首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionarily stable seasonal timing of larval feeding stages is studied theoretically for univoltine insects. In the evolutionarily stable (or ESS) population, each individual maximizes its own lifetime reproductive success by choosing the hatching and pupation dates, given the resource availability curve with a peak in the middle of a year, a higher daily mortality in the feeding stages, and the growth rate decreasing with the larval biomass in the population. If growth rate is proportional to the body size, the population at the ESS is composed of a mixture of phenotypes differing in hatching and pupation, but pupation interval over which some popation occur every day is much longer than hatching interval. If growth rate increases with the body size at a speed slower than linearly, large sized larvae should pupate earlier than small ones.  相似文献   

2.
Changes in the seasonal timing of life history events are documented effects of climate change. We used a general model to study how dispersal and competitive interactions affect eco-evolutionary responses to changes in the temporal distribution of resources over the season. Specifically, we modeled adaptation of the timing of reproduction and population dynamic responses in two competing populations that disperse between two habitats characterized by an early and late resource peak. We investigated three scenarios of environmental change: (1) food peaks advance in both habitats, (2) in the late habitat only and (3) in the early habitat only. At low dispersal rates the evolutionarily stable timing of reproduction closely matched the local resource peak and the environmental change typically caused population decline. Larger dispersal rates rendered less intuitive eco-evolutionary population responses. First, dispersal caused mismatch between evolutionarily stable timing of reproduction and local resource peaks and as a result, reproductive output for subpopulations could increase as well as decrease when resource availability underwent temporal shifts. Second, population responses were contingent on competition between populations. This could accelerate population declines and cause extinctions or even reverse population trends from negative to positive compared to the low dispersal case. When dispersal rate was large and the early resource peak was advanced available niche space was reduced. Hence, even when a population survived the environmental change and obtained positive equilibrium population density, subsequent adaptation of competing populations could drive it to extinction due to convergent evolution and competitive exclusion. These results shed new light on the role of competition and dispersal for the evolution of timing of life history events and provide guidelines for understanding short and long-term population response to climate change.  相似文献   

3.
We have modeled habitat shift for reproduction to examine the relationship between the timing of migration and population stability, by modifying Takimoto’s (Am Nat 162:93–109, 2003) consumer–resource model with a consumer’s ontogenetic niche shift. We found that equilibrium was always locally unstable if migration occurs at a fixed time or level of energy storage, whereas it could be stable if the timing of migration was adaptively flexible to maximize reproductive output. The general conditions for stability were safer breeding rather than feeding habitat and abundant resources at the feeding habitat. These results imply that both adopting an adaptive plastic strategy in the timing of migration and choosing to migrate from a rich feeding habitat to a safe breeding habitat can contribute to population stability. We also found that reduced reproductive success with delays in migration, and the survival rate after reproduction, had complicated effects on stability, depending on resource availability at the feeding habitat. The equilibrium was more likely to be stable when reproduction success was only slightly (or greatly) reduced or survival rate was high (or low) if the feeding habitat was rich (or poor). These are significant predictions for ecological study of migrating animals.  相似文献   

4.
Proper timing of activities is one of the principal challenges faced by most organisms. Organisms need to account for various aspects in decision making like avoiding inordinate risks, synchronizing with resource availability, or finding mates. We provide analytical and simulation models to investigate the influence of life expectancy, resource competition and unpredictable environmental conditions (environmental uncertainty) on the evolutionarily stable distribution of emergence times in organisms depending on seasonally available resources. We focus on the partitioning of total phenotypic variance in emergence times into 1) genetic variance in mean emergence times between lineages and 2) environmental trait variance that determines the intra‐lineage variance in the timing of emergence. Both, life expectancy of organisms and intensity of competition severely influence the evolutionary response to environmental uncertainty. Our main findings can be summarized as follows: 1) in general diversifying bet hedging (environmental trait variance) is the adequate mechanism to reduce the risk arising from environmental uncertainty while conservative bet hedging, i.e. delaying emergence into ‘safe’ phases of the season is restricted to short lived organisms and to situations with vanishing competition. 2) Environmental trait variance increases with increasing environmental uncertainty whereas 3) significant genetic variance evolves only under severe resource competition; it is driven by selection for an ideal free distribution of emergence times. 4) The level of genetic variance evolving declines with increasing life expectancy of organisms. 5) With sufficiently short life expectancy evolutionary branching and coexistence of distinctly different emergence strategies occurs; the number of co‐occurring strategies is determined by the level of environmental uncertainty. Our model provides cues for understanding how different ecological factors contribute and interact to shape the evolution of emergence strategies.  相似文献   

5.
This paper analyzes a consumer's adaptive feeding response to environmental gradients. We consider a consumer-resource system where resources are distributed among many discrete resource patches. Each consumer exhibits a feeding morphology allowing it to remove resources from a patch down to some threshold density (or level) before having to seek resources elsewhere. Assuming consumers trade off resource extraction with patch access and predation, we show that for a given environment there often exists a single evolutionarily stable feeding threshold and it is an evolutionary attractor. We then investigate how the population dynamics of the resource and the consumer change as the environment changes. Two cases are considered: (i) all consumers exhibit a fixed feeding threshold that is adaptive for an intermediate environment; and (ii) the consumer population adapts and adopts the evolutionarily stable feeding threshold associated with the current environment. In less harsh environments (i.e., environments where consumers experience a lower risk of predation, or environments where resource patches are more abundant) the adaptive consumer population is predicted to evolve so that resources within a patch are depleted to lower densities. We show that the change in consumer density due to environmental change can be rather different depending on whether or not the population can adapt. In some situations we observe that when the consumer's environment becomes harsher, the consumer population may increase in density before a rapid crash to extinction. This result has implications for monitoring and managing a population.  相似文献   

6.
We consider a two-species competition model in which the species have the same population dynamics but different dispersal strategies. Both species disperse by a combination of random diffusion and advection along environmental gradients, with the same random dispersal rates but different advection coefficients. Regarding these advection coefficients as movement strategies of the species, we investigate their course of evolution. By applying invasion analysis we find that if the spatial environmental variation is less than a critical value, there is a unique evolutionarily singular strategy, which is also evolutionarily stable. If the spatial environmental variation exceeds the critical value, there can be three or more evolutionarily singular strategies, one of which is not evolutionarily stable. Our results suggest that the evolution of conditional dispersal of organisms depends upon the spatial heterogeneity of the environment in a subtle way.  相似文献   

7.
Reproductive asynchrony increases with environmental disturbance   总被引:1,自引:0,他引:1  
While it is widely recognized that the manner in which organisms adjust their timing of reproduction reflects evolutionary strategies aimed at minimizing offspring mortality or maximizing reproductive output, the conditions under which the evolutionarily stable strategy involves synchronous or asynchronous reproduction is a matter of considerable discord. A recent theoretical model predicts that whether a population displays reproductive synchrony or asynchrony will depend on the relative scales of intrinsic regulation and environmental disturbance experienced by reproducing individuals. This model predicts that, under conditions of negligible competition and large-scale environmental perturbation, evolution of a single mixed strategy will result in asynchronous reproduction. We tested this prediction using empirical data on large-scale climatic fluctuation and the annual timing of reproduction by three species of flowering plants covering 1300-population-years and four degrees of latitude in Norway. In agreement with model predictions, within populations of all three species reproductive asynchrony increased with the magnitude of large-scale climatic perturbation, but bore no relation to the strength of local density dependence. These results suggest that mixed evolutionarily stable strategies can arise from the interplay of combinations of agents of selection and the scale at which they operate; hence it is fruitless to associate synchronous versus asynchronous timing with particular single factors like climate, competition, or predation.  相似文献   

8.
Container-inhabiting mosquito species are subject to both intraspecific and interspecific competition during larval development in resource-limited habitats. The arrival of an invasive species, Aedes albopictus, in the U.S. has altered competitive interactions among container-inhabiting mosquito species and, in some cases, has led to displacement of these species. Resource enrichment of container habitats has been shown to alleviate competitive interactions and to promote species co-existence; however, the importance of the timing of enrichment has yet to be explored. Larval competition between Ae. albopictus and a native species, Ochlerotatus triseriatus, was explored when resources were added either gradually or in a single pulse. Replacement series experiments revealed that Ae. albopictus was able to outcompete and displace Oc. triseriatus via resource monopolization when all resources were made available simultaneously; however, when the same resource amount was added over time, survival was high for both species, leading to co-existence. Timing of resource input also had an effect in monospecific treatments, indicating that intraspecific competition impacts survival as well. Duration of larval development was influenced by both species presence and by timing of resource input for Oc. triseriatus. These results indicate competitive outcome is condition-specific and that timing of resource input can determine whether a dominant invasive competitor displaces a native species, or if the two species are able to co-exist. Both intraspecific and interspecific competition occur at different temporal scales due to species-specific differences in larval developmental time. Timing of resource availability in container habitats can impact mosquito survival via competitive interactions, which can ultimately influence vector population size and behavior, possibly influencing vector-borne disease transmission.  相似文献   

9.
The role of larval intraspecific competition in laboratory populations ofDrosophila subobscura was investigated. Mortality is density-independent during the first 3 days after hatching but becomes density dependent as development proceeds to pupation. Although total biomass per patch was independent of initial egg density, competition betweenDrosophila larvae leads to the formation of smaller pupae. This resulted in a population that was dominated by suppressed individuals. Development rate ofD. subobscura larvae was not affected by high larval densities. Smaller pupae give rise to females with fewer eggs in their ovarioles. A simple simulation model, predicting the effects of intraspecific competition on the fecundity of the nextDrosophila generation is described.  相似文献   

10.
Oviposition site preference and larval mortality in a leaf-mining moth   总被引:1,自引:0,他引:1  
Abstract. 1. The univoltine leaf-mining moth, Lithocolletis quercus Ams., is endemic to Israel, where it spends its 10.5 month larval period feeding only in the leaves of Quercus calliprinos Webb.
2. We compared patterns of egg deposition and sources of larval mortality to test whether oviposition patterns and site preferences confer an enhanced likelihood of larval survival.
3. Dominant sources of larval mortality were premature leaf abscission and death from unknown causes, whereas predation, parasitism and intraspecific interference accounted for relatively little larval mortality.
4. Eggs, and thus mines, were aggregated among leaves of host trees even though premature leaf abscission was positively correlated with density of mines per leaf. Interference competition among larvae was the only other density-dependent mortality factor.
5. Oviposition patterns within leaves mitigated the probability of death from larval interference, and probably also from early leaf abscission.
6. Despite these density-dependent mortality factors, overall probability of larval survival to pupation was independent of initial density of mines on a leaf.
7. The long larval period allows synchrony between oviposition flights and times of predictable resource availability.  相似文献   

11.
Many species alter the timing of hatching in response to egg or larval predators, pathogens, or physical risks. This plasticity depends on separation between the onset of hatching competence and physiological limits to embryonic development. I present a framework based on heterokairy to categorize developmental mechanisms and identify traits contributing to and limiting hatching plasticity, then apply it to a case of predator-induced hatching. Red-eyed treefrogs have arboreal eggs, and tadpoles fall into ponds upon hatching. Egg and tadpole predators select for earlier and later hatching, respectively. Embryos hatch up to 30% early in predator attacks, and later if undisturbed. They maintain large external gills throughout the plastic hatching period, delaying gill regression while development otherwise continues. Rapid gill regression occurs upon hatching. Prolonged embryonic development depends on external gills; inducing gill regression causes hatching. External hypoxia retards development, kills eggs, and induces hatching. Nonetheless, embryos develop synchronously and without hatching prematurely across a broad range of perivitelline PO2, from 0.5-12.5 kPa. Embryos exploit spatial variation of PO2 within eggs by positioning gills against patches of air-exposed surface. Respiratory plasticity and oxygen-sensitive behavior appear critical for the hatching plasticity that balances a predation risk trade-off across life stages.  相似文献   

12.
Hatching asynchrony and maternal androgens in egg yolks of House Wrens   总被引:3,自引:0,他引:3  
Synchronously and asynchronously hatching clutches of House Wrens Troglodytes aedon usually do not differ in reproductive success. Thus late-hatching nestlings in asynchronously hatching clutches somehow overcome any age- and size-related disadvantages of hatching after their nest-mates. One possible way for them to do this is for female House Wrens to add maternal androgens to the yolk of late-hatching eggs. We tested this hypothesis in a wild population of House Wrens that produces both asynchronously and synchronously hatching clutches. Yolks of eggs from both types of clutches were biopsied and the eggs returned to their nests to hatch. Radioimmunoassays revealed that total androgen levels in the yolk varied within and among clutches. However, total androgen levels in yolks did not vary predictably with egg position in either synchronously or asynchronously hatching clutches. Thus, deposition of androgens in yolk did not follow the expected pattern based on the potential for sibling competition in House Wrens.  相似文献   

13.
Phenology is an important part of life history that is gaining increased attention because of recent climate change. We use game theory to model phenological adaptation in migratory birds that compete for territories at their breeding grounds. We investigate how the evolutionarily stable strategy (ESS) for the timing of arrival is affected by changes in the onset of spring, the timing of the resource peak, and the season length. We compare the ESS mean arrival date with the environmental optimum, that is, the mean arrival date that maximizes fitness in the absence of competition. When competition is strong, the ESS mean arrival date responds less than the environmental optimum to shifts in the resource peak but more to changes in the onset of spring. Increased season length may not necessarily affect the environmental optimum but can still advance the ESS mean arrival date. Conversely, shifting a narrow resource distribution may change the environmental optimum without affecting the ESS mean arrival date. The ESS mean arrival date and the environmental optimum may even shift in different directions. Hence, treating phenology as an evolutionary game rather than an optimization problem fundamentally changes what we predict to be an adaptive response to environmental changes.  相似文献   

14.
The sensitive period(s) for hydroxyproline (OHP)-induced morphological abnormalities was compared to the timing and extent of OHP-induced changes in free amino acids in Drosophila. While OHP was shown to reduce the proportion of free proline during both 2nd and 3rd larval instars only feeding in the latter part of the 3rd instar resulted in morphological alterations. The evidence suggests that sufficiently low proline levels at the time of pupation may result in developmental abnormalities.  相似文献   

15.
The red-eyed treefrog, Agalychnis callidryas , lays eggs on leaves overhanging ponds. Tadpoles hatch and enter the water at different ages, and late-hatched tadpoles survive aquatic predators better than do early-hatched tadpoles. Here I assess developmental consequences of hatching age through: (1) a morphological study of embryos and tadpoles through the plastic hatching period; (2) a behavioural assay for an effect of hatching age on feeding; and (3) a field experiment testing the effect of hatching age on growth to metamorphosis. Substantial development of feeding, digestive, respiratory and locomotor structures occurs in embryos over the plastic hatching period. Hatchling morphology thus varies with age, with consequences for behaviour and predation risk. Hatched tadpoles develop faster than embryos, and early-hatched tadpoles feed before late-hatched tadpoles. After all tadpoles have hatched, the effect of hatching age on size decreases. I found no evidence for an effect of hatching age on size at metamorphosis and only weak evidence for an effect on larval period. Hatching age affects the sequence of developmental change: early-hatched tadpoles lose external gills while otherwise more developed embryos maintain them. Plasticity in external gill resorption may be adaptive given differences in the respiratory environments of embryos and tadpoles. Early-hatched tadpoles also diverge from embryos in shape, growing relatively smaller tails. The study of functional morphology and developmental plasticity will contribute to understanding hatching as an ontogenetic niche shift.  相似文献   

16.
Synopsis Larval development commences with first exogenous feeding, and ends with final remodelling of caenogenetic structures into the definitive organs of juvenile and adult. For the intertidal cyprinodontid Adinia xenica this generally corresponds to the interval between hatching and completion of scalation. The final step of the embryo period is a resting interval of variable duration. Embryos were induced to hatch after 2 and 10 days of this near arrest. Although the general pattern of larval development was the same for both groups, differences were observed in the rates and order of calcification of skeletal elements, fin differentiation and growth, and scalation. For example, embryos hatching 8 days later in the resting interval were already pattially calcified, but completed calcification at a slower rate than the group hatching after 2 days. These differences may be due to effects of the duration of the resting interval itself; or they may reflect genetic variation of which age at hatching is only one manifestation.  相似文献   

17.
Reproduction among members of social animal groups is often highly synchronized, but neither the selective advantages nor the proximate causes of synchrony are fully understood. Here I investigate the evolution of hatching synchrony in the Greater Ani (Crotophaga major), a communally nesting bird in which several unrelated females contribute eggs to a large, shared clutch. Hatching synchrony is variable, ranging from complete synchrony to moderate asynchrony, and is determined by the onset of incubation of the communal clutch. Data from a 10‐year field study indicate that individual reproductive success is highest in synchronous groups, and that nestlings that hatch in the middle of the hatching sequence are most likely to survive. Nestling mortality is high in asynchronous clutches because early‐hatching nestlings are more likely to be killed by adult group members, whereas late‐hatching nestlings are more likely to starve due competition with their older nest‐mates. Therefore, the timing of hatching appears to be under stabilizing selection from infanticide and resource competition acting in concert. These results provide empirical support for models predicting that synchrony may evolve as an adaptive counter‐strategy to infanticide, and they highlight the importance of competition in shaping the timing of reproduction in social groups.  相似文献   

18.
Many species alter the timing of hatching in response to egg or larval predators, pathogens, or physical risks. This plasticity depends on separation between the onset of hatching competence and physiological limits to embryonic development. I present a framework based on heterokairy to categorize developmental mechanisms and identify traits contributing to and limiting hatching plasticity, then apply it to a case of predator-induced hatching. Red-eyed treefrogs have arboreal eggs, and tadpoles fall into ponds upon hatching. Egg and tadpole predators select for earlier and later hatching, respectively. Embryos hatch up to 30% early in predator attacks, and later if undisturbed. They maintain large external gills throughout the plastic hatching period, delaying gill regression while development otherwise continues. Rapid gill regression occurs upon hatching. Prolonged embryonic development depends on external gills; inducing gill regression causes hatching. External hypoxia retards development, kills eggs, and induces hatching. Nonetheless, embryos develop synchronously and without hatching prematurely across a broad range of perivitelline PO2, from 0.5–12.5 kPa. Embryos exploit spatial variation of PO2 within eggs by positioning gills against patches of air-exposed surface. Respiratory plasticity and oxygen-sensitive behavior appear critical for the hatching plasticity that balances a predation risk trade-off across life stages.  相似文献   

19.
Kind TV 《Tsitologiia》2003,45(1):14-25
On the basis of in vitro observation of live cells and examination of stained slides of larval and prepupal Calliphora vicina hemolymph, seven types of hemocytes have been detected: prohemocytes, stable and unstable hyaline cells, thrombocytoids, spindle cells, larval plasmatocytes, and plasmatocytes I-IV, a. The last representing sequential stages of one cell line differentiation. Prohemocytes are basic cells, from which other forms of hemocytes derive outside the hemopoietic tissue, i.e. in free hemolymph. At the last larval instar, three waves of hemopoiesis occur. Either wave tends to increase the general number of cells and to change the quality of hemocyte population. The first wave occurs at the close of larva feeding and is accompanied by increase in the number of hyaline hemocytes, thrombocytoids and larval plasmatocytes. The second wave of hemopoiesis occurs after the larva's crop emptying. In this period the main increase of hemocyte population occurs at the expense of prohemocytes and plasmatocytes I. The most significant (five-fold) explosion of the population of free hemocytes takes place at the onset of pupariation and correlates with the rise of ecdysone titer. At the first stage of this peak, the amount of plasmatocytes I sharply increases. Further on these are rapidly differentiated into plasmatocytes II and III. After the puparium formation, hemocytes are reduced in number. Plasmatocytes III phagocytose fragments of destroyed larval tissues, pass to the stage of plasmatocytes IV (macrophages), and partially settle on tissues.  相似文献   

20.
During the early ontogeny of fishes, the timing and duration of key events such as larval hatching and the switch from endogenous to exogenous feeding largely determine the offspring viability and survival. The aim of the present study was to investigate the life history traits of the early larvae of the mackerel icefish, Champsocephalus gunnari, collected in summer south of the South Shetland Islands in the Bransfield Strait and north of Elephant Island. Through the analysis of sagittal otolith microstructure, we assessed the timing and duration of egg incubation, larval hatching, first exogenous feeding, rate of yolk resorption and body growth rate. Compared to populations living further north (i.e. around South Georgia and Kerguelen Islands), mackerel icefish in the southern Scotia Arc exhibits longer egg incubation (lasting 90–120 days from winter to summer) and delayed hatching time spread over a relatively short period lasting 26 days between January and February. The first exogenous feeding takes place between 13 and 24 days after hatching still in the presence of the yolk-sac, indicating a prolonged mixed feeding afterward. The specific growth rate or daily percentage change in size (G) was 1.9 % SL day?1, corresponding to a daily growth rate at mean size of 0.31 mm day?1. While showing significant differences in early life history traits across their geographical distribution, C. gunnari populations share a common strategy, spawning a small number of large eggs that hatch in relatively large-sized larvae, at a time which may be independent of the timing of pack-ice retreat and onset of the production cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号