首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadherins are homophilic cell–cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell–cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered. Here we identify the small GTPase Rab35 as a new regulator of cadherin trafficking and stabilization at cell–cell contacts in C2C12 myoblasts and HeLa cells. We find that Rab35 accumulates at cell–cell contacts in a cadherin-dependent manner. Knockdown of Rab35 or expression of a dominant-negative form of Rab35 impaired N- and M-cadherin recruitment to cell–cell contacts, their stabilization at the plasma membrane, and association with p120 catenin and led to their accumulation in transferrin-, clathrin-, and AP-2–positive intracellular vesicles. We also find that Rab35 function is required for PIP5KIγ accumulation at cell–cell contacts and phosphatidyl inositol 4,5-bisphosphate production, which is involved in cadherin stabilization at contact sites. Finally, we show that Rab35 regulates myoblast fusion, a major cellular process under the control of cadherin-dependent signaling. Taken together, these results reveal that Rab35 regulates cadherin-dependent AJ formation and myoblast fusion.  相似文献   

2.
Rho1 regulates Drosophila adherens junctions independently of p120ctn   总被引:2,自引:0,他引:2  
During animal development, adherens junctions (AJs) maintain epithelial cell adhesion and coordinate changes in cell shape by linking the actin cytoskeletons of adjacent cells. Identifying AJ regulators and their mechanisms of action are key to understanding the cellular basis of morphogenesis. Previous studies linked both p120catenin and the small GTPase Rho to AJ regulation and revealed that p120 may negatively regulate Rho. Here we examine the roles of these candidate AJ regulators during Drosophila development. We found that although p120 is not essential for development, it contributes to morphogenesis efficiency, clarifying its role as a redundant AJ regulator. Rho has a dynamic localization pattern throughout ovarian and embryonic development. It preferentially accumulates basally or basolaterally in several tissues, but does not preferentially accumulate in AJs. Further, Rho1 localization is not obviously altered by loss of p120 or by reduction of core AJ proteins. Genetic and cell biological tests suggest that p120 is not a major dose-sensitive regulator of Rho1. However, Rho1 itself appears to be a regulator of AJs. Loss of Rho1 results in ectopic accumulation of cytoplasmic DE-cadherin, but ectopic cadherin does not accumulate with its partner Armadillo. These data suggest Rho1 regulates AJs during morphogenesis, but this regulation is p120 independent.  相似文献   

3.
In MDCK cells, presenilin-1 (PS1) accumulates at intercellular contacts where it colocalizes with components of the cadherin-based adherens junctions. PS1 fragments form complexes with E-cadherin, beta-catenin, and alpha-catenin, all components of adherens junctions. In confluent MDCK cells, PS1 forms complexes with cell surface E-cadherin; disruption of Ca(2+)-dependent cell-cell contacts reduces surface PS1 and the levels of PS1-E-cadherin complexes. PS1 overexpression in human kidney cells enhances cell-cell adhesion. Together, these data show that PS1 incorporates into the cadherin/catenin adhesion system and regulates cell-cell adhesion. PS1 concentrates at intercellular contacts in epithelial tissue; in brain, it forms complexes with both E- and N-cadherin and concentrates at synaptic adhesions. That PS1 is a constituent of the cadherin/catenin complex makes that complex a potential target for PS1 FAD mutations.  相似文献   

4.
Cell-adhesion molecules localized at adherens junctions (AJs) maintain the polarized architecture of epithelial cells but limit their movements. The morphogenesis of a developing epithelium is associated with the control of both cell shape and cell contacts. Epithelial cells remodel their contacts, and intercellular adhesion controlled by cadherin molecules is spatially and temporally regulated. Cell shape depends, in part, on the regulation of cell adhesion between different groups of cells. Patterned epithelial cell movements such as those that occur during cell intercalation--a universal process whereby cells exchange neighbors--rely on the polarized remodeling of AJs. Recent studies show that the understanding of adhesion will benefit from studies of developing organisms in which adhesion is regulated.  相似文献   

5.
Synapses of the central nervous system (CNS) are specialized cell-cell junctions that mediate intercellular signal transmission from one neuron to another. The directional nature of signal relay requires synaptic contacts to be morphologically asymmetric with distinct protein components, while changes in synaptic communication during neural network formation require synapses to be plastic. Synapse morphology and plasticity require a dynamic actin cytoskeleton. Classical cadherins, which are junctional proteins associated with the actin cytoskeleton, localize to synapses and regulate synaptic adhesion, stability and remodeling. The major intracellular components of cadherin junctions are the catenin proteins, and increasing evidence suggests that cadherin-catenin complexes modulate an array of synaptic processes. Here we review the role of catenins in regulating the development of pre- and postsynaptic compartments and function in synaptic plasticity, with particular focus on their role in regulating the actin cytoskeleton.  相似文献   

6.
One of the four principal categories of cell-cell junctions that hold together and shape distinct tissues and organs in vertebrates, adherens junctions (AJs) form cell-cell contacts that connect transmembrane proteins with cytoskeletal actin filaments to provide architectural strength, aid in morphogenesis, and help to maintain proper tissue homeostasis. The classical organization of AJs, consisting of transmembrane cadherins and cytoplasmically attached β-catenins and α-catenins assembled together into a multiprotein complex, was once thought obligatory to craft a robust and stable connection to actin-based cytoskeletal elements, but this architecture has since been challenged and questioned to exist. In a stimulating paper published in a recent issue of BMC Biology, Millán et al. provide convincing evidence that in confluent vascular endothelial cells a novel dynamic vascular endothelial (VE)-cadherin-based AJ type exists that interacts with and physically connects prominent bundles of tension-mediating actin filaments, stress fibers, between neighboring cells. Stress fibers were known previously to link to integrin-based focal adhesion complexes but not to cell-cell adhesion mediating AJs. These new findings, together with previous results support the concept that different AJ subtypes, sharing the same transmembrane cadherin types, can assemble in various configurations to either increase barrier function and promote physical cell-cell adhesion, or to lessen cell-cell adhesion and promote cell separation and migration.  相似文献   

7.
Actin-based cell-cell adherens junctions (AJs) are crucial not only for mechanical adhesion but also for cell morphogenesis and differentiation. While organization of homotypic AJs is attributed mostly to classic cadherins, the adhesive mechanism of heterotypic AJs in more complex tissues remains to be clarified. Nectin, a member of a family of immunoglobulin-like adhesion molecules at various AJs, is a possible organizer of heterotypic AJs because of its unique heterophilic trans-interaction property. Recently, nectin-2 (-/-) mice have been shown to exhibit the defective sperm morphogenesis and the male-specific infertility, but the role of nectin in testicular AJs has not been investigated. We show here the heterotypic trans-interaction between nectin-2 in Sertoli cells and nectin-3 in spermatids at Sertoli-spermatid junctions (SspJs), heterotypic AJs in testes. Moreover, each nectin-based adhesive membrane domain exhibits one-to-one colocalization with each actin bundle underlying SspJs. Inactivation of the mouse nectin-2 gene causes not only impaired adhesion but also loss of the junctional actin scaffold at SspJs, resulting in aberrant morphogenesis and positioning of spermatids. Localization of afadin, an adaptor protein of nectin with the actin cytoskeleton, is also nectin-2 dependent at SspJs. These results indicate that the nectin-afadin system plays essential roles in coupling cell-cell adhesion and the cortical actin scaffold at SspJs and in subsequent sperm morphogenesis.  相似文献   

8.
9.
Tight junctions (TJs) and adherens junctions (AJs) are dynamic structures linked to the actin cytoskeleton, which control the paracellular permeability of epithelial and endothelial barriers. TJs and AJs are strictly regulated in a spatio-temporal manner by a complex signaling network, including Rho/Ras-GTPases, which have a pivotal role. Rho preferentially regulates TJs by controlling the contraction of apical acto-myosin filaments, whereas Rac/Cdc42 mainly coordinate the assembly-disassembly of AJ components. However, a subtle balance of Rho/Ras-GTPase activity and interplay between these molecules is required to maintain an optimal organization and function of TJs and AJs. Conversely, integrity of intercellular junctions generates signals through Rho-GTPases, which are involved in the regulation of multiple cellular processes. Rho/Ras-GTPases and the control of intercellular junctions are the target of various bacterial toxins responsible for severe diseases in man and animals, and are part of their mechanism of action. This review focuses on the regulation of TJs and AJs by Rho/Ras-GTPases through molecular approaches and bacterial toxins.  相似文献   

10.
11.
Classic cadherins represent a family of calcium-dependent homophilic cell–cell adhesion molecules. They confer strong adhesiveness to animal cells when they are anchored to the actin cytoskeleton via their cytoplasmic binding partners, catenins. The cadherin/catenin adhesion system plays key roles in the morphogenesis and function of the vertebrate and invertebrate nervous systems. In early vertebrate development, cadherins are involved in multiple events of brain morphogenesis including the formation and maintenance of the neuroepithelium, neurite extension and migration of neuronal cells. In the invertebrate nervous system, classic cadherin-mediated cell–cell interaction plays important roles in wiring among neurons. For synaptogenesis, the cadherin/catenin system not only stabilizes cell–cell contacts at excitatory synapses but also assembles synaptic molecules at synaptic sites. Furthermore, this system is involved in synaptic plasticity. Recent studies on the role of individual cadherin subtypes at synapses indicate that individual cadherin subtypes play their own unique role to regulate synaptic activities.  相似文献   

12.
The vertebrate vasculature is an essential organ network with major roles in health and disease. The establishment of balanced cell–cell adhesion in the endothelium is crucial for the functionality of the vascular system. Furthermore, the correct patterning and integration of vascular endothelial cell–cell adhesion drives the morphogenesis of new vessels, and is thought to couple physical forces with signaling outcomes during development. Here, we review insights into this process that have come from studies in zebrafish. First, we describe mutants in which endothelial adhesion is perturbed, second we describe recent progress using in vivo cell biological approaches that allow the visualization of endothelial cell–cell junctions. These studies underline the profound potential of this model system to dissect in great detail the function of both known and novel regulators of endothelial cell–cell adhesion.  相似文献   

13.
Impaired formation of desmosomal junctions in ADPKD epithelia   总被引:1,自引:1,他引:0  
Mutations in polycystin-1 (PC-1) are responsible for autosomal dominant polycystic kidney disease (ADPKD), characterized by formation of fluid-filled tubular cysts. The PC-1 is a multifunctional protein essential for tubular differentiation and maturation found in desmosomal junctions of epithelial cells where its primary function is to mediate cell–cell adhesion. To address the impact of mutated PC-1 on intercellular adhesion, we have analyzed the structure/function of desmosomal junctions in primary cells derived from ADPKD cysts. Primary epithelial cells from normal kidney showed co-localization of PC-1 and desmosomal proteins at cell–cell contacts. A striking difference was seen in ADPKD cells, where PC-1 and desmosomal proteins were lost from the intercellular junction membrane, despite unchanged protein expression levels. Instead, punctate intracellular expression for PC-1 and desmosomal proteins was detected. The N-cadherin, but not E-cadherin was expressed in adherens junctions of ADPKD cells. These data together with co-sedimentation analysis demonstrate that, in the absence of functional PC-1, desmosomal junctions cannot be properly assembled and remain sequestered in cytoplasmic compartments. Taken together, our results demonstrate that PC-1 is crucial for formation of intercellular contacts. We propose that abnormal expression of PC-1 causes disregulation of cellular adhesion complexes leading to increased proliferation, loss of polarity and, ultimately, cystogenesis.  相似文献   

14.
Cadherin-actin interactions at adherens junctions   总被引:1,自引:0,他引:1  
The adherens junction (AJ) is a major cell-cell junction that mediates cell recognition, adhesion, morphogenesis, and tissue integrity. Although AJs transmit forces generated by actomyosin from one cell to another, AJs have long been considered as an area where signal transduction from cadherin ligation takes place through cell adhesion. Through the efforts to understand embryonic or cellular morphogenesis, dynamic interactions between the AJ and actin filaments have become crucial issues to be addressed since actin association is essential for AJ development, remodeling and function. Here, I provide an overview of cadherin-actin interaction from morphological aspects and of possible molecular mechanisms revealed by recent studies.  相似文献   

15.
16.
Cadherins are calcium-dependent cell–cell adhesion molecules that require the interaction of the cytoplasmic tail with the actin cytoskeleton for adhesive activity. Because of the functional relationship between cadherin receptors and actin filament organization, we investigated whether members of the Rho family of small GTPases are necessary for cadherin adhesion. In fibroblasts, the Rho family members Rho and Rac regulate actin polymerization to produce stress fibers and lamellipodia, respectively. In epithelial cells, we demonstrate that Rho and Rac are required for the establishment of cadherin-mediated cell–cell adhesion and the actin reorganization necessary to stabilize the receptors at sites of intercellular junctions. Blocking endogenous Rho or Rac selectively removed cadherin complexes from junctions induced for up to 3 h, while desmosomes were not perturbed. In addition, withdrawal of cadherins from intercellular junctions temporally precedes the removal of CD44 and integrins, other microfilament-associated receptors. Our data showed that the concerted action of Rho and Rac modulate the establishment of cadherin adhesion: a constitutively active form of Rac was not sufficient to stabilize cadherindependent cell–cell contacts when endogenous Rho was inhibited. Upon induction of calcium-dependent intercellular adhesion, there was a rapid accumulation of actin at sites of cell–cell contacts, which was prevented by blocking cadherin function, Rho or Rac activity. However, if cadherin complexes are clustered by specific antibodies attached to beads, actin recruitment to the receptors was perturbed by inhibiting Rac but not Rho. Our results provide new insights into the role of the small GTPases in the cadherin-dependent cell– cell contact formation and the remodelling of actin filaments in epithelial cells.  相似文献   

17.
18.
Catenins: keeping cells from getting their signals crossed   总被引:8,自引:0,他引:8  
  相似文献   

19.
Cell‐to‐cell contacts are crucial for cell differentiation. The promyogenic cell surface protein, Cdo, functions as a component of multiprotein clusters to mediate cell adhesion signaling. Connexin 43, the main connexin forming gap junctions, also plays a key role in myogenesis. At least part of its effects is independent of the intercellular channel function, but the mechanisms underlying are unknown. Here, using multiple optical approaches, we provided the first evidence that Cx43 physically interacts with Cdo to form dynamic complexes during myoblast differentiation, offering clues for considering this interaction a structural basis of the channel‐independent function of Cx43. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
α-Catenin is a filamentous actin (F-actin) binding protein that links the classical cadherin–catenin complex to the actin cytoskeleton at adherens junctions (AJs). Its C-terminal F-actin binding domain is required for regulating the dynamic interaction between AJs and the actin cytoskeleton during tissue development. Thus, obtaining the molecular details of this interaction is a crucial step towards understanding how α-catenin plays critical roles in biological processes, such as morphogenesis, cell polarity, wound healing and tissue maintenance. Here we report the backbone atom (1HN, 15N, 13Cα, 13Cβ and 13C′) resonance assignments of the C-terminal F-actin binding domain of αN-catenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号