首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Rationale

The demographics of patients with idiopathic pulmonary arterial hypertension (IPAH) are changing and this diagnosis is increasingly being made in older patients. However, diagnostic misclassifications are common as it may be difficult to differentiate between IPAH and pulmonary hypertension due to heart failure with preserved ejection fraction (PH-HFpEF). We investigated the hypothesis that the capillary pCO2 (pcCO2) may help distinguishing between idiopathic pulmonary arterial hypertension (IPAH) and pulmonary hypertension due to heart failure with preserved ejection fraction (PH-HFpEF).

Methods

In a cross-sectional study, we retrospectively assessed pcCO2 levels (obtained from arterialized capillary blood at the time of diagnosis) from patients with IPAH or PH-HFpEF, respectively. Receiver operated characteristics (ROC) were used to determine the pcCO2 level providing the best discrimination between these two conditions. PcCO2 values were considered helpful if they were associated with a negative predictive value >0.9 to excluded either IPAH or PH-HFpEF.

Results

The study enrolled 185 patients, 99 with IPAH (74% female; age 47 ± 17 years; body mass index 26 ± 5 kg/m2, PAPm 53 ± 12 mmHg, PAWP 8 ± 3 mmHg), and 86 with PH-HFpEF (64% female; age 69 ± 10 years; body mass index 30 ± 6 kg/m2, PAPm 47 ± 10 mmHg, PAWP 21 ± 5 mmHg). PcCO2 at time of diagnosis was 33 ± 4 mmHg in the IPAH group and 40 ± 5 mmHg in the PH-HFpEF group (p < 0.001), respectively. According to ROC analysis, a pcCO2 of 36 mmHg was the best discriminator between both entities with an area under curve of 0.87 (p < 0.001). The likelihood of PH-HFpEF was <10% in patients with a PcCO2 < 34 mmHg, whereas the likelihood of IPAH was <10% in patients with a PcCO2 > 41 mmHg.

Conclusions

PcCO2 levels were significantly lower in IPAH compared to PH-HFpEF and may provide useful information in differentiating between both conditions.  相似文献   

3.
4.
Biomechanics and Modeling in Mechanobiology - Isolated post-capillary pulmonary hypertension (Ipc-PH) occurs due to left heart failure, which contributes to 1 out of every 9 deaths in the United...  相似文献   

5.

Background

Adults with pulmonary hypertension associated with congenital heart disease (PH-CHD) often have residual shunts. Invasive interventions aim to optimise pulmonary flow and prevent right ventricular failure. However, eligibility for procedures strongly depends on the adaptation potential of the pulmonary vasculature and right ventricle to resultant circulatory changes. Current guidelines are not sufficiently applicable to individual patients, who exhibit great diversity and complexity in cardiac anomalies.

Methods and Results

We present four complex adult PH-CHD patients with impaired pulmonary flow, including detailed graphics of the cardiopulmonary circulation. All these patients had an ambiguous indication for shunt intervention. Our local multidisciplinary Grown-Ups with Congenital Heart Disease team reached consensus regarding a patient-tailored invasive treatment strategy, adjacent to relevant guidelines. Interventions improved pulmonary haemodynamics and short-term clinical functioning in all cases.

Conclusions

Individual evaluation of disease characteristics is mandatory for tailored interventional treatment in PH-CHD patients, adjacent to relevant guidelines. Both strict registration of cases and multidisciplinary and multicentre collaboration are essential in the quest for optimal therapy in this patient population.
  相似文献   

6.
7.

Background

Decrease in quality of life (QoL) in left-sided heart failure precedes poor survival, which can be reversed with exercise training. We investigated whether QoL is associated with mortality in pulmonary arterial hypertension due to congenital heart disease (PAH-CHD) patients.

Methods

In this observational study, PAH-CHD adults referred for PAH-specific therapy were included. QoL surveys (SF36) were recorded during 2 years of therapy. Based on shift in SF36 scores during this period, patients had either decreased or non-decreased QoL. Subsequently, the patients were followed for mortality.

Results

Thirty-nine PAH-CHD patients (mean age 42, 44 % male, 49 % Down’s syndrome) were analysed. Following PAH-specific therapy, SF36 physical component summary (PCS) decreased in 13 (35–31 points, p = 0.001) and showed no decrease in 26 patients (34–43 points, mean values, p < 0.001). Post-initiation phase, median follow-up was 4.5 years, during which 12 deaths occurred (31 %), 10 (56 %) in the decreased and 2 (10 %) in the non-decreased group (p = 0.002). Cox regression showed a decrease in SF36 PCS predicted mortality (HR 3.4, 95 % CI 1.03–11, p = 0.045).

Conclusions

In PAH-CHD patients, decrease in SF36 PCS following initiation of PAH-specific therapy is a determinant of mortality.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-015-0666-9) contains supplementary material, which is available to authorized users.  相似文献   

8.
Phosphodiesterase 1 (PDE1) modulates vascular tone and the development of tolerance to nitric oxide (NO)-releasing drugs in the systemic circulation. Any role of PDE1 in the pulmonary circulation remains largely uncertain. We measured the expression of genes encoding PDE1 isozymes in the pulmonary vasculature and examined whether or not selective inhibition of PDE1 by vinpocetine attenuates pulmonary hypertension and augments the pulmonary vasodilator response to inhaled NO in lambs. Using RT-PCR, we detected PDE1A, PDE1B, and PDE1C mRNAs in pulmonary arteries and veins isolated from healthy lambs. In 13 lambs, the thromboxane A(2) analog U-46619 was infused intravenously to increase mean pulmonary arterial pressure to 35 mmHg. Four animals received an intravenous infusion of vinpocetine at incremental doses of 0.3, 1, and 3 mg.kg(-1).h(-1). In nine lambs, inhaled NO was administered in a random order at 2, 5, 10, and 20 ppm before and after an intravenous infusion of 1 mg.kg(-1).h(-1) vinpocetine. Administration of vinpocetine did not alter pulmonary and systemic hemodynamics or transpulmonary cGMP or cAMP release. Inhaled NO selectively reduced mean pulmonary arterial pressure, pulmonary capillary pressure, and pulmonary vascular resistance index, while increasing transpulmonary cGMP release. The addition of vinpocetine enhanced pulmonary vasodilation and transpulmonary cGMP release induced by NO breathing without causing systemic vasodilation but did not prolong the duration of pulmonary vasodilation after NO inhalation was discontinued. Our findings demonstrate that selective inhibition of PDE1 augments the therapeutic efficacy of inhaled NO in an ovine model of acute chemically induced pulmonary hypertension.  相似文献   

9.
Mutations of Jagged 1 (JAG1), a ligand in the Notch signaling pathway, cause Alagille syndrome (AGS). AGS is an autosomal dominant, multisystem disorder with variable expressivity, characterized by bile duct paucity and resultant liver disease in combination with cardiac, ocular, skeletal, and facial findings. JAG1 mutations in AGS include gene deletions and protein truncating, splicing, and missense mutations, suggesting that haploinsufficiency is the mechanism of disease causation. With limited exceptions, there is no genotype-phenotype correlation. We have studied a JAG1 missense mutation (JAG1-G274D) that was previously identified in 13 individuals from an extended family with cardiac defects of the type seen in patients with AGS (e.g., peripheral pulmonic stenosis and tetralogy of Fallot) in the absence of liver dysfunction. Our data indicate that this mutation is "leaky." Two populations of proteins are produced from this allele. One population is abnormally glycosylated and is retained intracellularly rather than being transported to the cell surface. A second population is normally glycosylated and is transported to the cell surface, where it is able to signal to the Notch receptor. The JAG1-G274D protein is temperature sensitive, with more abnormally glycosylated (and nonfunctional) molecules produced at higher temperatures. Carriers of this mutation therefore have >50% but <100% of the normal concentration of JAG1 molecules on the cell surface. The cardiac-specific phenotype associated with this mutation suggests that the developing heart is more sensitive than the developing liver to decreased dosage of JAG1.  相似文献   

10.
Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.  相似文献   

11.
12.
Gao, Yuansheng, Jean-François Tolsa, Hai Shen, and J. Usha Raj. Effect of selective phosphodiesteraseinhibitors on response of ovine pulmonary arteries to prostaglandinE2. J. Appl. Physiol. 84(1): 13-18, 1998.Several adenosine3,5-cyclic monophosphate (cAMP)-hydrolyzingphosphodiesterase isozymes are present in the pulmonary vasculature.The present study was designed to determine the effect of selectiveinhibitors of phosphodiesterase subtypes on prostaglandinE2(PGE2)-induced relaxation ofisolated fourth- generation pulmonary arteries of newborn lambs.PGE2 and forskolin causedpulmonary arteries to relax and induced an increase in theintracellular cAMP content in the vessels. The relaxation and change incAMP content were augmented by milrinone and rolipram, inhibitors ofphosphodiesterase type 3 (PDE3) and type 4 (PDE4), respectively. Theaugmentation in relaxation and the increase in cAMP content caused bymilrinone plus rolipram was greater than the sum of theresponses caused by either of the inhibitors alone.8-Methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine, an inhibitor of phosphodiesterase type 1, had no effect on relaxation andchange in cAMP induced by PGE2 andforskolin. Acetylcholine alone had no effect on cAMP content in thevessels but augmented the relaxation and the increase in cAMP inducedby PGE2 and forskolin in arterieswith endothelium. This effect was not observed in arteries withoutendothelium or in arteries with endothelium treated withNG-nitro-L-arginine.These results suggest that PDE3 and PDE4 are the primary enzymeshydrolyzing cAMP of pulmonary arteries of newborn lambs and that aninhibition of both PDE3 and PDE4 would result in a greater effect thanthat caused by inhibition of either one of the subtype isozymes alone.Furthermore, endothelium-derived nitric oxide may enhance cAMP-mediatedrelaxation by inhibition of PDE3.

  相似文献   

13.
It is becoming increasingly clear that dysregulation of protein synthesis contributes to a range of diseases characterized by tissue overgrowth. These include arterial stenosis, cardiac hypertrophy, hamartomas, and cancer. The central hub for the regulation of protein synthesis is the ribosome, where the key signaling pathways downstream of RAS, MYC, and phosphatidylinositol-3-kinase (PI3K) converge to confer exquisite, coordinated control of ribosome synthesis and function. Such cooperation ensures strict regulation of protein synthesis rates and cell growth. This review will focus on the role the PI3K/AKT/mammalian target of rapamycin complex 1 (mTORC1) pathway plays in regulating ribosome function during both health and disease, its interaction with the other key growth regulatory pathways activated by RAS and MYC, and the therapeutic potential for targeting this network.  相似文献   

14.
15.
The aim of this study was to investigate the contribution of direct right-to-left ventricular interaction to left ventricular filling and stroke volume in 46 patients with pulmonary arterial hypertension (PAH) and 18 control subjects. Stroke volume, right and left ventricular volumes, left ventricular filling rate, and interventricular septum curvature were measured by magnetic resonance imaging and left atrial filling by transesophageal echocardiography. Stroke volume, left ventricular end-diastolic volume, and left ventricular peak filling rate were decreased in PAH patients compared with control subjects: 28 +/- 13 vs. 41 +/- 10 ml/m(2) (P < 0.001), 46 +/- 14 vs. 61 +/- 14 ml/m(2) (P < 0.001), and 216 +/- 90 vs. 541 +/- 248 ml/s (P < 0.001), respectively. Among PAH patients, stroke volume did not correlate to right ventricular end-diastolic volume or mean pulmonary arterial pressure but did correlate to left ventricular end-diastolic volume (r = 0.62, P < 0.001). Leftward interventricular septum curvature was correlated to left ventricular filling rate (r = 0.64, P < 0.001) and left ventricular end-diastolic volume (r = 0.65, P < 0.001). In contrast, left atrial filling was normal and not correlated to left ventricular end-diastolic volume. In PAH patients, ventricular interaction mediated by the interventricular septum impairs left ventricular filling, contributing to decreased stroke volume.  相似文献   

16.
杨国良  王光常 《蛇志》2004,16(2):12-13
1999年至2003年,我院应用降纤酶联合前列腺素E1治疗慢性肺心病急性加重期患者40例,疗效满意。现报告如下。  相似文献   

17.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2alpha, 6 keto PGF1alpha (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2alpha) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10(-8)M. PGI2 and 6 keto PGF1alpha had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

18.
Pulmonary hypertension (PHT) in neonates is often refractory to the current best therapy, inhaled nitric oxide (NO). The utility of a new class of pulmonary vasodilators, Rho-kinase (ROCK) inhibitors, has not been examined in neonatal animals. Our objective was to examine the activity and expression of RhoA/ROCK in normal and injured pulmonary arteries and to determine the short-term pulmonary hemodynamic (assessed by pulse wave Doppler) effects of ROCK inhibitors (15 mg/kg ip Y-27632 or 30 mg/kg ip fasudil) in two neonatal rat models of chronic PHT with pulmonary vascular remodeling (chronic hypoxia, 0.13 Fi(O(2)), or 1 mg.kg(-1).day(-1) ip chronic bleomycin for 14 days from birth). Activity of the RhoA/ROCK pathway and ROCK expression were increased in hypoxia- and bleomycin-induced PHT. In both models, severe PHT [characterized by raised pulmonary vascular resistance (PVR) and impaired right ventricular (RV) performance] did not respond acutely to inhaled NO (20 ppm for 15 min) or to a single bolus of a NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1; 2 mug/kg ip). In contrast, a single intraperitoneal bolus of either ROCK inhibitor (Y-27632 or fasudil) completely normalized PVR but had no acute effect on RV performance. ROCK-mediated vasoconstriction appears to play a key role in chronic PHT in our two neonatal rat models. Inhibitors of ROCK have potential as a testable therapy in neonates with PHT that is refractory to NO.  相似文献   

19.
20.
Here we report the molecular identification of cytosolic glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (cPGES), a terminal enzyme of the cyclooxygenase (COX)-1-mediated PGE(2) biosynthetic pathway. GSH-dependent PGES activity in the cytosol of rat brains, but not of other tissues, increased 3-fold after lipopolysaccharide (LPS) challenge. Peptide microsequencing of purified enzyme revealed that it was identical to p23, which is reportedly the weakly bound component of the steroid hormone receptor/hsp90 complex. Recombinant p23 expressed in Escherichia coli and 293 cells exhibited all the features of PGES activity detected in rat brain cytosol. A tyrosine residue near the N terminus (Tyr(9)), which is known to be critical for the activity of cytosolic GSH S-transferases, was essential for PGES activity. The expression of cPGES/p23 was constitutive and was unaltered by proinflammatory stimuli in various cells and tissues, except that it was increased significantly in rat brain after LPS treatment. cPGES/p23 was functionally linked with COX-1 in marked preference to COX-2 to produce PGE(2) from exogenous and endogenous arachidonic acid, the latter being supplied by cytosolic phospholipase A(2) in the immediate response. Thus, functional coupling between COX-1 and cPGES/p23 may contribute to production of the PGE(2) that plays a role in maintenance of tissue homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号