首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human apolipoprotein E (apoE) isoforms exhibit different conformational stabilities and lipid-binding properties that give rise to altered cholesterol metabolism among the isoforms. Using Trp-substituted mutations and site-directed fluorescence labeling, we made a comprehensive comparison of the conformational organization of the N- and C-terminal domains and lipid interactions between the apoE3 and apoE4 isoforms. Trp fluorescence measurements for selectively Trp-substituted variants of apoE isoforms demonstrated that apoE4 adopts less stable conformations in both the N- and C-terminal domains compared to apoE3. Consistent with this, the conformational reorganization of the N-terminal helix bundle occurs at lower guanidine hydrochloride concentration in apoE4 than in apoE3 as monitored by fluorescence resonance energy transfer (FRET) from Trp residues to acrylodan attached at the N-terminal helix. Upon binding of apoE3 and apoE4 variants to egg phosphatidylcholine small unilamellar vesicles, similar changes in Trp fluorescence or FRET efficiency were observed for the isoforms, indicating that the opening of the N-terminal helix bundle occurs similarly in apoE3 and apoE4. Introduction of mutations into the C-terminal domain of the apoE isoforms to prevent self-association and maintain the monomeric state resulted in great increase in the rate of binding of the C-terminal helices to a lipid surface. Overall, our results demonstrate that the different conformational organizations of the N- and C-terminal domains have a minor effect on the steady-state lipid-binding behavior of apoE3 and apoE4: rather, self-association property is a critical determinant in the kinetics of lipid binding through the C-terminal helices of apoE isoforms.  相似文献   

2.
We describe sensitive new approaches for detecting and quantitating protein-lipid interactions using analytical ultracentrifugation and continuous size-distribution analysis [Schuck (2000) Biophys. J.78, 1606-1619]. The new methods were developed to investigate the binding of human apolipoprotein E (apoE) isoforms to size-fractionated lipid emulsions, and demonstrate that apoE3 binds preferentially to small lipid emulsions, whereas apoE4 exhibits a preference for large lipid particles. Although the apparent binding affinity for large emulsions is similar (Kd approximately 0.5 micro m), the maximum binding capacity for apoE4 is significantly higher than for apoE3 (3.0 and 1.8 amino acids per phospholipid, respectively). This indicates that apoE4 has a smaller binding footprint at saturation. We propose that apoE isoforms differentiate between lipid surfaces on the basis of size, and that these differences in lipid binding are due to a greater propensity of apoE4 to adopt a more compact closed conformation. Implications for the role of apoE4 in blood lipid transport and disease are discussed.  相似文献   

3.
The low density lipoprotein receptor-related protein (LRP) from rat liver membranes binds apoprotein E (apoE)-enriched rabbit beta-migrating very low density lipoproteins (beta-VLDL) in a ligand blotting assay on nitrocellulose membranes. Binding was markedly activated when the beta-VLDL was preincubated with recombinant human apoE-3, native human apoE-3 or E-4, or native rabbit apoE. Human apoE-2, which binds poorly (1-2% of apo E-3 binding) to low density lipoprotein receptors, was approximately 40% as effective as apoE-3 or apoE-4 in binding to LRP. Stimulation of apoE-dependent binding to LRP was blocked by the inclusion of a mixture of human apoC proteins, but not apoA-I or A-II, in the preincubation reaction. High concentrations of apoE did not overcome the apoC inhibition. The effects of apoE and apoC on the ligand blotting assay were paralleled by similar effects in the ability of beta-VLDL to stimulate cholesteryl ester synthesis in mutant human fibroblasts that lack low density lipoprotein receptors. These properties of LRP are consistent with the known effects of apoE and apoC on uptake of chylomicron and very low density lipoprotein remnants in the liver and raise the possibility that LRP functions as a receptor for apoE-enriched forms of these lipoproteins in intact animals.  相似文献   

4.
Apolipoprotein E (apoE) plays a critical role in plasma lipid homeostasis through its function as a ligand for the low-density lipoprotein (LDL) receptor family. Receptor recognition is mediated by residues 130-150 in the independently folded, 22-kDa N-terminal (NT) domain. This elongated globular four-helix bundle undergoes a conformational change upon interaction with an appropriate lipid surface. Unlike other apolipoproteins, apoE3 NT failed to fully protect human LDL from aggregation induced by treatment with phospholipase C. Likewise, in dimyristoylglycerophosphocholine (Myr2Gro-PCho) vesicle transformation assays, 100 microg apoE3 NT induced only 15% reduction in vesicle (250 microg) light scattering intensity after 30 min. ApoE3 NT interaction with modified lipoprotein particles or Myr2Gro-PCho vesicles was concentration-dependent whereas the vesicle transformation reaction was unaffected by buffer ionic strength. In studies with the anionic phospholipid dimyristoylglycerophosphoglycerol, apoE3 NT-mediated vesicle transformation rates were enhanced > 10-fold compared with Myr2Gro-PCho and activity decreased with increasing buffer ionic strength. Solution pH had a dramatic effect on the kinetics of apoE3 NT-mediated Myr2Gro-PCho vesicle transformation with increased rates observed as a function of decreasing pH. Fluorescence studies with a single tryptophan containing apoE3 NT mutant (L155W) revealed increased solvent exposure of the protein interior at pH values below 4.0. Similarly, fluorescent dye binding experiments with 8-anilino-1-naphthalene sulfonate revealed increased exposure of apoE3 NT hydrophobic interior as a function of decreasing pH. These studies indicate that apoE3 NT lipid binding activity is modulated by lipid surface properties and protein tertiary structure.  相似文献   

5.
The amino-terminal 20.1% of apolipoprotein B (apoB20.1; residues 1-912) is sufficient to initiate and direct the formation of nascent apoB-containing lipoprotein particles. To investigate the mechanism of initial lipid acquisition by apoB, we examined the lipid binding and interfacial properties of a carboxyl-terminal His6-tagged form of apoB20.1 (apoB20.1H). ApoB20.1H was expressed in Sf9 cells and purified by nickel affinity chromatography. ApoB20.1H was produced in a folded state as characterized by formation of intramolecular disulfide bonds and resistance to chemical reduction. Dynamic light scattering in physiological buffer indicated that purified apoB20.1H formed multimers, which were readily dissociable upon the addition of nonionic detergent (0.1% Triton X-100). ApoB20.1H was incapable of binding dimyristoylphosphatidylcholine multilamellar vesicles, unless its multimeric structure was first disrupted by guanidine hydrochloride. However, apoB20.1H multimers spontaneously dissociated and bound to the interface of naked and phospholipid-coated triolein droplets. These data reveal that the initiating domain of apoB contains solvent-accessible hydrophobic sequences, which, in the absence of a hydrophobic lipid interface or detergent, engage in self-association. The high affinity of apoB20.1H for neutral lipid is consistent with the membrane binding and desorption model of apoB-containing lipoprotein assembly.  相似文献   

6.
Detailed structural information on human exchangeable apolipoproteins (apo) is required to understand their functions in lipid transport. Using a series of deletion mutants that progressively lacked different regions along the molecule, we probed the structural organization of lipid-free human apoA-I and the role of different domains in lipid binding, making comparisons to apoE, which is a member of the same gene family and known to have two structural domains. Measurements of alpha-helix content by CD in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that deletion of the amino-terminal or central regions disrupts the tertiary organization, whereas deletion of the carboxyl terminus has no effect on stability and induces a more cooperative structure. These data are consistent with the lipid-free apoA-I molecule being organized into two structural domains similar to apoE; the amino-terminal and central parts form a helix bundle, whereas the carboxyl-terminal alpha-helices form a separate, less organized structure. The binding of the apoA-I variants to lipid emulsions is modulated by reorganization of the helix bundle structure, because the rate of release of heat on binding is inversely correlated with the stability of the helix bundle. Based on these observations, we propose that there is a two-step mechanism for lipid binding of apoA-I: apoA-I initially binds to a lipid surface through amphipathic alpha-helices in the carboxyl-terminal domain, followed by opening of the helix bundle in the amino-terminal domain. Because apoE behaves similarly, this mechanism is probably a general feature for lipid interaction of other exchangeable apolipoproteins, such as apoA-IV.  相似文献   

7.
The interactions of lysophosphatidylcholine and synthetic 1,2-dimyristoyl-sn-glycerophosphocholine (DMPC) liposomes with the isolated HDL-apolipoproteins, apo AI and apo AII, has been studied by microcalorimetry. Complex formation is a highly exothermal process characterized by a maximal enthalpy of about --200 kcal/mol of apoprotein when added to DMPC at 28 degrees C in 0.05 M sodium carbonate/bicarbonate buffer, pH 9.6. For the apo AI apoprotein, the binding consists of two processes, one endothermal occurring at low phospholipid/protein ratios and one exothermal predominant at higher phospholipid levels. The endothermal process has been attributed to a lipid-induced disaggregation of the apo AI while the exothermal process is similar to the binding of apo AII or apo HDL to phospholipids. The binding of a constant AI and apo AII, demonstrates the existence of a maximal association at a 1 : 1 molar ratio of the apolipoproteins. The sequential binding of DMPC to apo AI and apo AII suggests the existence of cooperativity between the two apoproteins in phospholipid binding as apo AII promotes the incorporation of apo AI into a protein-phospholipid complex.  相似文献   

8.
ApoAV, a newly discovered apolipoprotein, plays a key role in human triglyceride homeostasis; however, the structure-function correlation of apoAV is not clearly understood. To explore the relationship, wild type and six deletion mutants, that is (AV (Delta(1-51)), AV (Delta(51-128)), AV (Delta(132-188)), AV (Delta(192-238)), AV (Delta(246-299)), AV (Delta(301-343))), of human apoAV expressed in Escherichia coli were studied. All the deleted regions together encompass almost the entire 343 amino acid sequence of wild type apoAV. Circular dichroism spectroscopy showed that the alpha helical content of lipid-free wild type apoAV was 46%. In comparison with wild type apoAV, AV (Delta(192-238)) and AV (Delta(301-343)) displayed significantly decreased lipid binding activities, confirming the importance of these two regions in lipid binding function of apoAV. While, the LPL activation function of apoAV remarkably impaired after deletion of residues 192-238. These findings suggested that the domain (192-238) is absolutely necessary for apoAV in lipid binding and lipoprotein lipase activation.  相似文献   

9.
The characteristics of the lipid - protein complex produced by the addition of the major apolipoproteins (apo AI and apo AII) of human high-density lipoprotein to synthetic phospholipids has been studied. Under the in vitro conditions utilized, apo AI binds to 1,2-dimyristoyl-sn-glycerophosphocholine and 1,2-dipalmitoyl-sn-glycerophosphocholine liposomes, but does not alter their morphologic characteristics. This binding occurs at temperatures above or below that of the transition (Tt) of the lipid bilayer. In contrast, apo AII spontaneously generates small, homogeneous disc-shaped lipid-protein complexes (50 X 10 a) from large phospholipid globules or from liposomes prepared with these lipids. This type of complex was only formed when the lipid/apo AII mixtures were warmed above the transition temperatures. The incorporation of apo AI into this small complex with apo AII may be greatly facilitated or inhibited depending on the sequence of addition of the various components. Under optimal circumstances, a maximum of 1 molecule of apo AI is incorporated with each molecule of apo A II into complexes with these two synthetic phospholipids.  相似文献   

10.
Structural properties and lipid binding of human apolipoprotein A-IV   总被引:1,自引:0,他引:1  
The in vivo affinity of human apolipoprotein A-IV (apo-A-IV) for plasma lipoproteins is considerably less than that of other apolipoproteins. We have therefore studied its spectroscopic properties and its association with model chylomicrons to investigate its structural characteristics and to define their influence upon its affinity for lipids. Fluorescence emission spectra of apo-A-IV in dilute aqueous solution revealed that its single tryptophan residue resides in a pH-sensitive hydrophobic domain, which is maximally protected from iodide quenching at pH 7.5. Denaturation of apo-A-IV by guanidine hydrochloride caused a multiphasic fluorescence emission red shift, with an unusual enhancement of quantum yield. Circular dichroism spectroscopy of apo-A-IV demonstrated negative ellipticity maxima at 210 and 222 nm, consistent with 54% alpha-helical structure. The alpha-helicity of apo-A-IV as measured by [theta]222 was also pH-sensitive and displayed a distinctive decrease between pH 7.0 and 8.0. Apo-A-IV was exquisitely sensitive to denaturation by guanidine hydrochloride, and its estimated free energy of stabilization in aqueous solution was near zero. Apo-A-IV bound to the surface of Sf greater than 400 particles of a phospholipid-triglyceride emulsion in a noncooperative, concentration-dependent manner. The affinity of apo-A-IV for these model chylomicrons was influenced by changes in pH or addition of guanidine hydrochloride in a manner which correlated well with the structural changes observed under similar conditions. We conclude that human apolipoprotein A-IV possesses several biophysical properties characteristic of the better studied plasma apolipoproteins, yet, apo-A-IV appears to be marginally stable in aqueous solution and its structural characteristics and lipid binding properties are particularly sensitive to environment.  相似文献   

11.
To understand the molecular basis for the different self-association and lipoprotein preferences of apolipoprotein (apo) E isoforms, we compared the effects of progressive truncation of the C-terminal domain in human apoE3 and apoE4 on their lipid-free structure and lipid binding properties. A VLDL/HDL distribution assay demonstrated that apoE3 binds much better than apoE4 to HDL 3, whereas both isoforms bind similarly to VLDL. Removal of the C-terminal helical regions spanning residues 273-299 weakened the ability of both isoforms to bind to lipoproteins; this led to the elimination of the isoform lipoprotein preference, indicating that the C-terminal helices mediate the lipoprotein selectivity of apoE3 and apoE4 isoforms. Gel filtration chromatography experiments demonstrated that the monomer-tetramer distribution is different for the two isoforms with apoE4 being more monomeric than apoE3 and that removal of the C-terminal helices favors the monomeric state in both isoforms. Consistent with this, fluorescence measurements of Trp-264 in single-Trp mutants revealed that the C-terminal domain in apoE4 is less organized and more exposed to the aqueous environment than in apoE3. In addition, the solubilization of dimyristoylphosphatidylcholine multilamellar vesicles is more rapid with apoE4 than with apoE3; removal of the C-terminal helices significantly affected solubilization rates with both isoforms. Taken together, these results indicate that the C-terminal domain is organized differently in apoE3 and apoE4 so that apoE4 self-associates less and binds less than apoE3 to HDL surfaces; these alterations may lead to the pathological sequelae for cardiovascular and neurodegenerative diseases.  相似文献   

12.
Bian CF  Zhang Y  Sun H  Li DF  Wang DC 《PloS one》2011,6(9):e25007
The Thomsen-Friedenreich (TF or T) antigen, Galβ1-3GalNAcα1-O-Ser/Thr, is the core 1 structure of O-linked mucin type glycans appearing in tumor-associated glycosylation. The TF antigen occurs in about 90% of human cancer cells and is a potential ligand for the human endogenous galectins. It has been reported that human galectin-1 (Gal-1) and galectin-3 (Gal-3) can perform their cancer-related functions via specifically recognizing TF antigen. However, the detailed binding properties have not been clarified and structurally characterized. In this work, first we identified the distinct TF-binding abilities of Gal-1 and Gal-3. The affinity to TF antigen for Gal-3 is two orders of magnitude higher than that for Gal-1. The structures of Gal-3 carbohydrate recognition domain (CRD) complexed with TF antigen and derivatives, TFN and GM1, were then determined. These structures show a unique Glu-water-Arg-water motif-based mode as previously observed in the mushroom galectin AAL. The observation demonstrates that this recognition mode is commonly adopted by TF-binding galectins, either as endogenous or exogenous ones. The detailed structural comparisons between Gal-1 and Gal-3 CRD and mutagenesis experiments reveal that a pentad residue motif ((51)AHGDA(55)) at the loop (g1-L4) connecting β-strands 4 and 5 of Gal-1 produces a serious steric hindrance for TF binding. This motif is the main structural basis for Gal-1 with the low affinity to TF antigen. These findings provide the intrinsic structural elements for regulating the TF-binding activity of Gal-1 in some special conditions and also show certain target and approach for mediating some tumor-related bioactivities of human galectins.  相似文献   

13.
Human apolipoprotein (apo) A-IV is a polymorphic plasma protein controlled by two codominant alleles at a single genetic locus. Thus far, five different isoproteins (apoA-IV-0 to apoA-IV-4) have been described in Caucasians. We have recently identified the nucleotide and amino acid substitutions that are the basis for the most common isoproteins, apoA-IV-1 and apoA-IV-2. In this report, the mutations producing the two rare isoproteins apoA-IV-0 and apoA-IV-3 are described. Analysis of the apoA-IV-0 allele revealed an insertion of 12 nucleotides in a carboxyl-terminal region, which is highly conserved among human, rat, and mouse A-IV apolipoproteins. This in-frame insertion of the 4 amino acids Glu-Gln-Gln-Gln between residues 361 and 362 of the mature protein produces the 1 charge unit more acidic apoA-IV-0 isoprotein (pI 4.92). In the apoA-IV-3 allele we identified a single G to A substitution that converts the glutamic acid (GAG) at position 230 of the mature protein to a lysine (AAG), thus adding 2 positive charge units to the apoA-IV-1 isoprotein (pI 4.97) and forming the more basic apoA-IV-3 isoprotein (pI 5.08). Comparison with the mouse and rat A-IV apolipoproteins revealed that this residue, located at position 4 of the 10th/11th amphiphilic alpha-helical repeat, is also highly conserved in evolution.  相似文献   

14.
Large (ca. 120 nm) and small (ca. 35 nm) emulsions consisting of triolein (TO) and phosphatidylcholine (PC) were prepared as the primary protein-free models of chylomicrons and their remnants, respectively. Lipoprotein lipase (LPL)-mediated lipolysis of emulsion TO was retarded in chylomicron-free human plasma compared with the hydrolysis activated by isolated apolipoprotein C-II (apoC-II). In 30% plasma, free fatty acid (FFA) release rate was higher for large emulsions than for small ones, while both emulsions were hydrolyzed at similar rates in the presence of isolated apoC-II. Isolated apolipoprotein C-III (apoC-III) or apolipoprotein E (apoE) worked as LPL-inhibitor of the lipolysis activated by apoC-II. It was also observed that apolipoprotein A-I (apoA-I) showed distinct inhibitory effects on the lipolysis of large and small emulsions: more effective inhibition for small emulsions. Kinetic analyses showed that K(m)(app) and V(max)(app) for the lipolysis of emulsions were lower in the presence of 30% plasma than isolated apoC-II. ApoA-I also markedly decreased K(m)(app) and V(max)(app) for LPL-catalyzed hydrolysis of both emulsions. In chylomicron-free serum, the density of bound apoA-I at small emulsion surfaces was about three fold greater than large emulsion surfaces, but the binding densities of apoC-II, apoC-III and apoE were less for small emulsion surfaces than for large ones, suggesting that apoA-I preferentially binds to small particles and displaces other exchangeable apolipoproteins from particle surfaces. These results indicate that, in addition to the well known inhibitory effects of apoC-III and apoE, apoA-I in plasma regulates the lipolysis of triglyceride (TG)-rich emulsions and lipoproteins in a size-dependent manner.  相似文献   

15.
Non-natural L-nucleoside analogues are increasingly used as therapeutic agents to treat cancer and viral infections. To be active, L-nucleosides need to be phosphorylated to their respective triphosphate metabolites. This stepwise phosphorylation relies on human enzymes capable of processing L-nucleoside enantiomers. We used crystallographic analysis to reveal the molecular basis for the low enantioselectivity and the broad specificity of human 3-phosphoglycerate kinase (hPGK), an enzyme responsible for the last step of phosphorylation of many nucleotide derivatives. Based on structures of hPGK in the absence of nucleotides, and bound to L and d forms of MgADP and MgCDP, we show that a non-specific hydrophobic clamp to the nucleotide base, as well as a water-filled cavity behind it, allows high flexibility in the interaction between PGK and the bases. This, combined with the dispensability of hydrogen bonds to the sugar moiety, and ionic interactions with the phosphate groups, results in the positioning of different nucleotides so to expose their diphosphate group in a position competent for catalysis. Since the third phosphorylation step is often rate limiting, our results are expected to alleviate in silico tailoring of L-type prodrugs to assure their efficient metabolic processing.  相似文献   

16.
The effects of the lipid peroxidation product 4-hydroxynonenal on freshly prepared human low-density lipoprotein (LDL) were studied. At a fixed LDL concentration (5.7 mg/ml) the amount of 4-hydroxynonenal incorporated into the LDL increased with increasing aldehyde concentration from 28-30 (0.2 mM) to 140 (1 mM) mol per mol LDL, whereas at a fixed aldehyde concentration (0.2 mM) its incorporation into LDL decreased with increasing LDL concentration from 48 (1 mg LDL/ml) to 26 (12 mg LDL/ml) mol 4-hydroxynonenal bound per mol LDL. Of the total hydroxynonenal taken up 78% was bound to the protein and 21% to the lipid moiety; the remaining 1% was dissolved as free aldehyde in the lipid fraction. Amino acid analysis of the apolipoprotein B revealed that 4-hydroxynonenal attacks mainly the lysine and tyrosine residues and to a lesser extent also serine, histidine and cysteine. Treatment of LDL with 4-hydroxynonenal results in a concentration-dependent increase of the negative charge of the LDL particle as evidenced by its increased electrophoretic mobility. Moreover, 4-hydroxynonenal treatment leads to a partial conversion of the apolipoprotein B-100 into higher molecular weight forms most probably apolipoproteins B-126 and B-151. Compared to malonaldehyde, 4-hydroxynonenal exhibits a much higher capacity to modify LDL and it is therefore believed that this aldehyde is a more likely candidate for being responsible for LDL modification under in vivo lipid peroxidation conditions.  相似文献   

17.
The onset of autoimmune diseases is proposed to involve binding promiscuity of antibodies (Abs) and T‐cells, an often reported yet poorly understood phenomenon. Here, we attempt to approach two questions: first, is binding promiscuity a general feature of monoclonal antibodies (mAbs) and second, what is the molecular basis for polyspecificity? To this end, the anti‐cholera toxin peptide 3 (CTP3) mAb TE33 was investigated for polyspecific binding properties. Screening of phage display libraries identified two epitope‐unrelated peptides that specifically bound TE33 with affinities similar to or 100‐fold higher than the wild‐type epitope. Substitutional analyses revealed distinct key residue patterns recognized by the antibody suggesting a unique binding mode for each peptide. A database query with one of the consensus motifs and a subsequent binding study uncovered 45 peptides (derived from heterologous proteins) that bound TE33. To better understand the structural basis of the observed polyspecificity we modeled the new cyclic epitope in complex with TE33. The interactions between this peptide and TE33 suggested by our model are substantially different from the interactions observed in the X‐ray structure of the wild‐type epitope complex. However, the overall binding conformation of the peptides is similar. Together, our results support the theory of a general polyspecific potential of mAbs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Human high density lipoprotein (HDL), devoid of apolipoproteins E or B, binds with high affinity and specificity to cultured cells derived from several tissues. In order to investigate the ligand specificity of the putative receptor, we have performed competitive inhibition studies to identify the components of high density lipoprotein that bind to cell surfaces of rat adrenal cortical cells and human skin fibroblasts. Radiolabeled HDL3 was displaced with unlabeled apolipoprotein-dimyristoylphosphatidylcholine recombinant particles containing AI, AII, CIII-1, and E apolipoproteins, but not by dimyristoylphosphatidylcholine complexed to albumin or by low density lipoprotein. Because exchange may readily occur between apolipoproteins in HDL and in recombinants this observation may not be truly representative of ligand competition. Further experiments using Fab fragments prepared from pure IgG to each apolipoprotein showed that binding of radioiodinated HDL to cells was suppressed following preincubation of HDL with Fab fragments raised against apolipoproteins AI or AII but not against apolipoproteins E or CIII-1 or albumin. In additional studies with apolipoprotein recombinants specific saturable binding was demonstrated between apo-AI or -AII recombinants and adrenocortical cells whereas binding of apo-CIII-2 was characterized by a large nonsaturable component which almost equaled the specific binding. The data, therefore, provide evidence for the involvement of the two major apolipoproteins (AI and AII) in HDL recognition by cellular receptors.  相似文献   

19.
The molecular structure of membrane lipids is formed by mono- or polyunsaturations on their aliphatic tails that make them susceptible to oxidation, facilitating the incorporation of hydroperoxide (R-OOH) functional groups. Such groups promote changes in both composition and complexity of the membrane significantly modifying its physicochemical properties. Human Langerhans islets amyloid polypeptide (hIAPP) is the main component of amyloid deposits found in the pancreas of patients with type-2 diabetes (T2D). hIAPP in the presence of membranes with oxidized lipid species accelerates the formation of amyloid fibrils or the formation of intermediate oligomeric structures. However, the molecular bases at the initial stage of the anchoring and stabilization of the hIAPP in a hydroperoxidized membrane are not yet well understood. To shed some light on this matter, in this contribution, three bilayer models were modeled: neutral (POPC), anionic (POPS), and oxidized (POPCOOH), and full atom Molecular Dynamics (MD) simulations were performed. Our results show that the POPCOOH bilayer increases the helicity in hIAPP when compared to POPC or POPS bilayer. The modification in the secondary structure covers the residues of the so-called amyloidogenic core of the hIAPP. Overall, the hydroperoxidation of the neutral lipids modifies both the anchoring and the stabilization of the peptide hIAPP by reducing the random conformations of the peptide and increasing of hydrogen bond population with the hydroperoxidized lipids.  相似文献   

20.
Transfer of cholesteryl ester between triacylglycerol/phospholipid microemulsions catalyzed by human plasma lipid transfer protein was investigated with a pyrene-containing analogue of which fluorescent properties depend on its concentration in the core of the microemulsions. The transfer of pyrene-cholesteryl ester between the emulsions was increased by the transfer protein linearly with its concentration, but maximally only to the extent of twice as much as spontaneous transfer in the given experimental conditions. When human apolipoproteins A-I or A-II are present in the reaction mixture enough to saturate the surface of the emulsion, the enhancement of the pyrene-cholesteryl ester transfer reaction by the transfer protein was 7.5-times more than in the absence of the apolipoproteins while the rate of spontaneous transfer was not affected significantly by the apolipoproteins. Bovine serum albumin did not have such an effect. Furthermore, the enhancement of the lipid transfer protein reaction by apolipoprotein A-I was linearly proportional to the percent saturation of the surface of the microemulsion with the apolipoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号