首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A catalogue of sounds from a laboratory population of Pigtailed macaques has been developed from spectograms. Sounds are divided into four general classes: clear, harsh and high-pitched calls, and miscellaneous sounds. It appears that all parameters of the vocal signal are independently manipulatable. A plot of selected spectral characteristics demonstrated the uniqueness of individual signals. In some instances, different sounds are developed by rearrangement of specific fragments, or by acoustical activities performed on similar sounds. This latter phenomenon, which will be termed mosaicism , parallels aspects of language design. Lastly, comparison of spectrograms for Pigtailed macaques with those published for Rhesus macaques ( Macaca mulatta ) reveals similarities in structure.  相似文献   

3.
An adult, gravid, female pigtailed macaque (Macaca nemestrina) presented for facial swelling centered on the left mandible that was approximately 5 cm wide. Differential diagnoses included infectious, inflammatory, and neoplastic origins. Definitive antemortem diagnosis was not possible, and the macaque''s condition worsened despite supportive care. Necropsy findings included a mandibular mass that was locally invasive and expansile, encompassing approximately 80% of the left mandibular bone. The mass replaced portions of the soft palate, hard palate, sinuses, ear canal, and the caudal–rostral calvarium and masseter muscle. Histologically, the mass was a neoplasm that was poorly circumscribed, unencapsulated, and infiltrative invading regional bone and soft tissue. The mass consisted of polygonal squamous epithelial cells with intercellular bridging that breached the epithelial basement membrane and formed invasive nests, cords, and trabeculae. The mitotic rate averaged 3 per 400× field of view, with occasional bizarre mitotic figures. Epithelial cells often exhibited dyskeratosis, and the nests often contained compact lamellated keratin (keratin pearls). The neoplasm was positive via immunohistochemistry for pancytokeratin, variably positive for S100, and negative for vimentin, smooth muscle actin, and desmin. The gross, histologic, and immunohistochemical findings were consistent with an aggressive oral squamous cell carcinoma. The neoplasm was negative via PCR for papilloma virus. In general, neoplasia in macaques is rare. Although squamous cell carcinomas are one of the most common oral neoplasia in many species, to our knowledge this case represents the first reported oral squamous cell carcinoma in a pigtailed macaque.Abbreviation: SCC, squamous cell carcinomaSquamous cell carcinomas (SCC) are one of the most commonly reported oral tumors. They are characterized as firm, nodular to irregular, soft-tissue masses that are often ulcerated.6 These tumors are frequently highly invasive to local bone and muscle and occasionally metastasize to local and regional lymph nodes.6 Histologically, SCC are characterized by keratin pearls, intercellular bridges, and positive cytokeratin staining on immunohistochemistry.6,18 SCC have been associated with carcinogen exposure (such as bracken fern toxicosis in cattle), actinic radiation, and rarely with papillomatosis.8In general, neoplastic diseases are rare in nonhuman primates, and SCC and lymphoma are the 2 most commonly reported oral neoplasms in these species.3 SCC have most commonly been reported in rhesus macaques (Macaca mullata) and baboons (Papio spp.) among nonhuman primate species.9 In rhesus macaques, SCC has occurred in the oral cavity,9 integument,9,22 esophagus,9 stomach,21 lung,9,13 prepuce–penis,10 cervix,9 uterus,9 and eye.9 These neoplasms have also been reported to occur in cynomolgus macaques,14,15,17,19 marmosets, squirrel monkeys, tree shrews, capuchins, tamarins, black spider monkeys, sooty mangabies, a spectacled langur, and an orangutan.9 No report describing SCC in a pig-tailed macaque has been published previously. The oral cavity is the most common site of SCC in nonhuman primates, and metastasis occurs in approximately 23% of cases.9 The average age at diagnosis of oral SCC in rhesus macaques is 17.6 y.22 In baboons, SCC is the third most common neoplasm, after intestinal adenocarcinoma and lymphosarcoma.4 The following case report describes an oral SCC in a pregnant pig-tailed macaque.  相似文献   

4.
Since the anthrax attacks of 2001, the emphasis on developing animal models of aerosolized select agent pathogens has increased. Many scientists believe that nonhuman primate models are the most appropriate to evaluate pulmonary response to, vaccines for, and treatments for select agents such as Yersinia pestis (Y. pestis), the causative agent of plague. A recent symposium concluded that the cynomolgus macaque (Macaca fascicularis) plague model should be characterized more fully. To date, a well-characterized cynomolgus macaque model of pneumonic plague using reproducible bioaerosols of viable Y. pestis has not been published. In the current study, methods for creating reproducible bioaerosols of viable Y. pestis strain CO92 (YpCO92) and pneumonic plague models were evaluated in 22 Indonesian-origin cynomolgus macaques. Five macaques exposed to doses lower than 250 CFU remained free of any indication of plague infection. Fifteen macaques developed fever, lethargy, and anorexia indicative of clinical plague. The 2 remaining macaques died without overt clinical signs but were plague-positive on culture and demonstrated pathology consistent with plague. The lethal dose of plague in humans is reputedly less than 100 organisms; in this study, 66 CFU was the dose at which half of the macaques developed fever and clinical signs (ED50), The Indonesian cynomolgus macaque reproduces many aspects of human pneumonic plague and likely will provide an excellent model for studies that require a macaque model.Yersinia pestis is the causative agent of plague. Likely more people worldwide have died from Y. pestis infections than from any other single infectious disease.26,27 Bubonic plague, the most common form of the disease, results when the bacterium is inoculated into the skin, typically by means of flea bites. The resulting cutaneous infection spreads to local lymph nodes; the swollen lymph nodes are known as bubos and often serve as a source of systemic infection. Although less common, the bacterium also can spread by aerosol, causing pneumonic plague. Pneumonic plague can result from pulmonary spread of systemic infection or from deliberate dissemination and is associated with nearly 100% human mortality if left untreated. Y. pestis is susceptible to commonly available antibiotics if treatment begins soon after infection. However, depending on the route of infection, the time at which infection is confirmed is often too late for antibiotics to prevent significant morbidity or mortality.10 Because pneumonic plague is the form most likely to be seen in bioterrorism events,16 interest in animal models has arisen to support development of vaccines and improved therapeutics.Potential vaccines and therapeutic agents for plague must protect against the pneumonic disease, but contemporary published data regarding disease pathogenesis using aerosolized Y. pestis pathogenesis in nonhuman primates are scant.4,9,21,23,24 In the United States, when vaccine or antibiotic efficacy cannot be evaluated in humans, an animal species that is reasonably expected to recapitulate human disease must be used.9 For many biothreat agents such as plague, a nonhuman primate model often is required. Although some laboratories have examined the cynomolgus macaque model of aerosolized plague briefly,1 no published reports fully characterize this model. Published studies have examined plague in the African green monkey or vervet (Chlorocebus spp., formerly Cercopithecus aethiops) and rhesus macaque (Macaca mulatta).1 Vervets reportedly are more sensitive to plague than are macaques,4,24 such that some vervets are susceptible to infection with vaccine strains, casting some doubt on applicability of this species for plague studies.1 The disease in rhesus macaques differs from that in humans in that rhesus macaques frequently develop disseminated intravascular coagulation (DIC) and chronic pneumonia as a result of pneumonic plague while humans usually develop acute pneumonia without DIC.1,7Many participants at a recent symposium sponsored by the Food and Drug Administration and National Institute of Allergy and Infectious Disease endorsed the development of a cynomolgus macaque pneumonic plague model to support plague therapeutic and vaccine studies.8 The current study was undertaken to evaluate the Indonesian cynomolgus macaque as a model of aerosolized Y. pestis Colorado 92 (YpCO92) for subsequent vaccine and therapeutic trials. We also sought to determine whether fever development could be used to determine a humane endpoint to the study, as an alternative to LD50 methods.  相似文献   

5.
This study investigated whether monkeys recognize when a human experimenter imitates their actions towards an object. Two experimenters faced 10 pigtailed macaques, who were given access to an interesting object. One experimenter imitated the monkeys' object-directed actions, the other performed temporally contingent but structurally different object-directed actions. Results show a significant visual preference for the imitator during manual object manipulations, but not mouthing actions. We argue that the ability to match actions could be based on both visual-visual and kinaesthetic-visual matching skills, and that mirror neurons, which have both visual and motor properties, could serve as a neural basis for recognizing imitation. However, imitation recognition as assessed by visual preference does not necessarily imply the capacity to attribute imitative intentionality to the imitator. The monkeys might implicitly recognize when they are being imitated without deeper insight into the mental processes of others.  相似文献   

6.
In some species of Cercopithecine primates, unrelated adult males and females maintain affiliative relationships ('friendships') that are apparently unrelated to mating or parental care. This study investigated the occurrence of friendships in a captive group of pigtail macaques, and some of their possible determinants. Study subjects were six adult males and 15 adult females with their newborn infants. Females were focally observed for 2 h every week during the first 12 wk of lactation. With the exception of the fourth-ranking male, adult males showed little interest in initiating affiliative interactions with lactating females and their infants. Most episodes of contact and grooming were initiated by high-ranking females and directed to the alpha male. Because female grooming was not generally reciprocated by the alpha male, it is likely that females benefited from associating with him in terms of agonistic support or protection. Genetic data on paternity determination indicated that the fourth-ranking male, who displayed high levels of affiliation towards mother-infant dyads, sired most of the infants born in the group in the year prior to this study. Thus, whereas females may be interested in associating with males to obtain their support, some males may affiliate with females as a consequence of their previous mating relationships with them or to increase the chances of future mating success. Taken together, however, the findings of this study provide little evidence that adult males and lactating females maintain strong reciprocal bonds that may qualify as friendships.  相似文献   

7.
8.
This case report describes a rhesus macaque (Macaca mulatta; male; age, 5 y; weight, 6.7 kg) with anorexia, dehydration, lethargy, ataxia, and generalized skin rashes that occurred 30 d after total-body irradiation at 6.5 Gy (60Co γ-rays). Physical examination revealed pale mucus membranes, a capillary refill time of 4 s, heart rate of 180 bpm. and respirations at 50 breaths per minute. Diffuse multifocal maculopapulovesicular rashes were present on the body, including mucocutaneous junctions. The CBC analysis revealed a Hct of 48%, RBC count of 6.2 × 106/µL, platelet count of 44 × 103/µL, and WBC count of 25 × 103/µL of WBC. The macaque was euthanized in light of a grave prognosis. Gross examination revealed white foci on the liver, multifocal generalized petechiation on serosal and mucosal surfaces of the gastrointestinal tract, hemorrhagic lymph nodes, and hemorrhagic fluid in the thoracic cavity. Microscopic examination revealed cutaneous vesicular lesions with intranuclear eosinophilic viral inclusions within the epithelial cells, consistent with herpesvirus. Immunohistochemistry was positive for herpesvirus. The serum sample was negative for antibodies against Macacine herpesvirus 1 and Cercopithecine herpesvirus 9 (simian varicella virus, SVV). Samples submitted for PCR-based identification of the etiologic agent confirmed the presence of SVV DNA. PCR analysis, immunohistochemistry, and histology confirmed that lesions were attributed to an active SVV infection in this macaque. This case illustrates the importance of screening for SVV in rhesus macaques, especially those used in studies that involve immunosuppressive procedures.Abbreviations: SVV, simian varicella virus; TBI, total-body irradiation  相似文献   

9.
Tropical rain forest conservation requires a good understanding of plant–animal interactions. Seed dispersal provides a means for plant seeds to escape competition and density-dependent seed predators and pathogens and to colonize new habitats. This makes the role and effectiveness of frugivorous species in the seed dispersal process an important topic. Northern pigtailed macaques (Macaca leonina) may be effective seed dispersers because they have a diverse diet and process seeds in several ways (swallowing, spitting out, or dropping them). To investigate the seed dispersal effectiveness of a habituated group of pigtailed macaques in Khao Yai National Park, Thailand, we examined seed dispersal quantity (number of fruit species eaten, proportion in the diet, number of feces containing seeds, and number of seeds processed) and quality (processing methods used, seed viability and germination success, habitat type and distance from parent tree for the deposited seeds, and dispersal patterns) via focal and scan sampling, seed collection, and germination tests. We found thousands of seeds per feces, including seeds up to 58 mm in length and from 88 fruit species. Importantly, the macaques dispersed seeds from primary to secondary forests, via swallowing, spitting, and dropping. Of 21 species, the effect of swallowing and spitting was positive for two species (i.e., processed seeds had a higher % germination and % viability than control seeds), neutral for 13 species (no difference in % germination or viability), and negative (processed seeds had lower % germination and viability) for five species. For the final species, the effect was neutral for spat-out seeds but negative for swallowed seeds. We conclude that macaques are effective seed dispersers in both quantitative and qualitative terms and that they are of potential importance for tropical rain forest regeneration.  相似文献   

10.
11.
Pigtailed macaques (Macaca nemestrina) provide an important model for biomedical research on human disease and for studying the evolution of primate behavior. The genetic structure of captive populations of pigtailed macaques is not as well described as that of captive rhesus (M. mulatta) or cynomolgus (M. fascicularis) macaques. The Washington National Primate Research Center houses the largest captive colony of pigtailed macaques located in several different housing facilities. Based on genotypes of 18 microsatellite (short tandem repeat [STR]) loci, these pigtailed macaques are more genetically diverse than captive rhesus macaques and exhibit relatively low levels of inbreeding. Colony genetic management facilitates the maintenance of genetic variability without compromising production goals of a breeding facility. The periodic introduction of new founders from specific sources to separate housing facilities at different times influenced the colony's genetic structure over time and space markedly but did not alter its genetic diversity significantly. Changes in genetic structure over time were predominantly due to the inclusion of animals from the Yerkes National Primate Research Center in the original colony and after 2005. Strategies to equalize founder representation in the colony have maximized the representation of the founders’ genomes in the extant population. Were exchange of animals among the facilities increased, further differentiation could be avoided. The use of highly differentiated animals may confound interpretations of phenotypic differences due to the inflation of the genetic contribution to phenotypic variance of heritable traits. Am. J. Primatol. 74:1017‐1027, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Varicella zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (HZ [shingles]). Clinical observations suggest that VZV-specific T cell immunity plays a more critical role than humoral immunity in the prevention of VZV reactivation and development of herpes zoster. Although numerous studies have characterized T cell responses directed against select VZV open reading frames (ORFs), a comprehensive analysis of the T cell response to the entire VZV genome has not yet been conducted. We have recently shown that intrabronchial inoculation of young rhesus macaques with simian varicella virus (SVV), a homolog of VZV, recapitulates the hallmarks of acute and latent VZV infection in humans. In this study, we characterized the specificity of T cell responses during acute and latent SVV infection. Animals generated a robust and broad T cell response directed against both structural and nonstructural viral proteins during acute infection in bronchoalveolar lavage (BAL) fluid and peripheral blood. During latency, T cell responses were detected only in the BAL fluid and were lower and more restricted than those observed during acute infection. Interestingly, we identified a small set of ORFs that were immunogenic during both acute and latent infection in the BAL fluid. Given the close genome relatedness of SVV and VZV, our studies highlight immunogenic ORFs that may be further investigated as potential components of novel VZV vaccines that specifically boost T cell immunity.  相似文献   

13.
14.
International Journal of Primatology - Primates must select sleeping sites carefully to maximize fitness. In habitats with diminished quality and availability of resources, sleeping site selection...  相似文献   

15.
Ganglia of monkeys with reactivated simian varicella virus (SVV) contained more CD8 than CD4 T cells around neurons. The abundance of CD8 T cells was greater less than 2 months after reactivation than that at later times and correlated with that of CXCL10 RNA but not with those of SVV protein or open reading frame 61 (ORF61) antisense RNA. CXCL10 RNA colocalized with T-cell clusters. After SVV reactivation, transient T-cell infiltration, possibly mediated by CXCL10, parallels varicella zoster virus (VZV) reactivation in humans.  相似文献   

16.
17.
Three classes of hepatic alcohol dehydrogenase (ADH), analogous to those of human liver, are present in Macaca nemestrina. Their functional, compositional, and structural features have been established with isozymes purified to homogeneity by affinity and conventional ion-exchange chromatography. One unusual molecular form of M. nemestrina ADH is electrophoretically indistinguishable as it comigrates with one of the cathodic class I isozymes on starch gel electrophoresis. While its substrate and inhibitor specificity, a high Km value for ethanol (50 mM at pH 10), and lack of binding to the pyrazole affinity resin are consistent with the kinetics of class II ADH, the physiochemical and compositional properties are virtually identical with all other known mammalian alcohol dehydrogenases. The unexpected presence of this previously unknown ADH variant in livers of M. nemestrina demonstrates the need for prudence in assignment of ADH isozymes. Classification based solely on electrophoretic position in starch gels and enzymatic properties of human ADH but without isolation and characterization of individual isozymes may prove insufficient and inadequate. The genetic or phenotypic nature of this isozyme remains to be demonstrated.  相似文献   

18.
19.
Amyloidosis is a progressive and ultimately fatal disease in which amyloid, an insoluble fibrillar protein, is deposited inappropriately in multiple organs, eventually leading to organ dysfunction. Although this condition commonly affects macaques, there is currently no reliable method of early diagnosis. Changes in clinical pathology parameters have been associated with amyloidosis but occur in late stages of disease, are nonspecific, and resemble those seen in chronic, idiopathic enterocolitis. A review of animal records revealed that amyloidosis was almost always diagnosed postmortem, with prevalences of 15% and 25% in our rhesus and pig-tailed macaque colonies, respectively. As a noninvasive, high-throughput diagnostic approach to improve antemortem diagnosis of amyloidosis in macaques, we evaluated serum amyloid A (SAA), an acute-phase protein and the precursor to amyloid. Using necropsy records and ELISA analysis of banked serum, we found that SAA is significantly elevated in both rhesus and pig-tailed macaques with amyloid compared with those with chronic enterocolitis and healthy controls. At necropsy, 92% of rhesus and 83% of pig-tailed had amyloid deposition in either the intestines or liver. Minimally invasive biopsy techniques including endoscopy of the small intestine, mucosal biopsy of the colon, and ultrasound-guided trucut biopsy of the liver were used to differentiate macaques in our colonies with similar clinical presentations as either having amyloidosis or chronic, idiopathic enterocolitis. Our data suggest that SAA can serve as an effective noninvasive screening tool for amyloidosis and that minimally invasive biopsies can be used to confirm this diagnosis.Abbreviations: SAA, serum amyloid AAmyloidosis is a pathologic condition that occurs spontaneously in humans, mammals, birds, and reptiles.47 Secondary systemic amyloidosis, also referred to as reactive amyloidosis, is the most common form described in domestic animals.46 It is a progressive disease in which an insoluble fibrillar protein consisting of β pleated sheets, amyloid, is deposited inappropriately in multiple organs, eventually leading to dysfunction.40,46 Secondary amyloidosis is most often the result of chronic infections or inflammatory disease. In humans, it occurs with a wide variety of conditions including inflammatory bowel disease,3 osteoarthritis including rheumatoid and juvenile forms,20,25 chronic infections such as tuberculosis, and hereditary disease such as familial Mediterranean fever.43 Similarly, in nonhuman primates, the disease has been described with several conditions of chronic infection or inflammation including bacterial enterocolitis,4,19,30,37 chronic indwelling catheters,9 parasitism,2,4 respiratory disease,30,37 trauma,37 and rheumatoid arthritis.6Despite reported prevalences as high as 30% in rhesus (Macaca mulatta)4 and 47% in pig-tailed macaques (Macaca nemestrina),19 amyloidosis remains a challenge to diagnose. The current diagnostic ‘gold standard’ in macaques is histopathology of the affected organ;19 however, amyloid can be deposited in tissues for as long as 3 y before the development of clinical signs.16 Histologic diagnoses of amyloidosis typically are confirmed with Congo red staining, in which amyloid proteins appear apple-green and birefringent under polarized light. In addition, electron microscopy can detect the fibrillar amyloid proteins in tissues, and other histologic stains including methyl violet, sulphonated Alcian blue, and thioflavin S and T can be used but are less specific than is Congo red.33 Although changes in clinical pathology parameters such as decreases in serum albumin and total protein have been associated with amyloidosis,19,29 they are often nonspecific and resemble those seen in the frequently comorbid conditions chronic anorexia and chronic, idiopathic enterocolitis. Furthermore, imaging techniques such as abdominal X-ray and ultrasonography have been shown to be nondiagnostic in macaques with amyloidosis.19 Consequently, at our institution and in other macaque colonies, diagnosis of amyloidosis is often made at necropsy.The current standard of diagnosis in humans is biopsy with histopathology of affected organs, but unlike in nonhuman primates, minimally invasive tissue sampling has been extensively explored.17 Aspiration or biopsy of the subcutaneous abdominal fat pad has currently replaced many biopsy techniques as the preliminary diagnostic, with reported sensitivities ranging from 66% to 92%.5,24,28,39,44 Rectal biopsy was previously the preferred minimally invasive approach and is now often used adjunctively when subcutaneous abdominal fat is negative for amyloid but the clinical suspicion for amyloidosis remains high.5,17 Additional tissue biopsy sites with limited morbidity such as skin, gingiva, and stomach have been reported with lesser sensitivities.5,34,39,44 In contrast, limited information is published on the usefulness of minimally invasive biopsy techniques for diagnosing amyloidosis in macaques. One report found endoscopic biopsy of the stomach and colon to be of limited utility in diagnosing amyloidosis in a colony of pig-tailed macaques.19 Similarly, a single publication reported colonoscopy to be noninformative and labor-intensive in a colony of rhesus macaques.15 Retrospective studies of macaque colonies have shown a predilection for amyloid deposition in the intestines and liver,4,30,38 suggesting that endoscopic or percutaneous biopsy of these tissues may reliably provide definitive antemortem diagnosis for amyloidosis.In addition to biopsy, identification of the relevant amyloid precursor protein within the blood is an integral part of the diagnosis of amyloidosis in human patients17 and holds promise as a screening tool in macaque colonies because of its high throughput potential in comparison to biopsy. Serum amyloid A (SAA), an acute-phase protein, can be found circulating in the blood and is the precursor for amyloid formation and deposition in secondary systemic amyloidosis. Specifically, when elevated SAA persists in the bloodstream, it ultimately progresses to amyloid deposition in tissues.13,45 Profound elevations in SAA occur in the bloodstream as a result of acute inflammation, but these elevations are transient as SAA then is rapidly degraded and removed from the peripheral circulation.7,45 Although the exact role of chronic inflammation and SAA in the pathogenesis of secondary, systemic amyloidosis is not well understood, SAA is pathologically persistently elevated in human patients with chronic inflammatory disease that develop secondary systemic amyloidosis. In contrast, serum SAA remains at normal lower levels in human patients without amyloidosis but ongoing chronic inflammatory disease.13,14,26 Furthermore, quantification of SAA is more effective than are organ function tests as a prognostic measure of amyloid disease and is routinely used to monitor disease progression and response to treatment in humans.14 In rhesus and pig-tailed macaques, SAA is elevated in subjects with amyloidosis as compared with those that are clinically normal.8,19 The ability to distinguish between healthy animals and those with subclinical amyloidosis would be clinically useful. Human studies indicate that establishing a diagnosis of secondary amyloidosis in its early stages followed by prompt treatment of the inciting chronic inflammatory process can arrest the progression of amyloidosis and can even result in disease remission in some cases.21,23,31,32,36 Of equal interest would be the ability to distinguish amyloidosis from chronic, idiopathic enterocolitis, a common disease among macaque colonies12,35 that has considerable clinical overlap with the late stages of amyloidosis but different therapeutic options and prognosis than does systemic amyloidosis. Although there is no definitive treatment for amyloidosis in humans or macaques, recent human case reports suggest that antiinflammatory therapy with newer targeted monocolonal antibody medications, such as IL6 receptor antagonists, can successfully reverse the disease. This outcome has been demonstrated in several cases by both the reduction of circulating SAA to normal levels and by the histologic disappearance of amyloid proteins in biopsies of affected tissues.21,23,31,32,36 Accurate antemortem diagnosis of amyloidosis in macaques potentially would support further investigations into the novel application of these drugs for the treatment of amyloidosis in both human and macaque patients.We hypothesize that SAA, in addition to being a useful screening method for identifying animals with amyloidosis, can be used to distinguish between macaques with this disease and those with chronic, idiopathic enterocolitis. We further hypothesize that, in agreement with retrospective studies from macaques at other institutions, the intestines and liver will be commonly affected in amyloidotic macaques in our own colonies and that minimally invasive biopsy of these tissues can provide definitive, antemortem diagnosis of amyloidosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号