首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma adiponectin level is significantly reduced in patients with metabolic syndrome, and vascular dysfunction is an important pathological event in these patients. However, whether adiponectin may protect endothelial cells and attenuate endothelial dysfunction caused by metabolic disorders remains largely unknown. Adult rats were fed with a regular or a high-fat diet for 14 wk. The aorta was isolated, and vascular segments were incubated with vehicle or the globular domain of adiponectin (gAd; 2 mug/ml) for 4 h. The effect of gAd on endothelial function, nitric oxide (NO) and superoxide production, nitrotyrosine formation, gp91(phox) expression, and endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) activity/expression was determined. Severe endothelial dysfunction (maximal vasorelaxation in response to ACh: 70.3 +/- 3.3 vs. 95.2 +/- 2.5% in control, P < 0.01) was observed in hyperlipidemic aortic segments, and treatment with gAd significantly improved endothelial function (P < 0.01). Paradoxically, total NO production was significantly increased in hyperlipidemic vessels, and treatment with gAd slightly reduced, rather than increased, total NO production in these vessels. Treatment with gAd reduced (-78%, P < 0.01) superoxide production and peroxynitrite formation in hyperlipidemic vascular segments. Moreover, a moderate attenuation (-30%, P < 0.05) in gp91(phox) and iNOS overexpression in hyperlipidemic vessels was observed after gAd incubation. Treatment with gAd had no effect on eNOS expression but significantly increased eNOS phosphorylation (P < 0.01). Most noticeably, treatment with gAd significantly enhanced eNOS (+83%) but reduced iNOS (-70%, P < 0.01) activity in hyperlipidemic vessels. Collectively, these results demonstrated that adiponectin protects the endothelium against hyperlipidemic injury by multiple mechanisms, including promoting eNOS activity, inhibiting iNOS activity, preserving bioactive NO, and attenuating oxidative/nitrative stress.  相似文献   

2.
Platelet activation is tightly regulated by products of the endothelium and platelets including nitric oxide (NO). Excess vascular oxidative stress has been associated with impaired NO release, and antioxidant status has been shown to alter endothelium-derived NO bioactivity. Although physiological levels of a-tocopherol are known to inhibit platelet function, the effect of a-tocopherol on platelet NO release is unknown. Loading platelets with physiologic levels of a-tocopherol increased platelet NO production approximately 1.5-fold (Pa-tocopherol, platelet NO release increased 50% (Pa-Tocopherol-loaded platelets also produced 74% less superoxide as compared with control (Pa-tocopherol inhibited PKC-dependent eNOS phosphorylation as determined by immunoprecipitation. Lastly, platelets isolated from NOS3-deficient mice released 80% less superoxide as compared with control animals (P=0.011), and incubation of NOS III-deficient platelets with 500 mM a-tocopherol only caused a modest additional decrease in platelet superoxide release (NS). Thus, a-tocopherol appears to enhance platelet NO release both in vitro and in vivo through antioxidant- and PKC-dependent mechanisms.  相似文献   

3.
To evaluate effects of different concentrations of nanosilver colloid on the cell culture of Sertoli cells, the proportion of lipid peroxidation, antioxidant capacity, nitric oxide (NO) production and genes expression of superoxide dismutases (SOD1 and SOD2) and nitric oxide synthases (eNOS and iNOS) were measured. Sertoli cells were incubated at concentrations of 25, 75 and 125 ppm nanosilver for 48 h. There was progressive lipid peroxidation in treatments according to increasing of nanosilver. Lipid peroxidation, as indicated by malondialdehyde levels, was significantly elevated by the highest concentration of silver colloid (125 ppm), although antioxidant capacity, as measured by ferric ion reduction, was unaffected. Nitrite, as an index of NO production was reduced only in 125 ppm of nanosilver. Expression of SOD1 gene was reduced in nanosilver-treated cells at all concentrations, whereas expression of SOD2 gene was reduced only in cells treated with 125 ppm nanosilver. Expression of iNOS gene was progressively increased with higher concentrations of nanosilver. Expression of eNOS gene was also increased in 125 ppm of nanosilver. In conclusion, toxic effects of nanosilver could be due to high lipid peroxidation and suppression of antioxidant mechanisms via reduced expression of SOD genes and increased expression of NOS genes.  相似文献   

4.
In addition to its mediation of vascular relaxation and neurotransmission, nitric oxide (*NO) potently modulates oxygen radical reactions and inflammatory signaling. This participation of *NO in free radical and oxidative reactions will yield secondary oxides of nitrogen that display frequently-undefined reactivities and unique signaling properties. In sickle cell disease (SCD) inflammatory-derived oxidative reactions impair *NO-dependent vascular function. A combination of clinical and knockout-transgenic SCD mouse studies show increased rates of xanthine oxidase-dependent superoxide (O2*-) production and reveal the presence of an oxidative and nitrative inflammatory milieu in the sickle cell vasculature, kidney and liver. Considering the critical role of endothelial *NO production in regulating endothelial adhesion molecule expression, platelet aggregation, and both basal and stress-mediated vasodilation, the O2*- mediated reduction in *NO bioavailability can significantly contribute to the vascular dysfunction and organ injury associated with SCD.  相似文献   

5.
6.
Polyphenols have attracted immense interest because of their diverse biological and pharmacological activities. Surprisingly, not much is documented about the biological activities of acetoxy derivatives of polyphenol called polyphenolic acetates (PA). In our previous reports, we have conclusively established the Calreticulin Transacetylase (CRTAase) catalyzed activation of neuronal nitric oxide synthase (nNOS) and tumor necrosis factor-α (TNF-α) induced nitric oxide synthase (iNOS) by PA. In the present work, specificity of CRTAase to various classes of PA was characterized in human platelet. The effect of PA, on platelet NOS and intracellular cyclic guanosine monophosphate (cGMP), and adenosine diphosphate (ADP)-induced platelet aggregation were studied in an elaborated manner. Platelet CRTAase exhibited differential specificities to polyphenolic acetates upon incubation with l-arginine leading to activation of NOS. The intraplatelet generation of NO was studied by flowcytometry using DCFH-DA. The differential specificities of CRTAase to PA were found to positively correlate with increased production of NO upon incubation of PRP with PA and l-arginine. Further, the inhibitory effect of l-NAME on PA induced NO formation in platelets substantiated the CRTAase catalyzed activation of NOS. The real-time RT-PCR profile of NOS isoforms confirmed the preponderance of eNOS over iNOS in human platelets on treatment with PA. Western blot analysis also reiterated the differential pattern of acetylation of eNOS by PA. PA were also found effective in increasing the intraplatelet cGMP levels and inhibiting ADP-induced platelet aggregation. It is worth mentioning that the effects of PA were found to be in tune with the specificities of platelet CRTAase to PA as the substrates.  相似文献   

7.
BackgroundPanax notoginseng (Burk.) F.H. Chen is a traditional medicinal plant widely used to prevent and treat cardiovascular diseases. Ginsenoside Rd (GRd) is a major bioactive component of P. notoginseng, but specific effects on cardiovascular disease-related pathogenic processes are rarely studied, especially vascular endothelial injury.PurposeThis study investigated the potential protective efficacy of GRd against nicotine-induced vascular endothelial cell injury, disruption of vascular nitric oxide (NO) signaling, aberrant endothelium–monocyte adhesion, platelet aggregation, and vasoconstriction.Study design/MethodsVascular endothelial injury and functional disruption were investigated in cultured human umbilical vein endothelial cells (HUVECs) by biochemical assays for nitric oxide (NO) and angiotensin II (Ang II), immunofluorescence (IF) and western blotting for expression analyses of apoptosis- related proteins, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), Ang II type receptor 1 (AGTR1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB). In addition, vascular protection by GRd was examined in nicotine-administered Sprague-Dawley (SD) rats by serum NO and Ang II assays, and by hematoxylin-eosin (HE) and immunostaining of aorta. We also examined effects of GRd on monocyte (THP-1 cells) adhesion assays, adenosine diphosphate (ADP)-induced platelet aggregation, and phenylephrine (PE)-induced vasoconstriction of isolated rat aortic rings.ResultsIn HUVECs, nicotine significantly suppressed NO production, enhanced Ang II production, downregulated eNOS expression, and upregulated expression levels of AGTR1, TLR4, MyD88, NF-κB, iNOS, Bax/Bcl-2 ratio, cleaved caspase-3, and cytochrome c (cyt c). All of these changes were significantly reversed by GRd. In rats, oral GRd reversed the reduction NO and enhanced Ang II production in serum induced by nicotine administration, and HE staining revealed protection of aortic endothelial cells. In addition, GRd reversed nicotine-mediated enhancement of HUVECs-monocyte adhesion, inhibited ADP-induced platelet aggregation and PE-induced vasoconstriction.ConclusionGRd may prevent nicotine-induced cardiovascular diseases by preserving normal vascular endothelial NO signaling, suppressing platelet aggregation and vasoconstriction, and by preventing endothelial cell–monocyte adhesion.  相似文献   

8.

Background

All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial- (L/E) and platelet/endothelial- (P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme.

Principal Findings

Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE−/−/eNOS−/−), while P/E-interactions did not differ, compared to apoE−/−. eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE−/− vessels.

Conclusion

Overt plaque formation, increased vascular inflammation and L/E- interactions are associated with significant reduction of superoxide production in apoE−/−/eNOS−/− vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE−/− atherosclerosis but does not negate the enzyme''s strong protective effects.  相似文献   

9.
Variceal bleeding due to abnormal platelet function is a well-known complication of cirrhosis. Nitric oxide-related stress has been implicated in the pathogenesis of liver cirrhosis.In the present investigation,we evaluated the level of platelet aggregation and concomitant changes in the level of platelet cytosolic calcium (Ca2+), nitric oxide (NO) and NO synthase (NOS) activity in liver cirrhosis.The aim of the present study was to investigate whether the production of NO by NOS and level of cytosolic Ca2+ influence the aggregation of platelets in patients with cirrhosis of the liver.Agonist-induced aggregation and the simultaneous changes in the level of cytosolic Ca2+, NO and NOS were monitored in platelets of patients with cirrhosis.Platelet aggregation was also measured in the presence of the eNOS inhibitor,diphenylene iodinium chloride (DIC).The level of agonist-induced platelet aggregation was significantly low in the platelets of patients with cirrhosis compared with that in platelets from normal subjects.During the course of platelet aggregation,concomitant elevation in the level of cytosolic Ca2+ was observed in normal samples,whereas the elevation was not significant in platelets of patients with cirrhosis.A parallel increase was observed in the levels of NO and NOS activity.In the presence of the eNOS inhibitor,platelet aggregation was enhanced and accompanied by an elevated calcium level.The inhibition of platelet aggregation in liver cirrhosis might be partly due to greater NO formation by eNOS.Defective Ca2+ release from the internal stores to the cytosol may account for inhibition of aggregation of platelets in cirrhosis.The NO-related defective aggregation of platelets in patients with cirrhosis found in our study is of clinical importance,and the underlying mechanism of such changes suggests a possible therapeutic strategy with cell-specific NO blockers.  相似文献   

10.
Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. The purpose of this study was to characterize circulating platelets in diabetes and clarify their effects on endothelial function. Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. Each experiment was performed by incubating carotid arterial rings with platelets (1.65×107 cells/mL; 30 min) isolated from STZ or control rats. Thereafter, the vascular function was characterized in isolated carotid arterial rings in organ bath chambers, and each expression and activation of enzymes involved in nitric oxide and oxidative stress levels were analyzed. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in carotid arteries treated with platelets isolated from STZ rats. Similarly, treatment with platelets isolated from STZ rats significantly reduced ACh-induced Akt/endothelial NO synthase signaling/NO production and enhanced TXB2 (metabolite of TXA2), while CD61 (platelet marker) and CD62P (activated platelet marker) were increased in carotid arteries treated with platelets isolated from STZ rats. Furthermore, the platelets isolated from STZ rats decreased total eNOS protein and eNOS dimerization, and increased oxidative stress. These data provide direct evidence that circulating platelets isolated from diabetic rats cause dysfunction of the endothelium by decreasing NO production (via Akt/endothelial NO synthase signaling pathway) and increasing TXA2. Moreover, activated platelets disrupt the carotid artery by increasing oxidative stress.  相似文献   

11.
The roles of endothelial nitric oxide synthase (eNOS), and its putative association with protein kinase B (PKB), and inducible nitric oxide synthase (iNOS) are not well characterized in hypoxic cardiac cells and there is a lack of studies that measure nitric oxide (NO) directly. Objective To measure NO production in cardiomyocytes and cardiac microvascular endothelial cells (CMECs) under baseline and hypoxic conditions and to evaluate the expression, regulation and activation of eNOS, iNOS and PKB. The effect of PI3-K/PKB inhibition on NO production and eNOS expression/activation was also investigated. Methods Adult rat cardiomyocytes and rat CMECs were made hypoxic by cell pelleting and low PO2 incubation. Intracellular NO was measured by FACS analysis of DAF-2/DA fluorescence, and eNOS, iNOS and PKB were evaluated by Western blotting or flow cytometry. Upstream PKB inhibition was achieved with wortmannin. Results (1) NO levels increased in both cell types after exposure to hypoxia. (2) In hypoxic CMECs, eNOS was upregulated and activated, no iNOS expression was observed and PKB was activated. (3) In myocytes, hypoxia did not affect eNOS expression, but increased its activation. Activated PKB also increased during hypoxia. FACS analysis showed increased iNOS in hypoxic myocytes. (4) Wortmannin resulted in decreased hypoxia-induced NO production and reduced activated eNOS levels. Conclusions Cardiomyocytes and CMECs show increased NO production during hypoxia. eNOS seems to be the main NOS isoform involved as source of the increased NO generation, although there may be a role for iNOS and other non-eNOS sources of NO in the hypoxic myocytes. Hypoxia-induced PKB and eNOS activation occurred simultaneously in both cell types, and the PI3-K/PKB pathway was associated with hypoxia-induced NO production via eNOS activation.  相似文献   

12.
Hyperoxia may affect lung physiology in different ways. We investigated the effect of hyperoxia on the protein expression of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS), nitric oxide (NO) production, and hypoxic pulmonary vasoconstriction (HPV) in rat lung. Twenty-four male rats were divided into hyperoxic and normoxic groups. Hyperoxic rats were placed in > 90% F1O2 for 60 h prior to experiments. After baseline in vitro analysis, the rats underwent isolated, perfused lung experiments. Two consecutive hypoxic challenges (10 min each) were administered with the administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), in between. We measured intravascular NO production, pulmonary arterial pressure, and protein expression of eNOS and iNOS by immunohistochemistry. We found that hyperoxia rats exhibited increased baseline NO production (P < 0.001) and blunted HPV response (P < 0.001) during hypoxic challenges compared to normoxia rats. We also detected a temporal association between the attenuation in HPV and increased NO production level with a negative pre-L-NAME correlation between HPV and NO (R = 0.52, P < 0.05). After L-NAME administration, a second hypoxic challenge restored the HPV response in the hyperoxic group. There were increased protein expression of eNOS (12.6 +/- 3.1-fold, n = 3) (X200) and iNOS (8.1 +/- 2.6-fold, n = 3) (X200) in the hyperoxia group. We conclude that hyperoxia increases the protein expression of eNOS and iNOS with a subsequent increased release of endogenous NO, which attenuates the HPV response.  相似文献   

13.
14.
Nitric oxide (NO) and the expression of endothelial (eNOS) and inducible (iNOS) isoforms of nitric oxide synthase (NOS) are recognized as important mediators of physiological and pathological processes of renal ischemia/reperfusion (I/R) injury, but little is known about their role in apoptosis. The ability of the eNOS/NO system to regulate the iNOS/NO system and thus promote apoptosis was assessed during experimental renal I/R. Renal caspase-3 activity and the number of TUNEL-positive cells increased with I/R, but decreased when NOS/NO systems were blocked with L-NIO (eNOS), 1400W (iNOS), and N-nitro-l-arginine methyl ester (L-NAME; a nonselective NOS inhibitor). I/R increased renal eNOS and iNOS expression as well as NO production. The NO increase was eNOS- and iNOS-dependent. Blockage of NOS/NO systems with L-NIO or L-NAME also resulted in a lower renal expression of iNOS and iNOS mRNA; in contrast, eNOS expression was not affected by iNOS-specific blockage. In conclusion, two pathways define the role of NOS/NO systems in the development of apoptosis during experimental renal I/R: a direct route, through eNOS overexpression and NO production, and an indirect route, through expression/activation of the iNOS/NO system, induced by eNOS.  相似文献   

15.
The aim of this study was to investigate the in vitro effects and regulatory mechanism of CGRP (calcitonin gene-related peptide) on NO (nitric oxide) production in osteoblasts. MOB (primary human mandibular osteoblasts) and osteoblast-like cells (MG-63) were either cultured with CGRP or co-incubated with inhibitors targeting eNOS (endothelial nitric oxide synthase), iNOS (inducible nitric oxide synthase), nNOS (neuronal nitric oxide synthase) and [Ca2+]i (intracellular Ca2+). The NO concentration in cell culture supernatants was measured during the first 24 h using the Griess test; cellular NO was marked with the fluorescent marker DAF-FM, DA (3-amino, 4-aminomethyl-2',7'-difluorescein; diacetate) and measured by fluorescence microscopy from 1 to 4 h after treatment. eNOS and iNOS mRNA expression levels were measured by quantitative RT-PCR during the first 24 h after treatment. CGRP-induced NO production in the supernatants was high between 1 to 12 h, while cellular NO was highest between 1 to 2 h after treatment and returned to basal levels by 3 h. Both in MG-63 cells and MOBs, the most effective CGRP concentration was 10 nM with a peak time of 1 h. CGRP-induced NO production decreased when eNOS activity was inhibited or when voltage-dependent L-type Ca2+ channels were blocked at 4 h. CGRP was not able to induce changes in iNOS or eNOS mRNA levels and had no effect on the cytokine-induced increase of iNOS expression. Our results suggest that CGRP transiently induces NO production in osteoblasts by elevating intracellular Ca2+ to stimulate the activity of eNOS in vitro.  相似文献   

16.
Xia CF  Huo Y  Xue L  Zhu GY  Tang CS 《生理学报》2001,53(6):431-434
为探讨抗炎因子--白细胞介素-10(IL-10)对大鼠主动脉一氧化氮(NO)/一氧化氮合酶(NOS)系统的影响,应用Griess试剂、^3H-瓜氨酸生成及蛋白免疫印迹杂交等方法,测定IL-10孵育对血管NO释放、NOS活性及表达的影响。结果发现细菌脂多糖(LPS)呈浓度领带性地激活诱导型NOS(iNOS),促进NO生成。IL-10(10^-10-10^-8g/ml)呈浓度依赖性地上调内皮型NOS(eNOS)蛋白表达及其活性,但对iNOS活性及表达无明显影响,IL-10(10^-9-10^-8g/ml)显著抑制10μg/ml LPS诱导的NO生成和iNOS激活;而高浓度IL-10(10^-7g/ml)则上调iNOS的活性,对eNOS蛋白的表达知活性无明显影响。因此IL-10对NO/NOS系统具有双重影响,一方面可抑制炎症介质诱发的作为炎性物质的iNOS的表达及激活,另一方面可上调内皮源扩血管物质NO的释放。  相似文献   

17.
Nitric oxide (NO) produced by luteal endothelial cells (LECs) plays important roles in regulating corpus luteum (CL) function, yet the local mechanism regulating NO generation in bovine CL remains unclear. The purpose of the present study was to elucidate if tumor necrosis factor‐α (TNF), interferon γ (IFNG), and/or progesterone (P4) play roles in regulating NO generating system in LECs. Cultured bovine LECs obtained from the CL at the mid‐luteal stage (Days 8–12 of the cycle) were treated for 24 hr with TNF (2.9 nM), IFNG (2.5 nM), or P4 (0.032–32 µM). NO production was increased by TNF and IFNG, but decreased by P4 (P < 0.05). TNF and IFNG stimulated the relative steady‐state amounts of inducible nitric oxide synthase (iNOS) mRNA and iNOS protein expression (P < 0.05), whereas P4 inhibited relative steady‐state amounts of iNOS mRNA and iNOS protein expression (P < 0.05). In contrast, endothelial nitric oxide synthase (eNOS) expression was not affected by any treatment. TNF and IFNG stimulated NOS activity (P < 0.05) and 1400W, a specific inhibitor of iNOS, reduced NO production stimulated by TNF and IFNG in LECs (P < 0.05). Onapristone, a specific P4 receptor antagonist, blocked the inhibitory effect of P4 on NO production in LECs (P < 0.05). The overall findings suggest that TNF and IFNG accelerate luteolysis by increasing NO production via stimulation of iNOS expression and NOS activity in bovine LECs. P4, on the other hand, may act in maintaining CL function by suppressing iNOS expression in bovine LECs. Mol. Reprod. Dev. 79: 689–696, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
19.
We have investigated whether VEGF (vascular endothelial growth factor) regulates the proliferative capacity and eNOS (endothelial nitric oxide synthase)/NO (nitric oxide) pathway of EPCs (endothelial progenitor cells) by activating CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) signalling. EPCs were obtained from cultured mononuclear cells isolated from the peripheral blood of healthy adults. Treatment with VEGF (50 ng/ml) potently promoted CaN enzymatic activity, activation of NFAT2, cell proliferation, eNOS protein expression and NO production. Pretreatment with cyclosporin A (10 μg/ml), a pharmacological inhibitor of CaN or 11R-VIVIT, a special inhibitor of NFAT, completely abrogated the aforementioned effects of VEGF treatment and increased apoptosis. The results indicate that VEGF treatment promotes the proliferative capacity of human EPCs by activating CaN/NFAT signalling leading to increased eNOS protein expression and NO production.  相似文献   

20.
A 37-year old male patient presented with frequent angina attacks (up to 40/day) largely resistant to classical vasodilator therapy. The patient showed severe coronary and peripheral endothelial dysfunction, increased platelet aggregation and increased platelet-derived superoxide production. The endothelial nitric oxide synthase (eNOS)-inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) reduced superoxide formation in platelets identifying "uncoupled" eNOS as a superoxide source. Oral L-arginine normalized coronary and peripheral endothelial dysfunction and reduced platelet aggregation and eNOS-derived superoxide production. Plasma concentrations of the endogenous NOS inhibitor asymmetric dimethyl-L-arginine (ADMA), representing an independent risk factor for cardiovascular disease, were normal in the patient. However, immediately after oral administration of cationic amino acid (CAA), plasma ADMA levels rose markedly, demonstrating increased ADMA efflux from intracellular stores. ADMA efflux from mononuclear cells of the patient was accelerated by CAA, but not neutral amino acids (NAA) demonstrating impairment of y(+)LAT (whose expression was found reduced in these cells). These data suggest that impairment of y(+)LAT may cause intracellular (endothelial) ADMA accumulation leading to systemic endothelial dysfunction. This may represent a novel mechanism underlying vasospastic angina and vascular dysfunction in general. Moreover, these new findings contribute to the understanding of the l-arginine paradox, the improvement of eNOS activity by oral L-arginine despite sufficient cellular l-arginine levels to ensure proper function of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号