首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airborne Poaceae pollen counts are greatly influenced by weather-related parameters, but may also be governed by other factors. Poaceae pollen is responsible for most allergic reactions in the pollen-sensitive population of Galicia (Spain), and it is therefore essential to determine the risk posed by airborne pollen counts. The global climate change recorded over recent years may prompt changes in the atmospheric pollen season (APS). This survey used airborne Poaceae pollen data recorded for four Galician cities since 1993, in order to characterise the APS and note any trends in its onset, length and severity. Pollen sampling was performed using Hirst-type volumetric traps; data were subjected to Spearman’s correlation test and regression models, in order to detect possible correlations between different parameters and trends. The APS was calculated using ten different methods, in order to assess the influence of each on survey results. Finally, trends detected for the major weather-related parameters influencing pollen counts over the study period were compared with those recorded over the last 30 years. All four cities displayed a trend towards lower annual total Poaceae pollen counts, lower peak values and a smaller number of days on which counts exceeded 30, 50 and 100 pollen grains/m3. Moreover, the survey noted a trend towards delayed onset and shorter duration of the APS, although differences were observed depending on the criteria used to define the first and the last day of the APS.  相似文献   

2.
Olive and grass pollen grains are the major causes of hay fever in the Mediterranean region. A number of samplers and methods have been developed in recent years in order to obtain reliable data regarding airborne allergen concentrations. This paper reports on a detailed comparison of two samplers—Cyclone and ChemVol—and on the parameters that could influence their efficiency. Airborne concentrations of two key olive and grass allergens, Ole e 1 and Phl p 5, respectively, were monitored over two years with different weather patterns, 2012 and 2014. Allergenic particles were quantified by ELISA assay, and results were compared with pollen concentrations monitored using a Hirst-type volumetric spore trap over the same study periods. The influence of weather-related parameters on local airborne pollen and allergen concentrations was also analysed. Although a positive correlation was detected between results obtained using the two samplers during the pollen season, results for the cumulative annual Allergen Index varied considerably. The two samplers revealed a positive correlation between pollen concentrations and both minimum temperature during the warmer year (2012) and maximum temperature during the cooler year (2014); a negative significant correlation was observed in both cases with rainfall and relative humidity. In summary, although some differences were observed between the two samplers studied, both may be regarded as suitable for allergen detection.  相似文献   

3.
Summary Gramineae pollination from a pollen monitoring station located in the eastern suburb of Perugia and meteorological correlations are reported. The data refers to the year 1989. Grass pollen peak pollination was from May to July; in this period the influence of relative humidity and of temperature on pollen concentration was very high. Phenological observations, to identify the time of maximum stamen extension in the most common genera in the area, are also reported. During the period of investigation the counts of pollen grains over four-hour periods showed a regular diurnal rhythm with peaks of concentration in the four-hour period 16.00–20.00. Aerosporological data and meteorological data related to four-hour periods were correlated following different criteria.  相似文献   

4.
This study presents the results obtained for airborne Betula pollen between 1992 and 2000 in Ourense, Spain, sampled by volumetric spore-trap (LANZONI VPPS2000). Annual and year-on-year variations were analyzed, and a statistical study of the correlation between daily counts and several meteorological parameters was performed. Birch pollen is present in the atmosphere during March and April in Ourense. Significant differences were observed among the different years. Values obtained for the correlation coefficient between Betula pollen counts and the various meteorological parameters studied indicate, for Ourense, a positive correlation between pollen count and both temperature and sunlight. A negative correlation was recorded for relative humidity. Temperature is thus the determining factor for flowering onset and intensity. Regression equations included values for the days prior to pollen concentration measurement in order to optimize results.  相似文献   

5.
Quercus pollen is one of the most abundant pollen types in the atmosphere of central Iberian Peninsula (Spain), as a consequence of the extensive representation of well-preserved forests and shrub communities dominated by species of the genus Quercus in this area. This paper analysed key features of the Quercus pollination season in the central Iberian Peninsula and the influence of weather-related variables on airborne Quercus pollen concentration through statistical techniques of correlation analysis and the use of a decision tree model for predicting pollen concentrations. Quercus species are very common in Spain and Portugal, dominating a number of ecosystems including Mediterranean forests. This gives rise to very high airborne Quercus pollen concentrations, particularly in spring. Sampling was carried out over a 6-year period using a Hirst volumetric sampler, and the sampling procedure established by the Spanish Aerobiology Network. Results show that between 92 and 98.5 % of total annual airborne Quercus pollen was recorded in the April–June period. Annual pollen index were high in all study years, averaging 12,344 grains, but it should be highlighted that pollen production was highly variable between years. Correlations between mean daily Quercus pollen concentration and weather-related variables showed that in the pre-peak period, a significant positive correlation was observed with the mean daily temperature and the hours of sunshine and a negative correlation was observed with the humidity and the rainfall. In the post-peak period, a significant negative correlation was found with the mean daily temperature and the hours of sunshine. The predictions obtained in the decision tree model showed a moderate significant correlation (r = 0.42) with the daily Quercus pollen concentration predicted and the one observed. Temperature is the most influential variable in the release of Quercus pollen.  相似文献   

6.
An aerobiological study was made of Urticaceae pollen in the city of Granada, relating the mean values of the daily counts to meteorological parameters. Sampling was carried out with a Burkard seven‐day‐recording spore trap from October 1992 to September 1997. This pollen type has an extremely long main pollen season (MPS), with maximum counts in (January) February, March and April, causing numerous cases of human pollinosis throughout the entire Mediterranean region, including Granada. A highly constant intradiurnal variation pattern was obtained showing that the maximum peaks usually occur between 12.00 and 20.00. According to Spearman's correlation coefficient, during the pre‐peak period the parameters which have the greatest effect on the levels of this type of pollen are daily and accumulated temperature and sunshine, accumulated rainfall, and wind direction from the third quadrant; during the post‐peak period these same variables presented significantly negative coefficients. Daily rainfall and relative humidity presented negative coefficients during the entire MPS. The maximum daily temperature was the variable which provided the closest match with the theoretical predictive pattern presented here.  相似文献   

7.
The aerobiological behaviour of Fagaceae in Trieste and the correlations with the meteorological parameters were examined. Airborne pollen grains of Castanea, Fagus and Quercus were collected from 1990 to 2003 using a Hirst type spore trap. The main pollen season (MPS) takes place in April and May for Quercus and Fagus, in June and July for Castanea. The highest values occur in year 1993 for Quercus, in 1998 for Castanea and in 1992 for Fagus. The Fagaceae content of the air is mainly due to Quercus and Castanea pollen, Fagus usually having a scarce pollen shedding in Trieste. The highest counts of Fagaceae pollen grains are found from late April to mid May and are mainly due to the pollen shedding of oaks. The cumulative counts vary over the years, with a mean value of 2.719 pollen grains, a lowest total of 1.341 in 2002 and a highest total of 4.704 in 1993. No positive nor negative long-term trends in pollen shedding are found. No cyclic variations were observed. Spearman’s correlation was used to establish the relationship between the daily pollen counts and the daily meteorological data. Daily pollen concentrations present sometimes positive correlation with temperature, negative with rainfall and wind speed, and no correlation with humidity. Fagus and Quercus start dates result positively correlated between themselves. Significant correlations are found between the start of MPS and the mean and maximum temperature in March for Fagus and Quercus, and May for Castanea.  相似文献   

8.
Models for forecasting airborne Cupressaceae pollen levels in central Spain   总被引:1,自引:0,他引:1  
The influence of meteorological variables on airborne Cupressaceae pollen levels in central Spain was analyzed, and prediction models based on polynomial and multiple regressions were used to predict pollen counts throughout the pollen season. The Cupressaceae pollen type was selected in view of both its abundance in the atmosphere of the central Iberian Peninsula (particularly from January to March) and its allergenic importance. Sampling was performed uninterruptedly over a 5-year period, using a Hirst volumetric sampler and the sampling method established by the Spanish Aerobiology Network. Temperature displayed the strongest (positive) correlation with Cupressaceae pollen counts. Polynomial and multiple regression analysis showed that maximum temperature was the most influential variable included in prediction models. The prediction equations obtained for the study period were reasonably satisfactory, accounting for 48% and 59% of the variation in airborne pollen levels.  相似文献   

9.
The phenology of many species, which grow intemperate climate, is principally regulated bythe temperature and the plants respond withvariations in the beginning, in the durationand in the intensity of the various phenophasestowards every climate change. We have analysedthe data of Pinus pollination in Perugia,Central Italy, during last 2 decades(1982–2001), in a period during which theannual mean temperature significantly increasedby about 0.8 °C.The pine pollination started, on average,between the end of March and mid-April andended in the last days of June, with a meanduration of 65 days. The start dates showed asignificant negative correlation with theaverage air temperature in March andsignificant trends towards an earlier beginningof pollination by 18 days (–0.9 day/year) and ashorter duration of the pollen season by 10days (–0.6 day/year) were found over thestudied period. Moreover, the trend of thedaily pollen counts showed, on average, analmost normal distribution, but the analysis ofeach yearly trend revealed significantdifferences correlated with the meantemperature during the pollen season. Theseobserved trends in pine pollination suggest theuse of aerobiological monitoring of thisairborne pollen as indicator of temperaturechange in Central Italy over a relatively longperiod.  相似文献   

10.
A pollen calendar has been constructed for the area of Thessaloniki and relationships between pollen transport and meteorological parameters have been assessed. Daily airborne pollen records were collected over a 15-year period (1987-2001), using a Burkard continuous volumetric pollen trap, located in the centre of the city. Sixteen allergenic pollen types were identified. Simultaneously, daily records of five main meteorological parameters (mean air temperature, relative humidity, rainfall, sunshine, wind speed) were made, and then correlated with fluctuations of the airborne pollen concentrations. For the first time in Greece, a pollen calendar has been constructed for 16 pollen types, from which it appears that 24.9% of the total pollen recorded belong to Cupressaceae, 20.8% to Quercus spp., 13.6% to Urticaceae, 9.1% to Oleaceae, 8.9% to Pinaceae, 6.3% to Poaceae, 5.4% to Platanaceae, 3.0% to Corylus spp., 2.5% to Chenopodiaceae and 1.4% to Populus spp. The percentages of Betula spp., Asteraceae (Artemisia spp. and Ambrosia spp.), Salix spp., Ulmaceae and Alnus spp. were each lower than 1%. A positive correlation between pollen transport and both mean temperature and sunshine was observed, whereas usually no correlation was found between pollen and relative humidity or rainfall. Finally, wind speed was generally found to have a significant positive correlation with the concentrations of 8 pollen types. For the first time in the area of Thessaloniki, and more generally in Greece, 15-year allergenic pollen records have been collected and meteorological parameters have been recorded. The airborne pollen concentration is strongly influenced by mean air temperature and sunshine duration. The highest concentrations of pollen grains are observed during spring (May).  相似文献   

11.
Pollen forecasts are a fundamental prerequisite to obtain prophylactic measures for allergic individuals. Mugwort belongs to the most relevant allergenic pollen types after grasses and birch. An approach to modeling of mugwort pollen concentrations has not been attempted previously in Germany. A process-oriented mathematical model for the relative local daily average mugwort airborne pollen concentration was developed on the basis of pollen and weather data measured during a 6-year period. The model depends on the daily minimum and maximum temperature, amount of precipitation and atmospheric pressure, which have to and can be supplied by measurement and prediction. The comparison of modeling results and pollen counting for an additional year confirms the fitness of the model. A computer program was written, which rests upon the model and supplies daily predictions of mugwort pollen flight during the period of the weather forecast. The latter should allow a pollen forecasting period of about 5 days, with an accuracy of about 32–63% explained variance, which in view of the low mugwort pollen counts (nine grains/m3 maximum in the validation year) represents a high relative measurement error. The mathematical model may serve to improve and rationalize of present pollen forecasts.  相似文献   

12.
Hazel (Corylus avellana L.) and black alder (Alnus glutinosa (L.) Gaertn.) are important sources of airborne pollen and represent an allergen threat during the flowering period. Researches on airborne pollen concentrations in both species are useful in allergology, as well as for fruit production for hazel. The aims of the present study were: (1) to investigate the relationships between environmental conditions and the airborne pollen concentration of hazel and black alder during the flowering period by correlation and multiple regression analysis and (2) to predict the pollen season start (PSS) by using a sequential model, in order to obtain a helpful tool in allergology and hazel cultivation. In this study, the applied method defines the pollen season as the period in which 90 % of the total season’s catch occurred, using a data set of 18 years (1996–2014). The relationships between daily meteorological parameters (temperature, humidity, rainfall and wind speed) during the 14-day period that precedes the PSS and the PSS of hazel and black alder (day of the year) were investigated. The results showed that mean temperature and the number of rainy days before the PSS are the main factors influencing PSS for both taxa. Moreover, the chilling and heat needed to break dormancy were estimated in order to predict the PSS of both species. Different years and different thresholds of temperature and chill days were used to calibrate and validate the model.  相似文献   

13.
The aerobiological behaviour of Urticaceae in Trieste and the correlations with the meteorological parameters were examined. Airborne pollen was collected from 1990 to 1999 using a Hirst type spore trap (Burkard) and the data interpretation was performed according to the standard method adopted by the Italian Aeroallergen Network. The main pollen season of Urticaceae in Trieste goes from mid-April to mid-September. The highest values occur in May and June. Although different seasonal patterns are found every year, the main peak occurs on average at the beginning of May, followed by other decreasing peaks until September. Thecumulative counts vary greatly over the years, with a mean value of 18.315 p/m3. The maximum annual total pollen grains was registered in 1996 and the minimum in 1991. Spearman's correlation was used to establish the relationship between the daily pollen counts and the daily meteorological data both considering their original quantitative values and transformed values according to their day by day changes. Daily pollen concentrations present usually positive correlation with temperature, negative with rainfall and wind speed and no correlation with humidity. Better results were obtained with transformed values.  相似文献   

14.
Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994–May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December–April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m–3 were recorded on 244 days and coincided with maximum temperatures of 28.1 ± 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearmans correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.  相似文献   

15.
The influence of meteorological parameters on airborne pollen of Australian native arboreal species was investigated in the sub-tropical city of Brisbane, Australia over the five-year period, June 1994–May 1999. Australian native arboreal pollen (ANAP), shed by taxa belonging to the families Cupressaceae, Casuarinaceae and Myrtaceae accounts for 18.4% of the total annual pollen count and is distributed in the atmosphere during the entire year with maximum loads restricted to the months May through November. Daily counts within the range 11–100 grains m–3 occurred over short intervals each year and were recorded on 100 days during the five-year sampling period. Total seasonal ANAP concentrations varied each year, with highest annual values measured for the family Cupressaceae, for which greater seasonal frequencies were shown to be related to pre-seasonal precipitation (r 2 = 0.76, p = 0.05). Seasonal start dates were near consistent for the Cupressaceae and Casuarinaceae. Myrtaceae start dates were variable and established to be directly related to lower average pre-seasonal maximum temperature (r 2 = 0.78, p = 0.04). Associations between daily ANAP loads and weather parameters showed that densities of airborne Cupressaceae and Casuarinaceae pollen were negatively correlated with maximum temperature (p < 0.0001), minimum temperature (p < 0.0001) and precipitation (p < 0.05), whereas associations with daily Myrtaceae pollen counts were not statistically significant. This is the first study to be conducted in Australia that has assessed the relationships between weather parameters and the airborne distribution of pollen emitted by Australian native arboreal species. Pollen shed by Australian native Cupressaceae, Casuarinaceae and Myrtaceae species are considered to be important aeroallergens overseas, however their significance as a sensitising source in Australia remains unclear and requires further investigation.  相似文献   

16.
This study analyzes the pollen counts obtained from the air of the greater Lyon (corresponding to the urban area of Lyon) an area which has been overrun by ragweed in the last 40 years. Two periods are investigated, 1982–1989 and 1990–1995. The year 1995 deserves specific attention because for the first time a campaign of ragweed eradication was launched in greater Lyon. From the data of the 14 pollination seasons it was possible to define some parameters: subpathological risk period, pathological risk period and the position and level of the pollen peak. Our study indicates the progression of the weed in the infested area over the two periods. In 1995 a slight decrease in the pollen count was observed but this was followed by a second peak probably related to later growth of some plants which had been cut. In this connection, 4 weeks weeding campaign is not long enough and in the future a 6-week campaign without the use of weedkillers should be planned. Determining the parameters of ragweed pollination every year will be useful both to patients and physicians concerned by allergy to ragweed pollen. According to the level of the ragweed pollen in the air, the patients may take appropriate medication. This study emphasizes the necessity to record air pollen concentrations over many years. In particular, the actual impact of cutting ragweed before pollination on ragweed pollen counts can only be evaluated after several years of eradication.  相似文献   

17.
This study focuses on the identification and quantification of airborne pollen grains from allergenic plant species and their relationship with meteorological factors, i.e. maximum and minimum daily temperature, relative humidity, rainfall and wind speed in the city of Islamabad, Pakistan. An aerobiological data set (2010–2012), collected using rotorod samplers in five different sectors of the city, was supplied by the Pakistan Meteorological Department. Pollen of eight allergenic species was identified amongst which Broussonetia papyrifera exceeded the highest pollen level and, therefore, likely played a key role in aggravating the symptoms of pollen allergy in the city. The mean weekly pollen counts were next correlated with the weekly number of allergic patients visiting hospitals during 2010–2011. Clinical data were acquired from the Pakistan Institute of Medical Sciences. The highest number of allergic patients visiting hospital was usually observed during weeks with high pollen level. These results suggest a close relationship between the pollen concentration in the air and the allergy symptoms. Spearman’s rank correlation analysis was performed to establish the relationships between meteorological parameters and daily average pollen counts. A pollen calendar for the Islamabad city was also prepared to provide a guide for the timing and duration of season for all encountered pollen types.  相似文献   

18.
One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature (R 2?=?0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures (R 2?=?0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.  相似文献   

19.
A study was conducted in Missoula, Montana to compare local pollen counts from 1978 with those measured nearly 30 years later in 2006 using two different measurement techniques (Durham gravimetric sampler and a Burkard volumetric sampler). Trends in peak pollen times measured during the spring, summer and autumn, respectively, were compared between the two years by Pearson's correlation and frequency of occurrence of plant genus. Meteorological conditions were also examined during each of the two study periods.In comparing the two years, there was a statistically significant linear association between the different counts for the months of April through August, with similar levels of pollen types for any given month. The five predominant pollen types (based on counts) identified in each study were Pinus, Poaceae, Populus, Alnus, and Betula for 2006 and Pinus, Poaceae, Populus, Acer and Artemisia for 1978. In summary most of the genera displayed similar peak pollination timing between the two years, suggesting that results from the Durham (gravimetric) and Burkard (volumetric) sampling methods are comparable when reporting relative frequency of occurrence.  相似文献   

20.
This study sought to compare airborne pollen counts for a number of common herbaceous species (Plantago, Chenopodiaceae–Amaranthaceae, Rumex, and Urticaceae) in two cities with differing weather conditions, Córdoba (Southwestern Spain) and Poznan (Western Poland). Pollen seasons for these species were studied from 1995 to 2005. Aerobiological sampling was performed using a Hirst type 7-day spore trap, in accordance with the procedure developed by the European Aerobiology Network. A Spearman correlation test was used to test for correlations between meteorological parameters and daily airborne pollen counts. The Spearman correlation test and the Wilcoxon signed ranks test were also used to compare mean daily pollen counts for the two study sites. In Córdoba, the pollen season generally started around two months earlier than in Poznan, and also lasted longer. These findings were attributed to the presence of a larger number of species in Córdoba, with overlapping pollen seasons, and also to more favorable weather conditions. Trends in pollen season start dates were fairly stable over the study period, with a slight tendency to delayed onset in Córdoba and a modest advance in start date in Poznan. The pollen season end date also remained reasonably stable over the study, with only a slight tendency for the season to end earlier in Córdoba and later in Poznan. A clear trend towards declining annual pollen counts was recorded over the study period for all pollen types in both cities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号