首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Follicle-associated epithelium of Peyer's patches can be differentiated from nearby villous epithelium by the presence of M cells which are antigen-sampling epithelial cells, and by an increase in intraepithelial lymphocytes that are in close contact with M cells. The phenotype of the immune cells close to the M cells of the follicle-associated epithelium of rat Peyer's patches was determined by immunohistochemistry and compared with that of the intra-epithelial lymphocytes of the villous epithelium. Lymphoid T cells, predominantly of the cytotoxic/suppressor phenotype, were observed both in follicle-associated epithelium and in villous epithelium. Lymphoid B cells, mainly immunoblasts and plasma cells containing intracytoplasmic IgM, were present only in the follicle-associated epithelium, near M cells. Macrophages were also present, in contact with M cells, in follicle-associated epithelium, but not in villous epithelium. In addition, M cells bore Ia molecules on their apical membranes. These findings reinforce the concept of immune specialization of the follicle-associated epithelium, by demonstrating that this epithelium contains all the effector cells of immune responses.  相似文献   

2.
Summary The types of cell death in the midgut epithelium of the worker honey bee during the larva-to-pupa transformation were analyzed by light and electron microscopes. The metamorphosis begins with an increase in the number of autophagic vacuoles in larval epithelial cells and terminates with lytic destruction of the whole intestinal epithelium. Apoptosis seems to be independent of cell age, but important in fashioning of the new organ. Even in the cells in the regenerative nests of the larval epithelium, from which the pupal epithelium develops, apoptotic death occurs. Single apoptotic cells are eliminated gradually from the primary multilayer tissue until the monolayer pupal epithelium is formed. Some of the apoptotic cells are endocytosed by sister epithelial cells.  相似文献   

3.
At the end of embryogenesis of Lepisma saccharina L. (Insecta, Zygentoma), when the stomodaeum and proctodaeum are completely formed, the midgut epithelium is replaced by the primary midgut, a yolk mass is surrounded by a cell membrane. Midgut epithelium formation begins in the 1st larval stage. Energids migrate toward the yolk periphery and aggregate just beneath the cell membrane. They are gradually enclosed by cell membrane folds of the primary midgut. Single cells are formed. Succeeding energids join just formed cells. Thus, groups of cells, regenerative cell groups, are formed. Their number gradually increases. The external cells of the regenerative cell groups transform into epithelial cells and their basal regions spread toward the next regenerative cell groups. Epithelial cells of neighboring regenerative cell groups join each other to form the epithelium. At the end of the 2nd larval stage, just before molting, degeneration of newly the formed epithelium begins. Remains of organelles and basal membrane occur between the regenerative cell groups. The new epithelium is formed from the regenerative cell groups, which are now termed stem cells of the midgut epithelium.  相似文献   

4.
Summary Hollow swarmers are budded off at the dorsal surface ofTrichoplax and are covered by dorsal epithelium. Their inner cavity is lined with the flagellated cells of the ventral epithelium. There is no indication that the fiber cells included between the epithelia take any part either in morphologenesis or the separation of the bud from the mother animal. The early primordium forms in the interspace. A single layer of cells derived from both epithelia surrounds a cavity filled with granular matter that stains like proteins. The latter is used up during the floating phase of the swarmers that may last for a week. After settling at the bottom, the hollow sphere opens at one point. The concave ventral epithelium gradually flattens as more cells become incorporated in it. The latter form new flagella and flagellar pits. More frequently found than swarmers are small spherical forms that are unable to float and possess a distinct polarity. Their upper half is covered by dorsal epithelium and their lower half by ventral epithelium. Large fiber cells are in the center. Their site and mode of formation is unknown. Rarely observed are dorsal stolons whose bulbous end flattens upon touching the substrate. Since they are totally covered by the flat cells of the dorsal epithelium, they may have to undergo a transformation, like the hollow swarmers, to bring the ventral epithelium into contact with the substrate.  相似文献   

5.
Surface topography and cross-sections of the placental membranes were examined by scanning electron microscopy in two species of Thamnophis. The chorionic epithelium of the chorioallantoic placenta consists of broad, squamous cells that lack surface specializations. The apposed uterine epithelium contains ciliated cells and larger, nonciliated cells. Neither the epithelium of the chorion nor that of the uterus is eroded; thus, underlying capillaries are not exposed to the luminal surface. In both the omphaloplacenta and the omphalallantoic placenta, epithelium of the omphalopleure consists of brush-border cells bearing prominent microvilli, interspersed with cells bearing minuscule microvilli. These surface epithelial cells are joined at their apices and their lateral surfaces are extensively sculpted by intercellular channels, presenting the appearance of an epithelium specialized for absorption. Deep to the epithelium lie the yolk spheres of the isolated yolk mass, interspersed with endodermal cells. Surface topography of the uterine epithelia of the omphaloplacenta and omphalallantoic placenta is relatively unspecialized. The acellular shell membrane separates maternal and fetal tissues in each of the three placental types. Marked differences in surface features of the chorioallantois and omphalopleure probably reflect different roles of these membranes in gas exchange and transfer of water and nutrients.  相似文献   

6.
Summary Argyrophilic and argentaffin cells occur in the stomach and intestinal epithelium of the sea-squirt, Ciona intestinalis L.. These cells are characterized by their basal swelling which contains the nucleus surrounded by small secretory granules and by a filamentous cell-apex which reaches the gut lumen. The cells are scattered unevenly within the epithelium. Their number decreases rapidly towards the lower part of the intestine. The localization, size of granules and their shape are features which differentiate these cells from other secretory cells in the gut epithelium such as mucous cells. These cells are thought to possess an endocrine function.The excellent technical assistance of Mrs. R. Sprang is gratefully acknowledged  相似文献   

7.
Summary The coelomic space in the trunk of the arrow worm Sagitta elegans is lined by a thin epithelium, which may be termed coelomic epithelium. The visceral part of this epithelium is composed of flat cells characterized by thin and thick myofilaments, which constitute the circular musculature of the gut. In addition mitochondria, rough ER, and smooth walled cisterns, as well as vesicular and granular inclusions occur; the apical and basal plasma membranes exhibit no particular specializations. The parietal epithelium is exceedingly thin and covers the muscle cells of the body wall. In the lateral fields columnar ciliated cells are to be found which are rich in rough ER cisterns and which apparently are also coelomic epithelial cells.  相似文献   

8.
Summary The olfactory epithelium of the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) has been studied with a conventional histochemical and a novel immunological staining technique. In both species, the sensory epithelium is arranged in folds separated by non-sensory epithelial tissue. In the nine-spined stickleback, intrinsic folds consisting of non-sensory cells are found in the apical part of the sensory epithelium where they divide the surface of the sensory epithelium into small islets. These non-sensory cells are non-ciliated, flattened and piled on top of each other; they contain numerous electron-translucent vesicles. The intrinsic folds are absent from the sensory epithelium of the three-spined stickleback. In both species, axons of receptor cells form a layer of fibers in the sensory epithelium immediately above the basal cells. In the three-spined stickleback, thick branches of the olfactory nerve are frequently found in this layer. These branches are only occasionally observed in the sensory epithelium of the nine-spined stickleback. Thus, the three-spined stickleback and the nine-spined stickleback show considerable differences in the organization of the sensory regions of the olfactory epithelium.  相似文献   

9.
In the holothurian Eupentacta fraudatrix,the gut wall exhibits trilaminar organization. It consists of an inner digestive epithelium, a middle layer of connective tissue, and an outer mesothelium (coelomic epithelium). The pharynx, esophagus, and stomach are lined with a cuticular epithelium composed of T-shaped cells. The lining epithelium of the intestine and cloaca lacks a cuticle and consists of columnar vesicular enterocytes. Mucocytes are also encountered in the digestive epithelium. The connective tissue layer is composed of a ground substance, which houses collagen fibers, amoebocytes, morula cells, and fibroblasts. The gut mesothelium is a pseudostratified epithelium, which is dominated by peritoneal and myoepithelial cells and also includes the perikarya and processes of the neurons of the hyponeural plexus and vacuolated cells.  相似文献   

10.
The ontogenic development of the sphincter iris has been studied by immunocytochemistry and standard staining on chick embryos from stage 25 HH to the time of hatching. We have used the monoclonal antibody 13F4, a highly specific marker of muscular cells. We have observed three different regions in the iris. In the pupillary region, immunoreactive cells are in continuous contact with the inner epithelium of the pupillary margin. In the intermediate region, the outer epithelium forms buds of pigmented cells that emigrate toward the stroma. In this epithelium cells that are totally or partially unpigmented exist, and they are 13F4 positive. In the sphincter we have observed 13F4 positive cells with melanin granules. In the ciliary region, the immunoreactivity appears in dispersed mesenchymal cells. The present findings are consistent with a triple origin of the sphincter iris in the chick embryo. This muscle is derived from the inner epithelium of the pupillary margin, the intermediate region of the outer epithelium, and from the mesenchymal cells. The cells of the inner epithelium of the pupillary margin are differentiated into smooth muscle cells, and the remaining cells form striated muscle cells. Received: 17 March 1999 / Accepted: 17 May 1999  相似文献   

11.
Primitive epithelium and outer tegumental layer formation during early cercarial development was studied in Prosorhynchoides borealis using electron microscopy. It demonstrated that germinal cells freely floating in the sporocyst body cavity divide to give rise to naked cell aggregates. These early embryos are highly irregular in outline and are composed of blastomeres differing in size and structure. In embryos consisting of about 12-14 cells a few (possibly only two) superficial macromeres become concave and produce thin extensions which envelop the embryonic mass before fusing to form a syncytial primitive epithelium. This primitive epithelium forms syncytial connections with underlying embryonic cells. Primordial tegumental cells become apparent in late germinal balls below the primitive epithelium. These cells expand and fuse to give rise to an embryonic nucleated tegument. The embryonic tegument is connected to peripheral embryonic cells by thin cytoplasmic bridges until the basement lamina is formed. Subsequently, the primitive epithelium is shed by the embryos and the nuclei in the embryonic tegument undergo pyknotic degeneration. These results are analysed and compared with data from studies on other trematode species and it is concluded that the primitive epithelium is derived from the embryo in at least the majority of digeneans.  相似文献   

12.
Use of H3-thymidine autoradiography and unilateral vomeronasal (VN) axotomy has permitted us to demonstrate directly the existence of VN stem cells in the adult garter snake and to trace continuous bipolar neuron development and migration in the normal VN and deafferentated VN epithelium in the same animal. The vomeronasal epithelium and olfactory epithelium of adult garter snakes are both capable of incorporating H3-thymidine. In the sensory epithelium of the vomeronasal organ, H3-thymidine-labeled cells were initially restricted to the base of the undifferentiated cell layer in animals surviving 1 day following H3-thymidine injection. With increasing survival time, labeled cells progressively migrated vertically within the receptor cell column toward the apex of the bipolar neuron layer. In both the normal and denervated VN epithelium, labeled cells were observed through the 56 days of postoperative survival. In the normal epithelium, labeled cells were always located within the matrix of the intact receptor cell columns. However, labeled cells of the denervated epithelium were always located at the apical front of the newly formed cell mass following depletion of the original neuronal cell population. In addition, at postoperative days 28 and 56, labeled cells of the denervated VN epithelium achieved neuronal differentiation and maturation by migrating much farther away from the base of the receptor cell column than the labeled cells on the normal, unoperated contralateral side. This study directly demonstrates that basal cells initially incorporating H3-thymidine are indeed stem cells of the VN epithelium in adult garter snakes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
M Ohata  M Irako 《Human cell》1991,4(3):204-211
It is very important to clarify the mechanism of the regeneration of the respiratory epithelium in not only Oto-Naso-Laryngology but also in the field of chest medicine and surgery. Because of the experimental study carried out on dogs, involving the curing process of the tracheal anastomosis site, a scanning electron microscopic study showed that after two weeks, ciliated cells could be seen making a thin layer. It took nine weeks or more till the whole tracheal anastomosis site was completely covered by the ciliated epithelial cells. Having reviewed the experimental papers concerning the regeneration of the respiratory epithelium which have been published since 1953, a conclusion has been reached that after the injury of the respiratory mucosa, the existence of the basement membranes remains were covered by the migration of the traditional epithelium from the margin of the wound and four weeks later, the wound was covered by the normal epithelium. It has been stated up until now that the differentiation of the epithelium was covered from basement cells, but in fact, it seems to occur from the secretory cells. This has been demonstrated by the culture process of the respiratory epithelium. From these facts, the cultured respiratory epithelium cells are very important in elucidating carcinogenesis.  相似文献   

14.
Data considering the degeneration and regeneration of the midgut epithelium in the primitive wingless insects, such as Collembola, are rather poor. Also information, which treats the regenerative cells as the primordial cells, is poorly known. The midgut epithelium of Podura aquatica L. (Insecta, Collembola, Arthropleona) is formed by the epithelial and regenerative cells. The epithelial cells show distinct regionalisation in the organelles distribution. The ultrastructure of the basal, perinuclear and apical regions of the epithelial cells is described. As in insects without Malpighian tubules, structures which resemble urospherites occur in the cytoplasm of the epithelial cells. After degeneration of the entire midgut epithelium, a new epithelium is formed from regenerative cells. During the process of regeneration, the degenerated epithelium gradually is separated from the basal lamina by the newly formed one. Finally, the detached epithelium is moved into the midgut lumen. Regenerative cells play a role of primordial cells during epithelial regeneration.  相似文献   

15.
The uterine epithelium of the viviparous Salamandra atra and the ovoviviparous Salamandra salamandra was studied in non pregnant and ovulating females and in females during different stages of pregnancy. The epithelium of both species is organized in a monolayer. The epithelial cells are characterized by a moderate secretory activity, a variable amount of apical granules which include PAS-positive material and by some apical and basal exo- or endocytotic vesicles. Adjacent cells are joined by junctional complexes. The lateral surfaces form a tortuous boundary with adjoining cells which suggest that the epithelium is involved in transport. Sporadic light cells possess highly variable cytoplasmic inclusions and are not joined with neighbouring cells. Possibly they represent migratory cells. The entire epithelium, except for a small cranial portion of the uterus in S. atra, undergoes no remarkable morphological changes during the different physiological stages examined except that flattened cells seem to be more numerous in pregnant females. The results are discussed with regard to the possible supply of the developing young by the mother.  相似文献   

16.
香鱼消化道及肝脏的形态结构特征   总被引:2,自引:0,他引:2  
采用解剖及石蜡切片显微技术观察了香鱼消化道及肝脏的组织学结构。香鱼消化道由口咽腔、食道、胃及肠构成。口咽腔大且狭长,其底壁前部有一对粘膜褶,两颌边缘着生宽扁梳状齿,腭骨及舌骨具齿,犁骨无齿;舌由基舌骨突出部分覆盖粘膜构成,舌粘膜上皮为复层扁平上皮,含有较多的杯状细胞和味蕾。食道、胃及肠均由粘膜层、粘膜下层、肌层及外膜构成。食道粘膜层上皮为复层扁平上皮,杯状细胞发达。胃呈V形,由贲门部、胃体部及幽门部组成,胃壁粘膜上皮为单层柱状上皮,贲门部与胃体部的固有层中有胃腺。肠较短,由前、中、后肠构成,肠壁粘膜上皮为单层柱状上皮,其游离面具微绒毛;上皮细胞间有杯状细胞。幽门盲囊有350~400条,其组织学结构与肠相同。肝脏单叶,外被浆膜;肝细胞形态不规则,肝小叶界限不明显。  相似文献   

17.
Summary The coxal organs of different Geophilomorpha were studied by scanning and by transmission electron microscopy.1) The coxae of the last trunk-segment contain pores in different arrangements and numbers. They are the openings of the coxal organs.2) The coxal organs are formed by four different cell types: the main epithelium consists of radially arranged transporting cells, surrounded by junctional cells, gland cells, and the cells of the pore channel.3) The cells of the transporting epithelium show an enlargement of the apical and basal surface. Deep and narrow extracellular channels of the apical infoldings are closely associated by mitochondria (plasmalemma-mitochondrial complexes). The epithelium is covered by a prominent cuticle with a spacious subcuticle.4) A distinct mucous layer covers the cuticle of the transporting epithelia, and is secreted by the gland cells.5) A small cellular sheath separates the epithelium of the coxal organ against the haemolymph.6) The possible function of the coxal organs in ion and fluid transport is discussed.  相似文献   

18.
Epitope localization reacting with mice monoclonal antibodies (Mabs) H 4 was investigated using the specimen of epithelium of skin, human uterine cervix as well as in the culture of epithelium cells of guinea-pig duct deferent. Mice monoclonal antibodies against antigen H 4 obtained by the hybridoma method after immunization of mice with rat colon epithelium cytoskeletal fractions were used. Mabs H 4 were shown to react with antigen of intermediate filaments of all studied normal epithelial, cancer cells as well as culture epithelial cells. Mabs H 4 are supposed to be used as a unique immunohistochemical marker of epithelium cells under normal and malignant growth conditions.  相似文献   

19.
The head, body, and tail regions of the epididymal duct (or caput, corpus, and cauda epididymis) in two healthy and sexually mature Sus domesticus males were examined by light microscopy and by scanning or transmission electron microscopy. The epididymal duct is lined with a pseudostratified epithelium with stereocilia and covered by a muscular-connective tissue sheath that is thickest in the tail region. Diameter of the epididymal duct and height of epididymal epithelium are maximal in the head region. Length of the sterocilia and spermatic density are higher in the head and body regions. Somatic cells are abundant in the tail region. The epididymal epithelium is made up of five cell types: basal cells, principal cells, clear cells, narrow cells, and basophilic cells. Abundant secretory units are observed in the supranuclear cytoplasm of columnar principal cells. Each mature secretory unit is constituted by electron-dense secretion granules covered by more than eight layers of cisternae of reticulum between which the mitochondria are intercalated. In the apical cytoplasm the isolated secretion granules become larger and less electron dense. The apical surface is covered by numerous sterocilia. Basal cells are pyramidal and less high than principal cells. The clear cells, arranged between the principal cells, are characterized by the presence of abundant vesicular elements and electron-lucid secretion granules, and by an apocrine secretory process. The narrow cells are characterized by their highly vacuolized cytoplasm. Intermediate cell typologies can be found among basal, principal, clear, and narrow cells, which could be four developmental stages of the same cell type. The basophilic cells are spheroidal and are found at different levels between the epithelial cells and in the connective tissue underlying the epithelium. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Study of the esophageal microscopic morphology of adult Rana perezi by light and electron microscopy discloses some large folds throughout the esophagus that are in themselves ringed. Glandular ostia open in the furrows of the luminal surface. The esophageal wall is made up of a connective adventitia rich in melanocytes, a muscular tunica, a connective and glandular subepithelial layer, and a pseudostratified ciliated epithelium. This epithelium basically consists of ciliated, goblet, basal, microvillous-apex, and migratory cells. Two types of goblet cells are distinguished with regard to the granular ultrastructure. The microvillous-apex cell has not been found in other amphibians. It shows a very differentiated morphology with a high number of mitochondria. The basal cells give the epithelium a pseudostratified morphology, and they have a proliferative function. Glands are branched and drain through an excretory duct that has a monolayered mucosecreting epithelium. The glandular units are formed by two principal types of cells: mucosecretory and serous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号