首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
The available genomic sequences of five closely related hemiascomycetous yeast species (Kluyveromyces lactis, Kluyveromyces waltii, Candida glabrata, Ashbya (Eremothecium) gossypii with Saccharomyces cerevisiae as a reference) were analysed to identify multidrug resistance (MDR) transport proteins belonging to the ATP-binding cassette (ABC) and major facilitator superfamilies (MFS), respectively. The phylogenetic trees clearly demonstrate that a similar set of gene (sub)families already existed in the common ancestor of all five fungal species studied. However, striking differences exist between the two superfamilies with respect to the evolution of the various subfamilies. Within the ABC superfamily all six half-size transporters with six transmembrane-spanning domains (TMs) and most full-size transporters with 12 TMs have one and only one gene per genome. An exception is the PDR family, in which gene duplications and deletions have occurred independently in individual genomes. Among the MFS transporters, the DHA2 family (TC 2.A.1.3) is more variable between species than the DHA1 family (TC 2.A.1.2). Conserved gene order relationships allow to trace the evolution of most (sub)families, for which the Kluyveromyces lactis genome can serve as an optimal scaffold. Cross-species sequence alignment of orthologous upstream gene sequences led to the identification of conserved sequence motifs ("phylogenetic footprints"). Almost half of them match known sequence motifs for the MDR regulators described in S. cerevisiae. The biological significance of those and of the novel predicted motifs awaits to be confirmed experimentally.  相似文献   

2.
A total of 214 members of the sugar porter (SP) family (TC 2.A.1.1) from eight hemiascomycetous yeasts: Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, Ashbya (Eremothecium) gossypii, Debaryomyces hansenii, Yarrowia lipolytica, Candida albicans and Pichia stipitis, were identified. The yeast SPs were classified in 13 different phylogenetic clusters. Specific sugar substrates could be allocated to nine phylogenetic clusters, including two novel TC clusters that are specific to fungi, i.e. the glycerol:H(+) symporter (2.A.1.1.38) and the high-affinity glucose transporter (2.A.1.1.39). Four phylogenetic clusters are identified by the preliminary fifth number Z23, Z24, Z25 and Z26 and the substrates of their members remain undetermined. The amplification of the SP clusters across the Hemiascomycetes reflects adaptation to specific carbon and energy sources available in the habitat of each yeast species.  相似文献   

3.
4.
MgMfs1, a major facilitator superfamily (MFS) gene from the wheat pathogenic fungus Mycosphaerella graminicola, was identified in expressed sequence tag (EST) libraries. The encoded protein has high homology to members of the drug:H(+) antiporter efflux family of MFS transporters with 14 predicted transmembrane spanners (DHA14), implicated in mycotoxin secretion and multidrug resistance. Heterologous expression of MgMfs1 in a hypersensitive Saccharomyces cerevisiae strain resulted in a strong decrease in sensitivity of this organism to a broad range of unrelated synthetic and natural toxic compounds. The sensitivity of MgMfs1 disruption mutants of M. graminicola to most of these compounds was similar when compared to the wild-type but the sensitivity to strobilurin fungicides and the mycotoxin cercosporin was increased. Virulence of the disruption mutants on wheat seedlings was not affected. The results indicate that MgMfs1 is a true multidrug transporter that can function as a determinant of pathogen sensitivity and resistance to fungal toxins and fungicides.  相似文献   

5.
6.
Vascular endothelial growth factor (VEGF), known to play an important role in vascular homeostasis, vascular integrity and angiogenesis, is little known about the evolutionary relationship of its five members especially the role of gene duplication and natural selection in the evolution of the VEGF family. In this study, seventy-five full-length cDNA sequences from 33 vertebrate species were extracted from the NCBI's GenBank, UniProt protein database and the Ensembl database. By phylogenetic analyses, we investigated the origin, conservation, and evolution of the VEGFs. Five VEGF family members in vertebrates might be formed by gene duplication. The inferred evolutionary transitions that separate members which belong to different gene clusters correlated with changes in functional properties. Selection analysis and protein structure analysis were combined to explain the relationship of the site-specific evolution in the vertebrate VEGF family. Eleven positive selection sites, one transmembrane region and the active sites were detected in this process.  相似文献   

7.
The sugar porter family in yeasts encompasses a wide variety of transporters including the hexose transporters and glucose sensors. We analysed a total of 75 members from both groups in nine hemiascomycetous species, with complete and well-annotated genomes: Saccharomyces cerevisiae, Candida glabrata, Zygosaccharomyces rouxii, Kluyveromyces thermotolerans, Saccharomyces kluyverii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii and Yarrowia lipolytica . We present a model for the evolution of the hexose transporters and glucose sensors, supported by two types of complementary evidences: phylogeny and neighbourhood analysis. Five lineages of evolution were identified and discussed according to different mechanisms of gene evolution: lineage A for HXT1, HXT3 , HXT4, HXT5 , HXT6 and HXT7 ; lineage B for HXT2 and HXT10 ; lineage C for HXT8 ; lineage D for HXT14 ; and lineage E for SNF3 and RGT2 .  相似文献   

8.
A phylogenomic study of the MutS family of proteins.   总被引:23,自引:4,他引:19       下载免费PDF全文
The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.  相似文献   

9.
The antifungal echinocandin lipopeptide, acrophiarin, was circumscribed in a patent in 1979. We confirmed that the producing strain NRRL 8095 is Penicillium arenicola and other strains of P. arenicola produced acrophiarin and acrophiarin analogues. Genome sequencing of NRRL 8095 identified the acrophiarin gene cluster. Penicillium arenicola and echinocandin-producing Aspergillus species belong to the family Aspergillaceae of the Eurotiomycetes, but several features of acrophiarin and its gene cluster suggest a closer relationship with echinocandins from Leotiomycete fungi. These features include hydroxy-glutamine in the peptide core instead of a serine or threonine residue, the inclusion of a non-heme iron, α-ketoglutarate-dependent oxygenase for hydroxylation of the C3 of the glutamine, and a thioesterase. In addition, P. arenicola bears similarity to Leotiomycete echinocandin-producing species because it exhibits self-resistance to exogenous echinocandins. Phylogenetic analysis of the genes of the echinocandin biosynthetic family indicated that most of the predicted proteins of acrophiarin gene cluster exhibited higher similarity to the predicted proteins of the pneumocandin gene cluster of the Leotiomycete Glarea lozoyensis than to those of the echinocandin B gene cluster from A. pachycristatus. The fellutamide gene cluster and related gene clusters are recognized as relatives of the echinocandins. Inclusion of the acrophiarin gene cluster into a comprehensive phylogenetic analysis of echinocandin gene clusters indicated the divergent evolutionary lineages of echinocandin gene clusters are descendants from a common ancestral progenitor. The minimal 10-gene cluster may have undergone multiple gene acquisitions or losses and possibly horizontal gene transfer after the ancestral separation of the two lineages.  相似文献   

10.
The Schizosaccharomyces pombe plasma membrane Na(+)/H(+) antiporter, SpSod2p, has been shown to belong to the subfamily of yeast Na(+)/H(+) antiporters that only recognize Na(+) and Li(+) as substrates. Nevertheless, most of the studied plasma membrane alkali metal cation/H(+) antiporters from other yeasts have broader substrate specificities, exporting K(+) and Rb(+) as well. Such antiporters probably play two roles in the physiology of cells: the elimination of surplus toxic cations, and the regulation of stable intracellular K(+) content, pH and cell volume. The systematic sequencing of the Sch. pombe genome revealed the presence of an as-yet uncharacterized homolog of the Spsod2 gene (designated Spsod22). Spsod22 and Spsod2 were expressed in Saccharomyces cerevisiae cells lacking their own alkali metal cation efflux systems, and the transport properties of both Sch. pombe antiporters were compared to those of the Sac. cerevisiae Nha1 antiporter expressed under the same conditions. Here we show that SpSod22p has broad substrate specificity upon heterologous expression in Sac. cerevisiae cells and contributes to cell tolerance to high external levels of K(+). Thus, the Sch. pombe genome encodes two plasma membrane alkali metal cation/H(+) antiporters that play different roles in the physiology of the yeast.  相似文献   

11.
Antiporters exporting Na(+) and K(+) in exchange for protons are conserved among yeast species. The only exception so far has been Zygosaccharomyces rouxii, an osmotolerant species closely related to Saccharomyces cerevisiae. Z. rouxii was described as possessing one plasma-membrane antiporter transporting only Na(+) (ZrSod2-22p in the CBS 732(T) type strain). We report the characterization of a second gene, ZrNHA1, encoding a new K(+)(Na(+))/H(+)-antiporter capable of both K(+) and Na(+) export. Synteny analyses suggested that ZrSOD2-22 originated by single duplication of the ZrNHA1 gene. Substrate specificities and transport properties of ZrNha1p and ZrSod2-22p were compared upon heterologous expression in S. cerevisiae, and then directly in Z. rouxii. Deletion mutants and phenotype analyses revealed that ZrSod2-22 antiporter is important for Na(+) detoxification, probably together with ZrEna1 ATPase; ZrNha1p is indispensable to maintain potassium homeostasis and ZrEna1p is not, in contrast to the situation in S. cerevisiae, involved in this function.  相似文献   

12.
We have evaluated the degree of gene redundancy in the nuclear genomes of 13 hemiascomycetous yeast species. Saccharomyces cerevisiae singletons and gene families appear generally conserved in these species as singletons and families of similar size, respectively. Variations of the number of homologues with respect to that expected affect from 7 to less than 24% of each genome. Since S. cerevisiae homologues represent the majority of the genes identified in the genomes studied, the overall degree of gene redundancy seems conserved across all species. This is best explained by a dynamic equilibrium resulting from numerous events of gene duplication and deletion rather than by a massive duplication event occurring in some lineages and not in others.  相似文献   

13.
14.
The echinocandins are a class of antifungal drugs that includes caspofungin, micafungin, and anidulafungin. Gene clusters encoding most of the structural complexity of the echinocandins provided a framework for hypotheses about the evolutionary history and chemical logic of echinocandin biosynthesis. Gene orthologs among echinocandin-producing fungi were identified. Pathway genes, including the nonribosomal peptide synthetases (NRPSs), were analyzed phylogenetically to address the hypothesis that these pathways represent descent from a common ancestor. The clusters share cooperative gene contents and linkages among the different strains. Individual pathway genes analyzed in the context of similar genes formed unique echinocandin-exclusive phylogenetic lineages. The echinocandin NRPSs, along with the NRPS from the inp gene cluster in Aspergillus nidulans and its orthologs, comprise a novel lineage among fungal NRPSs. NRPS adenylation domains from different species exhibited a one-to-one correspondence between modules and amino acid specificity that is consistent with models of tandem duplication and subfunctionalization. Pathway gene trees and Ascomycota phylogenies are congruent and consistent with the hypothesis that the echinocandin gene clusters have a common origin. The disjunct Eurotiomycete-Leotiomycete distribution appears to be consistent with a scenario of vertical descent accompanied by incomplete lineage sorting and loss of the clusters from most lineages of the Ascomycota. We present evidence for a single evolutionary origin of the echinocandin family of gene clusters and a progression of structural diversification in two fungal classes that diverged approximately 290 to 390 million years ago. Lineage-specific gene cluster evolution driven by selection of new chemotypes contributed to diversification of the molecular functionalities.  相似文献   

15.
Plant K(+) transporters of the HAK family belong to four rather divergent phylogenetic clusters, although most of the transporters belong to clusters I or II. A simple phylogenetic analysis of fungal and plant HAK transporters suggests that an original HAK gene duplicated even before fungi and plants diverged, generating transporters that at present fulfill different functions in the plant. The HvHAK1 transporter belongs to cluster I and mediates high-affinity K(+) uptake in barley roots, but no function is known for the cluster II transporter, HvHAK2, which is not functional in yeast. The function of HvHAK2 was investigated by constructing HvHAK1-HAK2 chimeric transporters, which were not functional even when they included only short fragments of HvHAK2. Then, amino acids characteristic of cluster II in the N terminus and in the first transmembrane domain were introduced into HvHAK1. All of these changes increased the Rb(+) K(m), introducing minimal changes in the Na(+) K(m), which suggested that HvHAK2 is a low-affinity, Na(+)-sensitive K(+) transporter. Using a K(+)-defective Escherichia coli mutant, we functionally expressed HvHAK2 and found that the predicted characteristics were correct, as well as discovering that the bacterial expression of HvHAK2 is functional at pH 5.5 but not at 7.5. We discuss whether HvHAK2 may be a tonoplast transporter effective for vacuolar K(+) depletion in K(+) starved plants.  相似文献   

16.
Several members of the most ancient living lineages of flowering plants (angiosperms) inhabit humid, woody, mostly tropical habitats. Here we assess whether one of these forest types, the cloud forests of Mexico (CFM), contain a relatively higher proportion of phylogenetically early-diverging angiosperm lineages. The CFM houses an extraordinary plant species diversity, including members of earliest-diverging angiosperm lineages. The phylogenetic composition of CFM angiosperm diversity was evaluated through the relative representation of orders and families with respect to the global flora, and the predominance of phylogenetically early- or late-diverging lineages. Goodness-of-fit tests indicated significant differences in the proportional local and global representation of angiosperm clades. The net difference between the percentage represented by each order and family in the CFM and the global flora allowed identification of clades that are overrepresented and underrepresented in the CFM. Early-diverging angiosperm orders and families were found to be neither over- nor underrepresented in the CFM. A slight predominance of late-diverging phylogenetic levels among overrepresented clades, however, was encountered in the CFM. The resulting pattern suggests that cloud forests provide habitats where the most ancient angiosperm lineages have survived in the face of accumulating species diversity belonging to phylogenetically late-diverging lineages.  相似文献   

17.
Although the endosymbiotic evolution of chloroplasts through primary and secondary associations is well established, the evolutionary timing and stability of the secondary endosymbiotic events is less well resolved. Heterokonts include both photosynthetic and nonphotosynthetic members and the nonphotosynthetic lineages branch basally in phylogenetic reconstructions. Molecular and morphological data indicate that heterokont chloroplasts evolved via a secondary endosymbiosis, involving a heterotrophic host cell and a photosynthetic ancestor of the red algae and this endosymbiotic event may have preceded the divergence of heterokonts and alveolates. If photosynthesis evolved early in this lineage, nuclear genomes of the nonphotosynthetic groups may contain genes that are not essential to photosynthesis but were derived from the endosymbiont genome through gene transfer. These genes offer the potential to trace the evolutionary history of chloroplast gains and losses within these lineages. Glutamine synthetase (GS) is essential for ammonium assimilation and glutamine biosynthesis in all organisms. Three paralogous gene families (GSI, GSII, and GSIII) have been identified and are broadly distributed among prokaryotic and eukaryotic lineages. In diatoms (Heterokonta), the nuclear-encoded chloroplast and cytosolic-localized GS isoforms are encoded by members of the GSII and GSIII family, respectively. Here, we explore the evolutionary history of GSII in both photosynthetic and nonphotosynthetic heterokonts, red algae, and other eukaryotes. GSII cDNA sequences were obtained from two species of oomycetes by polymerase chain reaction amplification. Additional GSII sequences from eukaryotes and bacteria were obtained from publicly available databases and genome projects. Bayesian inference and maximum likelihood phylogenetic analyses of GSII provided strong support for the monophyly of heterokonts, rhodophytes, chlorophytes, and plants and strong to moderate support for the Opisthokonts. Although the phylogeny is reflective of the unikont/bikont division of eukaryotes, we propose based on the robustness of the phylogenetic analyses that the heterokont GSII gene evolved via endosymbiotic gene transfer from the nucleus of the red-algal endosymbiont to the nucleus of the host. The lack of GSIII sequences in the oomycetes examined here further suggests that the GSIII gene that functions in the cytosol of photosynthetic heterokonts was replaced by the endosymbiont-derived GSII gene.  相似文献   

18.
A phylogenetic study of 8 North American and European species of frog lung flukes belonging to Haematoloechus was conducted using approximately 850 to 1,000 bases of the intemal transcribed spacer region (ITS 1 + 5.8S + ITS 2) and 1,250 bases of the large subunit (LSU) of the nuclear ribosomal DNA. Adequate phylogenetic resolution could not be obtained from 5.8S or ITS 2 data. Analysis of ITS 1 data produced 2 equally parsimonious trees that differed only in the position of Haematoloechus breviplexus relative to H. medioplexus and H. varioplexus. Single, identical trees were produced by analysis of both LSU sequence data and a data set comprised of all ITS and LSU data. All trees demonstrated 3 distinct evolutionary lineages within the Holarctic Haematoloechus examined. The results confirmed the taxonomic validity of H. abbreviatus and demonstrated that the presence or absence of extracecal uterine loops is not a character meaningful to the recognition of evolutionary lineages or differentiation of genera. Examination of ITS sequence data revealed almost no intraspecific variation within 5 species of Haematoloechus and demonstrated an approximately 150-base indel common to the North American H. longiplexus and the European H. asper. Two of 3 clades revealed by the phylogenetic analyses are comprised of both European and North American species, indicating that lineages of Haematoloechus arose before the breakup of Laurasia and radiated after Eurasia and North America split. Within each of 3 evolutionary lineages, members share similar patterns of arthropod host specificity distinct from patterns found in the other lineages. This suggests that second intermediate host specificity may be a trait that has been conserved through evolutionary time.  相似文献   

19.
Baker RE  Rogers K 《Genetics》2006,174(3):1481-1492
Centromere H3 proteins (CenH3's) are variants of histone H3 specialized for packaging centromere DNA. Unlike canonical H3, which is among the most conserved of eukaryotic proteins, CenH3's are rapidly evolving, raising questions about orthology and conservation of function across species. To gain insight on CenH3 evolution and function, a phylogenetic analysis was undertaken on CenH3 proteins drawn from a single, ancient lineage, the Fungi. Using maximum-likelihood methods, a credible phylogeny was derived for the conserved histone fold domain (HFD) of 25 fungal CenH3's. The collection consisted mostly of hemiascomycetous yeasts, but also included basidiomycetes, euascomycetes, and an archaeascomycete. The HFD phylogeny closely recapitulated known evolutionary relationships between the species, supporting CenH3 orthology. The fungal CenH3's lacked significant homology in their N termini except for those of the Saccharomyces/Kluyveromyces clade that all contained a region homologous to the essential N-terminal domain found in Saccharomyces cerevisiae Cse4. The ability of several heterologous CenH3's to function in S. cerevisiae was tested and found to correlate with evolutionary distance. Domain swapping between S. cerevisiae Cse4 and the noncomplementing Pichia angusta ortholog showed that species specificity could not be explained by the presence or absence of any recognized secondary structural element of the HFD.  相似文献   

20.
Yeast orthologues associated with glycerol transport and metabolism   总被引:1,自引:0,他引:1  
Glycerol is a key compound in the regulation of several metabolic pathways in Saccharomyces cerevisiae. From this yeast most of the genes involved in glycerol consumption, production and transport are now available. Some of the mechanisms involving glycerol metabolism and transport are common to other yeasts. This work presents a search for GPD1/2, GUT1, GUP1/2 and FPS1 orthologues in a series of hemiascomycetous yeasts. All the genes cloned were able to complement S. cerevisiae mutant phenotypes and presented a high degree of similarity to the corresponding genes in this yeast. A phylogenetic analysis is presented. The allocation of GUP genes in the membrane bound O-acyl transferases (MBOAT) family is suggested as more consistent than their inclusion in the TC-DB/glycerol uptake family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号