首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key function of signal transduction during cell polarization is the creation of spatially segregated regions of the cell cortex that possess different lipid and protein compositions and have distinct functions. Polarity can be initiated spontaneously or in response to signaling inputs from adjacent cells or soluble factors and is stabilized by positive-feedback loops. A conserved group of proteins, the Par proteins, plays a central role in polarity establishment and maintenance in many contexts. These proteins generate and maintain their distinct locations in cells by actively excluding one another from specific regions of the plasma membrane. The Par signaling pathway intersects with multiple other pathways that control cell growth, death, and organization.  相似文献   

2.
The term polarity refers to the differential distribution of the macromolecular elements of a cell, resulting in its asymmetry in function, shape and/or content. Polarity is a fundamental property of all metazoan cells in at least some stages, and is pivotal to processes such as epithelial differentiation (apical/basal polarity), coordinated cell activity within the plane of a tissue (planar cell polarity), asymmetric cell division, and cell migration. In the last case, an apparently symmetric cell responds to directional cues provided by chemoattractants, creating a polarity axis that runs from the cell anterior, or leading edge, in which actin polymerization takes place, to the cell posterior (termed uropod in leukocytes), in which acto-myosin contraction occurs. Here we will review some of the molecular mechanisms through which chemoattractants break cell symmetry to trigger directed migration, focusing on cells of the immune system. We briefly highlight some common or apparently contradictory pathways reported as important for polarity in other cells, as this suggests conserved or cell type-specific mechanisms in eukaryotic cell chemotaxis.Key Words: chemotaxis, polarization, lipid rafts, signaling, cytoskeleton  相似文献   

3.
The term polarity refers to the differential distribution of the macromolecular elements of a cell, resulting in its asymmetry in function, shape and/or content. Polarity is a fundamental property of all metazoan cells in at least some stages, and is pivotal to processes such as epithelial differentiation (apical/basal polarity), coordinated cell activity within the plane of a tissue (planar cell polarity), asymmetric cell division, and cell migration. In the last case, an apparently symmetric cell responds to directional cues provided by chemoattractants, creating a polarity axis that runs from the cell anterior, or leading edge, in which actin polymerization takes place, to the cell posterior (termed uropod in leukocytes), in which acto-myosin contraction occurs. Here we will review some of the molecular mechansisms through which chemoattractants break cell symmetry to trigger directed migration, focusing on cells of the immune system. We briefly highlight some common or apparently contradictory pathways reported as important for polarity in other cells, as this suggests conserved or cell type-specific mechanisms in eukaryotic cell chemotaxis.  相似文献   

4.
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.  相似文献   

5.
6.
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.  相似文献   

7.
Cells must coordinate diverse processes including cell division, cell migration, and cell polarity with the cell’s metabolic status. How single molecules coordinate these seemingly distinct cell biological events remains relatively unexplored. AMP-activated protein kinase (AMPK) sits at a unique position as a proposed energy sensor that can interface with diverse signaling molecules ranging from LKB1 to mammalian target of rapamycin (mTOR), affecting processes from ribosomal biogenesis to actin regulation. Determining biologically relevant direct kinase targets remains challenging. Alternatively, one can genetically inactivate a kinase and subsequently characterize cellular and whole animal phenotypes without the kinase’s activity. Recent genetic studies inactivating AMPK activity in Drosophila indicate unanticipated roles for AMPK as a regulator of epithelial polarity, consistent with known roles of an upstream activator, LKB1 as a PAR (partioning defective) mutant in Caenorhabditis elegans and polarity regulator. Additional genetic analyses demonstrate that both AMPK and LKB1 function are required for faithful chromosomal segregation during mitosis. At least some of these apparently divergent phenotypes may be mediated through myosin regulatory light chain, and presumably the acto-myosin complex, which can affect both polarity and cell division. Chromosomal integrity defects could also be consistent with LKB1’s role as a known human tumor suppressor gene. Elucidating the molecular players that interface with AMPK and their potential energy dependent regulation remains an important challenge to fully understand AMPK signaling.  相似文献   

8.
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.  相似文献   

9.
Microglia, the innate immune cells of the CNS, play a pivotal role in brain injury and disease. Microglia are extremely motile; their highly ramified processes constantly survey the brain parenchyma, and they respond promptly to brain damage with targeted process movement toward the injury site. Microglia play a key role in brain development and function by pruning synapses during development, phagocytosing apoptotic newborn neurons, and regulating neuronal activity by direct microglia-neuron or indirect microglia-astrocyte-neuron interactions, which all depend on their process motility. This review highlights recent discoveries about microglial dynamics, focusing on the receptors, ion channels, and signaling pathways involved.  相似文献   

10.
《Cell host & microbe》2014,15(1):84-94
  1. Download : Download high-res image (211KB)
  2. Download : Download full-size image
  相似文献   

11.
How are the asymmetric distributions of proteins, lipids, and RNAs established and maintained in various cell types? Studies from diverse organisms show that Par proteins, GTPases, kinases, and phosphoinositides participate in conserved signaling pathways to establish and maintain cell polarity.The asymmetric distribution of proteins, lipids, and RNAs is necessary for cell fate determination, differentiation, and specialized cell functions that underlie morphogenesis (St Johnston 2005; Gonczy 2008; Knoblich 2008; Macara and Mili 2008; Martin-Belmonte and Mostov 2008). A fundamental question is how this asymmetric distribution is established and maintained in different types of cells and tissues. The formation of a specialized apical surface on an epithelial cell seems quite different from the specification of axons versus dendrites in a neuron, or the asymmetric division of a nematode zygote. Yet, remarkably, a conserved molecular toolbox is used throughout the metazoa to establish and maintain cell polarity in these and many other contexts. This toolbox consists of proteins that are components of signal transduction pathways (Goldstein and Macara 2007; Assemat et al. 2008; Yamanaka and Ohno 2008). However, our understanding of these pathways, and their intersection with other signaling networks, remains incomplete. Moreover, the regulation and cross talk between the polarity proteins and other signaling components varies from one context to another, which complicates the task of dissecting polarity protein function. Nonetheless, rapid progress is being made in our understanding of polarity signaling, which is outlined in this article, with an emphasis on the Par proteins, because these proteins play major roles integrating diverse signals that regulate cell polarity (Fig. 1) (see Munro and Bowerman 2009; Prehoda 2009; Nelson 2009).Open in a separate windowFigure 1.An overview of Par complex signaling, showing inputs (bottom) and outputs (top) with cellular functions that are targeted by these pathways (italics).  相似文献   

12.
细胞极性是生物中广泛存在的一个特征。上皮细胞是构成表皮、腺体、气管和消化道等组织的一类特化细胞。上皮细胞通常沿顶端-基底端轴向发生极化,形成紧密连接、粘附连接等胞间结构,同时细胞膜、细胞骨架和中心体、内膜系统、细胞核等也发生不对称分布,使细胞能行使分泌、吸收和屏障等多种重要的生理功能。有许多分子参与上皮细胞极性的建立和维持,其中最主要的是3个极性复合物,即Par-aPKC复合物,Scribble(Lg1-Dlg-Scrib)复合物和Crb(Crb-Pals-PATJ)复合物,三者共同配合发挥功能。  相似文献   

13.

Background

CC chemokine receptor 4 (CCR4) represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs) and on tumor cells in several cancer types and its role in metastasis.

Methodology

Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.

Significance

For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR) antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing). The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.  相似文献   

14.
Elevated sphingolipids have been associated with increased cardiovascular disease. Conversely, atherosclerosis is reduced in mice by blocking de novo synthesis of sphingolipids catalyzed by serine palmitoyltransferase (SPT). The SPT enzyme is composed of the SPTLC1 and -2 subunits, and here we describe a novel protein-protein interaction between SPTLC1 and the PDZ protein Par3 (partitioning defective protein 3). Mammalian SPTLC1 orthologs have a highly conserved C terminus that conforms to a type II PDZ protein interaction motif, and by screening PDZ domain protein arrays with an SPTLC1 C-terminal peptide, we found it bound the third PDZ domain of Par3. Overlay and immunoprecipitation assays confirmed this interaction and indicate Par3 is able to associate with the SPTLC1/2 holoenzyme by binding the C-terminal SPTLC1 PDZ motif. The physiologic existence of the SPTLC1/2-Par3 complex was detected in mouse liver and macrophages, and short interfering RNA inhibition of Par3 in human THP-1 monocytes significantly reduced SPT activity and de novo ceramide synthesis by nearly 40%. Given monocyte recruitment into inflamed vessels is thought to promote atherosclerosis, and because Par3 and sphingolipids have been associated with polarized cell migration, we tested whether the ability of THP-1 monocytes to migrate toward MCP-1 (monocyte chemoattractant protein 1) depended upon Par3 and SPTLC1 expression. Knockdown of Par3 significantly reduced MCP1-induced chemotaxis of THP-1 monocytes, as did knockdown of SPTLC1, and this Par3 effect depended upon SPT activity and was blunted by ceramide treatment. In conclusion, protein arrays were used to identify a novel SPTLC1-Par3 interaction that associates with increased monocyte serine palmitoyltransferase activity and chemotaxis toward inflammatory signals.Sphingolipids are a structurally diverse class of lipids that play correspondingly diverse roles in membrane structure, cell proliferation, immune function, and skin physiology (14). De novo sphingolipid synthesis is initiated by serine palmitoyltransferase (SPT),2 an enzyme that condenses serine and palmitoyl-CoA forming the biosynthetic intermediate 3-ketodihydrosphingosine that is subsequently converted to ceramide, sphingomyelin, and other sphingolipids (5). SPT is a heterodimer composed of the SPTLC1 and -2 subunits (6, 7), which may form higher order multimeric structures that can include a third subunit, SPTLC3 (8, 9). Both the SPTLC2 and -3 subunits are catalytically active and contain conserved lysines that act as Schiff bases during the condensation reaction (5, 8). In contrast, SPTLC1 does not contain the conserved catalytically active lysine, but is important for stabilizing the SPTLC2 subunit and anchoring the SPT holoenyzme on the cytosolic face of the endoplasmic reticulum (10, 11).Expression and regulation of the SPTLC1/2 holoenyzme are of interest because its activity controls de novo synthesis of sphingomyelin, and increased plasma levels of this sphingolipid have been correlated with an increased incidence of cardiovascular disease in humans (12, 13). Conversely, inhibition of SPT activity with myriocin, a fungal metabolite, strongly inhibits atherosclerotic development in ApoE−/− mice (1418). Moreover, the increased atherosclerosis seen in ApoE−/− mice has been associated with a post-translational increase in liver SPT activity (19). How SPT activity and sphingolipids may act to promote the progression of atherosclerosis is unclear, but the data do suggest analysis of factors that regulate SPT activity should provide mechanistic insight into the link between de novo sphingolipid synthesis and atherosclerosis. In this regard we have found that SPTLC1 can interact with the ABCA1 transporter and inhibit its ability to transfer cholesterol to apoA-I, a mechanism that would be expected to promote atherosclerosis (20). Thus, along with playing a direct role in the synthesis of sphingolipids, SPTLC1 may also have evolved as an SPT subunit whose function is to regulate SPT activity in response to the cellular demand for sphingolipids and other membrane constituents such as cholesterol. To play such a role, SPTLC1 may engage additional protein-protein interactions that integrate input from signaling pathways and allow SPTLC1 to modulate SPT activity in response to altered demand for sphingolipids.Here we have explored this hypothesis by first conducting a protein array screen for SPTLC1 interacting factors. Consistent with the potential to engage cellular factors in protein-protein interactions, sequence alignment of the SPTLC1 C terminus indicates it has been strongly conserved in mammals as a type II PDZ domain binding motif. Moreover, because topology studies indicate the SPTLC1 C terminus resides in the cytoplasm where it could be bound by PDZ proteins, we used protein arrays spotted with 123 PDZ domains from 73 different proteins to screen for interactions with the SPTLC1 C terminus. This screen indicated the SPTLC1 C terminus directly interacts with the third PDZ domain of PARD3 (partitioning defective protein 3). PARD3, also known as Par3, is a scaffolding factor that recruits signaling molecules, including atypical protein kinase C and Cdc42 into multiprotein complexes that regulate formation of membrane microdomains required for apical/basal polarity and for directed cell migration (2125). Mutation analysis confirmed the SPTLC1-Par3 interaction depended upon the SPTLC1 C-terminal PDZ motif, and immunoprecipitation assays indicate Par3 is able to associate with the SPTLC1/2 holoenyzme by binding the SPTLC1 C-terminal PDZ motif. The Par-3 interaction with the SPTLC1/2 holoenyzme was detected in the liver, a major site of SPT activity and sphingolipid synthesis. Given SPT activity is proatheroslerotic, and because we have also detected SPTLC1 expression in macrophages, a cell type that plays a central role in the progression of atherosclerosis, we tested and found that Par3 was expressed and interacted with the SPT holoenyzme in primary mouse macrophages. Significantly, loss of Par3 expression in human THP-1 monocyte macrophages reduced SPT activity and inhibited their ability to migrate toward MCP-1 (monocyte chemotactic protein-1). Likewise, shRNA suppression of SPTLC1 reduced monocyte migration toward MCP-1, as did myriocin inhibition of SPT activity, an effect that was blunted by loss of Par3 expression. In aggregate, our work has identified a novel protein-protein interaction between SPTLC1 and Par3 that is associated with an increase in SPT activity and the promotion of polarized cell migration in response to an inflammatory signal.  相似文献   

15.
神经祖细胞的不对称分裂是神经发生的必要环节.近年来关于不对称分裂的研究,为果蝇及哺乳动物中枢神经系统发育期间神经祖细胞的分化机制提供了新的理解.在这一分裂模式中,纺锤体作为细胞结构的支架,受到细胞皮层极性信号的引导而改变取向,保证底部细胞命运决定子(cell fate determinants)的不对称分配.G蛋白亚基、各种接头蛋白及微管相关蛋白组成极性蛋白复合体,在纺锤体取向改变中发挥了有序的调节作用.现在细胞和分子水平探讨不对称分裂纺锤体与细胞皮层极性偶联这一标志性事件.  相似文献   

16.
The sensory transduction pathways between the transducing proteins and the switch on the flagellar motors have been investigated in Escherichia coli and Salmonella typhimurium. ATP, not GTP, is required for normal chemotaxis. A site of ATP action appears to be the conversion of an inactive form of the CheY protein to an active form, designated CheY*, that binds to the motor switch and initiates clockwise rotation. The methylation-dependent and methylation-independent pathways for chemotaxis have a common requirement for the CheA, CheW, and CheY proteins in addition to the switch and flagellar motor. It is concluded that the receptor/transducing proteins and the adaptation mechanism differ in the two types of pathway, but that other components of the transduction pathway are common to the methylation-dependent and methylation-independent pathways.  相似文献   

17.
The yeast protein Spa2p localizes to growth sites and is important for polarized morphogenesis during budding, mating, and pseudohyphal growth. To better understand the role of Spa2p in polarized growth, we analyzed regions of the protein important for its function and proteins that interact with Spa2p. Spa2p interacts with Pea2p and Bud6p (Aip3p) as determined by the two-hybrid system; all of these proteins exhibit similar localization patterns, and spa2Δ, pea2Δ, and bud6Δ mutants display similar phenotypes, suggesting that these three proteins are involved in the same biological processes. Coimmunoprecipitation experiments demonstrate that Spa2p and Pea2p are tightly associated with each other in vivo. Velocity sedimentation experiments suggest that a significant portion of Spa2p, Pea2p, and Bud6p cosediment, raising the possibility that these proteins form a large, 12S multiprotein complex. Bud6p has been shown previously to interact with actin, suggesting that the 12S complex functions to regulate the actin cytoskeleton. Deletion analysis revealed that multiple regions of Spa2p are involved in its localization to growth sites. One of the regions involved in Spa2p stability and localization interacts with Pea2p; this region contains a conserved domain, SHD-II. Although a portion of Spa2p is sufficient for localization of itself and Pea2p to growth sites, only the full-length protein is capable of complementing spa2 mutant defects, suggesting that other regions are required for Spa2p function. By using the two-hybrid system, Spa2p and Bud6p were also found to interact with components of two mitogen-activated protein kinase (MAPK) pathways important for polarized cell growth. Spa2p interacts with Ste11p (MAPK kinase [MEK] kinase) and Ste7p (MEK) of the mating signaling pathway as well as with the MEKs Mkk1p and Mkk2p of the Slt2p (Mpk1p) MAPK pathway; for both Mkk1p and Ste7p, the Spa2p-interacting region was mapped to the N-terminal putative regulatory domain. Bud6p interacts with Ste11p. The MEK-interacting region of Spa2p corresponds to the highly conserved SHD-I domain, which is shown to be important for mating and MAPK signaling. spa2 mutants exhibit reduced levels of pheromone signaling and an elevated level of Slt2p kinase activity. We thus propose that Spa2p, Pea2p, and Bud6p function together, perhaps as a complex, to promote polarized morphogenesis through regulation of the actin cytoskeleton and signaling pathways.  相似文献   

18.
细胞极性的形成   总被引:1,自引:0,他引:1  
细胞的极性形成对细胞分化、发育及其功能的发挥起着举足轻重的作用。现就线虫受精卵、果蝇卵母细胞和哺乳动物上皮细胞三类细胞极性形成的特点和异同进行阐述,并探讨了近年来三类细胞极性形成的研究进展。  相似文献   

19.
20.
RHO蛋白家族与细胞极性   总被引:2,自引:0,他引:2  
细胞的极性形成对细胞发育、分化及其功能的发挥起着举足轻重的作用,细胞极性的丧失与肿瘤的发生发展密切相关.小G蛋白Rho家族是肌动蛋白细胞骨架重新组装的主要调节因子之一,在协调细胞极性化和正常的形态形成过程中起重要作用.现就Rho蛋白家族与细胞极性及二者的关系作一综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号