone release. Subsequently, somatostatin was found to be widely distributed throughout the brain and to exert pleiotropic actions via interaction with five somatostatin receptors (sst1–5) that are also widely expressed throughout the brain. Interestingly, in contrast to the predominantly inhibitory actions of peripheral somatostatin, the activation of brain sst2 signaling by intracerebroventricular injection of stable somatostatin agonists potently stimulates food intake and independently, drinking behavior in rodents. The orexigenic response involves downstream orexin-1, neuropeptide Y1 and μ receptor signaling while the dipsogenic effect is mediated through the activation of the brain angiotensin 1 receptor. Brain sst2 activation is part of mechanisms underlying the stimulation of feeding and more prominently water intake in the dark phase and is able to counteract the anorexic response to visceral stressors.  相似文献   

9.
Somatostatin‐14 (SRIF) co‐localizes with GABA in the hippocampus and regulates neuronal excitability. A role of SRIF in the control of hippocampal activity has been proposed, although the exact contribution of each SRIF receptor (sst1–sst5) in mediating SRIF action requires some clarification. We used hippocampal slices of wild‐type and sst1 knockout (KO) mice and selective pharmacological tools to provide conclusive evidence for a role of sst1 in mediating SRIF inhibition of synaptic transmission. With single‐ and double‐label immunohistochemistry, we determined the distribution of sst1 in hippocampal slices and we quantified sst1 colocalization with SRIF. With electrophysiology, we found that sst1 activation with CH‐275 inhibited both the NMDA‐ and the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)‐mediated responses. Results from sst1 KO slices confirmed the specificity of CH‐275 effects; sst1 activation did not affect the inhibitory transmission which was in contrast increased by sst4 activation with L‐803,087 in both wild‐type and sst1 KO slices. The AMPA‐mediated responses were increased by L‐803,087. Functional interaction between sst1 and sst4 is suggested by the finding that their combined activation prevented the CH‐275‐induced inhibition of AMPA transmission. The involvement of pre‐synaptic mechanisms in mediating inhibitory effects of sst1 on excitatory transmission was demonstrated by the finding that CH‐275 (i) increased the paired‐pulse facilitation ratio, (ii) did not influence the AMPA depolarization in the presence of tetrodotoxin, and (iii) inhibited glutamate release induced by epileptiform treatment. We conclude that SRIF control of excitatory transmission through an action at sst1 may represent an important contribution to the regulation of hippocampal activity.  相似文献   

10.
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst1−5) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress.  相似文献   

11.

Background

Cigarette smoke (CS) is a major risk factor for the development of COPD. CS exposure is associated with an increased risk of bacterial colonization and respiratory tract infection, because of suppressed antibacterial activities of the immune system and delayed clearance of microbial agents from the lungs. Colonization with Staphylococcus aureus results in release of virulent enterotoxins, with superantigen activity which causes T cell activation.

Objective

To study the effect of Staphylococcus aureus enterotoxin B (SEB) on CS-induced inflammation, in a mouse model of COPD.

Methods

C57/Bl6 mice were exposed to CS or air for 4 weeks (5 cigarettes/exposure, 4x/day, 5 days/week). Endonasal SEB (10 μg/ml) or saline was concomitantly applied starting from week 3, on alternate days. 24 h after the last CS and SEB exposure, mice were sacrificed and bronchoalveolar lavage (BAL) fluid and lung tissue were collected.

Results

Combined exposure to CS and SEB resulted in a raised number of lymphocytes and neutrophils in BAL, as well as increased numbers of CD8+ T lymphocytes and granulocytes in lung tissue, compared to sole CS or SEB exposure. Moreover, concomitant CS/SEB exposure induced both IL-13 mRNA expression in lungs and goblet cell hyperplasia in the airway wall. In addition, combined CS/SEB exposure stimulated the formation of dense, organized aggregates of B- and T- lymphocytes in lungs, as well as significant higher CXCL-13 (protein, mRNA) and CCL19 (mRNA) levels in lungs.

Conclusions

Combined CS and SEB exposure aggravates CS-induced inflammation in mice, suggesting that Staphylococcus aureus could influence the pathogenesis of COPD.  相似文献   

12.
Purified human blood neutrophils were able to bind radioiodinated murine granulocyte-colony-stimulating factor (G-CSF) in a specific manner. This factor has previously been shown to stimulate functional activities of human and murine neutrophilic granulocytes and to be functionally analogous to human-derived CSF beta. The binding of 125I G-CSF to human neutrophils was competed for equally by unlabeled G-CSF and CSF beta but not by other CSF's. Saturation analysis indicated that human neutrophils displayed about 700-1,500 receptors for G-CSF/CSF beta per cell. Three other agents (N-formyl-methionine-leucine phenylalanine, bacterial lipopolysaccharide, and human CSF alpha) known to activate neutrophils did not compete directly for G-CSF binding sites but, in preincubation experiments at 37 degrees C, were able to down-modulate the expression of G-CSF receptors on human neutrophils in a dose- and time-dependent manner. This effect was specific since the same agents have been shown elsewhere to up-regulate the expression of other granulocyte surface antigens and other agents were much less effective at down-modulating G-CSF receptors. Since the granulocyte-activating agents increase the sensitivity of human neutrophils to G-CSF/CSF beta and mimic some of the actions of G-CSF on neutrophils, it is suggested that G-CSF receptor down-modulation might be a mechanism whereby these agents activate G-CSF receptors and thereby exert some of their effects.  相似文献   

13.
Treatment of non-small cell lung cancer (NSCLC) is based on histological analysis and molecular profiling of targetable driver oncogenes. Therapeutic responses are further defined by the landscape of passenger mutations, or loss of tumor suppressor genes. We report here a thorough study to address the physiological role of the putative lung cancer tumor suppressor EPH receptor A3 (EPHA3), a gene that is frequently mutated in human lung adenocarcinomas. Our data shows that homozygous or heterozygous loss of EphA3 does not alter the progression of murine adenocarcinomas that result from Kras mutation or loss of Trp53, and we detected negligible postnatal expression of EphA3 in adult wild-type lungs. Yet, EphA3 was expressed in the distal mesenchyme of developing mouse lungs, neighboring the epithelial expression of its Efna1 ligand; this is consistent with the known roles of EPH receptors in embryonic development. However, the partial loss of EphA3 leads only to subtle changes in epithelial Nkx2-1, endothelial Cd31 and mesenchymal Fgf10 RNA expression levels, and no macroscopic phenotypic effects on lung epithelial branching, mesenchymal cell proliferation, or abundance and localization of CD31-positive endothelia. The lack of a discernible lung phenotype in EphA3-null mice might indicate lack of an overt role for EPHA3 in the murine lung, or imply functional redundancy between EPHA receptors. Our study shows how biological complexity can challenge in vivo functional validation of mutations identified in sequencing efforts, and provides an incentive for the design of knock-in or conditional models to assign the role of EPHA3 mutation during lung tumorigenesis.KEY WORDS: EPHA3, EPH receptor A3, GEMM, Adenocarcinoma, Lung morphogenesis  相似文献   

14.
Fu W  Zhang Y  Zhang J  Chen WF 《Cytokine》2005,31(1):9-17
CXCR2/IL-8RB was the only receptor previously reported in mice for ELR+ CXC chemokines, whereas the receptors for these chemokines in human include both CXCR1 and CXCR2. In this study, we cloned the full length cDNA of the mouse CXCR1 (mCXCR1) gene. The deduced amino acid of mCXCR1 was 77% and 58% identical to the rat and human CXCR1, respectively. RT-PCR and Northern blot analysis showed that mCXCR1 mRNA was expressed in lung, spleen, thymus, peripheral blood leukocytes, as well as in the isolated neutrophils. In a mouse respiratory inflammation model induced by lipopolysaccharide, a large number of neutrophils infiltrated into the lung and, meanwhile, the mCXCR1 expression was significantly increased in the recruited neutrophils, suggesting that mCXCR1 may mediate the recruitment of neutrophils to the inflammation site under certain infections.  相似文献   

15.
16.
We previously reported that ultraviolet light B (UVB)-treated human platelets (hPLTs) can cause acute lung injury (ALI) in a two-event SCID mouse model in which the predisposing event was Lipopolysaccharide (LPS) injection and the second event was infusion of UVB-treated hPLTs. To delineate contributions of host mouse platelets (mPLTs) and neutrophils in the pathogenesis of ALI in this mouse model, we depleted mPLTs or neutrophils and measured hPLT accumulation in the lung. We also assessed lung injury by protein content in bronchoalveolar lavage fluid (BALF). LPS injection followed by infusion of UVB-treated hPLTs resulted in sequestration of both mPLTs and hPLTs in the lungs of SCID mice, although the numbers of neutrophils in the lung were not significantly different from the control group. Depletion of mouse neutrophils caused only a mild reduction in UVB-hPLTs accumulation in the lungs and a mild reduction in protein content in BALF. In comparison, depletion of mPLTs almost completely abolished hPLTs accumulation in the lung and significantly reduced protein content in BALF. UVB-treated hPLTs bound to host mPLTs, but did not bind to neutrophils in the lung. Aspirin treatment of hPLTs in vitro abolished hPLT accumulation in the lung and protected mice from lung injury. Our data indicate that host mPLTs accumulated in the lungs in response to an inflammatory challenge and subsequently mediated the attachment of transfused UVB-hPLTs. Neutrophils also recruited a small percentage of platelets to the lung. These findings may help develop therapeutic strategies for ALI which could potentially result from transfusion of UV illuminated platelets.  相似文献   

17.
Structural simplification of the core moieties of obeline and ergoline somatostatin sst1 receptor antagonists, followed by systematic optimization, led to the identification of novel, highly potent and selective sst1 receptor antagonists. These achiral, non-peptidic compounds are easily prepared and show promising PK properties in rodents.  相似文献   

18.
Pig models of cystic fibrosis (CF) have recently been established that are expected to mimic the human disease closer than mouse models do. The human CLCA (originally named chloride channels, calcium-activated) member hCLCA4 is considered a potential modifier of disease severity in CF, but its murine ortholog, mCLCA6, is not expressed in the mouse lung. Here, we have characterized the genomic structure, protein processing, and tissue expression patterns of the porcine ortholog to hCLCA4, pCLCA4a. The genomic structure and cellular protein processing of pCLCA4a were found to closely mirror those of hCLCA4 and mCLCA6. Similar to human lung, pCLCA4a mRNA was strongly expressed in porcine lungs, and the pCLCA4a protein was immunohistochemically detected on the apical membranes of tracheal and bronchial epithelial cells. This stands in sharp contrast to mouse mCLCA6, which has been detected exclusively in intestinal epithelia but not the murine lung. The results may add to the understanding of species-specific differences in the CF phenotype and support the notion that the CF pig model may be more suitable than murine models to study the role of hCLCA4.  相似文献   

19.
20.
《Gene》1999,227(1):71-77
We have cloned the mouse CRTH2 (chemoattractant receptor-homologous molecule expressed on TH2 cells) gene encoding a putative leukocyte chemoattractant receptor, of which human homologue is expressed selectively in Th2 but not in Th1 clones among T cell clones. The deduced amino-acid sequence of mouse CRTH2 bears 77% identity with its human homologue. Phylogenetic analysis suggested that both mouse and human CRTH2 are closely related to the N-formyl peptide receptor and the C5a receptor among leukocyte chemoattractant receptors. The mouse CRTH2 gene was mapped on chromosome 19c with FISH, where no other genes for leukocyte chemoattractant receptors are mapped. RT–PCR analysis revealed that mouse CRTH2 mRNA is expressed in various cell lineages, including both hematopoietic and non-hematopoietic cell lines. Expression was also observed in liver, lung, kidney, brain, heart, thymus, and spleen. These results suggest that mouse CRTH2 functions in a variety of cells, making the effects of CRTH2 pleiotropic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号