首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the terrestrial and temperate orchids–fungal biology have been largely explored, knowledge of tropical epiphytic orchids–fungus relationships, especially on the ecological roles imparted by non-mycorrhizal fungal endophytes, is less known. Exploitation of the endophytic fungal mycobiota residing in epiphytic orchid plants may be of great importance to further elucidate the fungal ecology in this special habitat as well as developing new approaches for orchid conversations. The composition of fungal endophytes associated with leaves, stems and roots of an epiphytic orchid (Dendrobium nobile), a famous Chinese traditional medicinal plant, was investigated. Microscopic imaging, culture-dependant method and molecular phylogeny were used to estimate their entity and diversity. Totally, there were 172 isolates, at least 14 fungal genera and 33 different morphospecies recovered from 288 samples. Ascomycetes, coelomycetes and hyphomycetes were three major fungal groups. There were higher overall colonization and isolation rates of endophytic fungi from leaves than from other tissues. Guignardia mangiferae was the dominant fungal species within leaves; while the endophytic Xylariaceae were frequently observed in all plant tissues; Colletotrichum, Phomopsis and Fusarium were also frequently observed. Phylogenetic analysis based on ITS gene revealed the high diversity of Xylariacea fungi and relatively diverse of non-Xylariacea fungi. Some potentially promising beneficial fungi such as Clonostachys rosea and Trichoderma chlorosporum were found in roots. This is the first report concerning above-ground and below-ground endophytic fungi community of an epiphytic medicinal orchid, suggesting the ubiquitous distribution of non-mycorrhizal fungal endophytes in orchid plants together with heterogeneity and tissue specificity of the endophyte assemblage. Possible physiological functions played by these fungal endophytes and their potential applications are also discussed briefly. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
该文采用传统形态学方法结合r DNA-ITS序列分析,对我国重要药用植物罗汉果中的内生真菌进行了鉴定并研究其多样性。结果表明:采用组织培养法从罗汉果健康植株中共分离得到150株内生真菌,包括罗汉果中雌株的内生真菌96株、雄株的内生真菌54株。122株内生真菌经形态学结合r DNA-ITS序列分析鉴定为9个属,均归属为子囊菌门,包含座囊菌纲(Dothideomycetes)和子囊菌纲(Sordariomycetes)。其中,座囊菌纲(Dothideomycetes)真菌包含3科、3属;子囊菌纲(Sordariomycetes)真菌包含6科、6属。优势属为刺盘孢属(Colletotrichum)和镰刀菌属(Fusarium)。罗汉果雌、雄植株不同组织中内生真菌的定殖率及分离率的变化规律均不相同,雌株中以根中内生真菌的定殖率和分离率最高,叶片中的最低;在雄株中以叶片中的定殖率和分离率最高,根中的最低。不同菌株在雌、雄两种植株的不同组织中的分布均不同,结合内生真菌群落组成的相似性比较结果,表明部分内生真菌对罗汉果雌株和雄株,以及同一植株中的不同组织均具有偏好性。不同组织中内生真菌的多样性指数在0.11~0.69的范围,其中雌株根部的内生真菌多样性指数最高。以上研究结果为后期探究内生真菌与罗汉果互作关系奠定了基础。  相似文献   

3.
The plant-pathogenic fungus Claviceps paspali infects florets of the dallisgrass Paspalum dilatatum and induces the plant to produce honeydew (containing massive amounts of conidia), which in turn attracts insects for dispersal of the fungal spores. In Japan, the association between C. paspali and its host plant is common, although both P. dilatatum and C. paspali are introduced species. To determine the dispersal agents of the introduced C. paspali, we examined which insects sapped the P. dilatatum honeydew produced by C. paspali. The study was conducted from September to October 2003 in central Japan. Adults of 48 moth species and two lacewing species visited infected spikelets of P. dilatatum and sapped the honeydew at night. The dominant moths, which carried C. paspali conidia on their proboscises, migrate long distances every year. Therefore, migratory moths may transmit C. paspali spores from diseased to healthy host plants and may have spread C. paspali to other areas in Japan where C. paspali did not previously exist.  相似文献   

4.
About 174 endophytic fungi were isolated from the pharmaceutical plant, Camptotheca acuminata. Of the 18 taxa obtained, non-sporulating fungi (48.9%), Alternaria (12.6%), Phomopsis (6.9%), Sporidesmium (6.3%), Paecilomyces (4.6%) and Fusarium (4.6%) were dominant. ITS rDNA assay indicated that most of the non-sporulating fungi belonged to the Pyrenomycetes and Loculoascomycetes ascomycetes or their anamorph Coelomycetes. The results of the bioactivity test showed that 27.6% of the endophytic fungi displayed inhibition against more than one indicator microorganism. 4.0% and 2.3% of the endophytic fungi showed cytotoxicity and protease inhibition, respectively. The endophytic fungi with bioactivities were distributed in more than 12 taxa including non-sporulating fungi, which are reliable sources for bioactive agents.  相似文献   

5.
Ash dieback, caused by the fungus Hymenoscyphus fraxineus, has threatened ash trees in Europe for more than two decades. However, little is known of how endophytic communities affect the pathogen, and no effective disease management tools are available. While European ash (Fraxinus excelsior) is severely affected by the disease, other more distantly related ash species do not seem to be affected. We hypothesise that fungal endophytic communities of tolerant ash species can protect the species against ash dieback, and that selected endophytes have potential as biocontrol agents. These hypotheses were tested by isolating members of the fungal communities of five tolerant ash species, and identifying them using ITS regions. Candidate endophytes were tested by an in vitro antagonistic assay with H.fraxineus. From a total of 196 isolates we identified 9 fungal orders, 15 families, and 40 species. Fungi in orders Pleosporales, such as Boeremia exigua and Diaporthe spp., and Hypocreales (e.g., Fusarium sp.), were recovered in most communities, suggesting they are common taxa. The in vitro antagonistic assay revealed five species with high antagonistic activity against H. fraxineus. These endophytes were identified based on ITS region as Sclerostagonospora sp., Setomelanomma holmii, Epicoccum nigrum, B. exigua and Fusarium sp. Three of these taxa have been described previously as antagonists of plant pathogenic microbes, and are of interest for future studies of their potential as biological control agents against ash dieback, especially for valuable ash trees in parks and urban areas.  相似文献   

6.
An ecological approach was used to investigate the relationship between diversity of soil fungal communities and soil‐borne pathogen inoculum in a potato growing area of northern Italy affected by yield decline. The study was performed in 14 sites with the same tillage management practices: 10 named ‘potato sites’, that for many years had been intensely cultivated with potatoes, and 4 named ‘rotation sites’, subject to a 4‐year rotation without potatoes or any recurrent crop for many years. Fungal communities were recorded using conventional (soil fungi by plate count and endophytic fungi as infection frequency on pot‐grown potato plant roots in soil samples) and molecular approaches [Basidiomycetes and Ascomycetes with specific and denaturing gradient gel electrophoresis (DGGE) analysis]. Diversity of fungal communities in potato sites was significantly lower than that in rotation sites. In addition, fungal communities in rotation sites showed lower Berger–Parker dominance than those in the potato sites, suggesting that rotation sites had a higher diversity as well as a better fungal community balance than potato sites. The ANalysis Of SIMilarity test of soil fungi and root endophytic fungi revealed that the two cropping systems differed significantly for species composition. Root endophytic fungal communities showed a greater ability to colonise potato roots in soil samples from potato sites than those from rotation sites. Moreover, the majority of endophytic root fungal community species in potato sites belonged to the potato root rot complex and storage disease (Colletotrichum coccodes, Fusarium solani and Fusarium oxysporum), while those in rotation sites were mainly ubiquitous or saprobic fungi. Soil rDNA analyses showed that Ascomycetes were much more frequent than Basidiomycetes in all the soils examined. DGGE analysis, with the Ascomycete‐specific primer (ITS1F/ITS4A), did not reveal distinctions between the communities found at the potato and rotation sites, although the same analysis showed differences between the communities of Basidiomycetes (specific primer ITS1F/ITS4B). These findings showed that recurrent potato cropping affected diversity and composition of soil fungal communities and induced a shift in specialisation of the endophytic fungi towards potato.  相似文献   

7.
The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community.  相似文献   

8.
湖北烟草内生真菌生物多样性和种群结构分析   总被引:1,自引:0,他引:1  
【目的】研究传统药用植物烟草(Nicotiana tabacum L.)内生真菌的丰富度,揭示其种群多样性和群落结构,为烟草内生真菌资源的有效利用奠定基础。【方法】采用组织分离法进行烟草内生真菌的分离,通过形态学和分子生物学相结合的方法进行菌株分类鉴定,以香农多样性指数及相对分离频率反映内生真菌物种多样性及分布规律。【结果】从不同组织部位、不同生长时期、不同海拔样地的健康烟草中共分离获得539株内生真菌,根据r DNA-ITS系统发育分析鉴定为31属73种,香农多样性指数为2.78,曲霉属Aspergillus和镰孢属Fusarium为优势菌群,其相对分离频率分别为22.63%和12.99%。其分布规律表现为茎部内生真菌的多样性高于叶部和根部;随着生育期的延长,内生真菌多样性逐步增多;随着海拔高度升高,内生真菌的种类和数量呈现降低的趋势。【结论】烟草内生真菌具有丰富的生物多样性,其分布表现出组织、生长时期、海拔高度专化性。阐明内生真菌在烟草中的分布规律,可以为烟草内生真菌在农业生产领域的开发应用提供科学依据。  相似文献   

9.
为寻找促进药用植物活性代谢产物合成的微生物,该文以黄精为研究对象,利用高通量测序技术和生态功能预测平台,测定根际土真菌、根茎和根内生真菌的ITS序列,分析其真菌多样性和群落组成,并预测根茎内生真菌的生态功能.结果表明:(1)测序得到1023个可操作分类单元(OTUs),根际、根茎和根真菌OTU数分别为703、128和1...  相似文献   

10.
茶轮斑病对茶树叶片内生真菌群落结构的影响   总被引:2,自引:1,他引:1  
[目的] 茶树叶片内生真菌长期与茶树协同进化,互利共生,在生物和非生物胁迫的生态系统中对茶树起着重要的保护作用,其群落结构组成相对稳定,但在外界因素的影响下,也会发生一定的变化。然而,关于生物胁迫对茶树叶片内生真菌群落结构的影响还缺乏系统的研究。因此,对生物胁迫下叶片内生真菌群落结构的多样性研究具有重要意义。[方法] 本研究采用高通量测序技术,测序了茶轮斑病发病茶树叶片和健康茶树叶片的内生真菌ITS rRNA基因的ITS1区序列,对比分析了内生真菌的多样性和群落结构组成。[结果] 结果表明,发病组叶片的内生真菌多样性和物种丰度均低于健康组。在门分类水平上,2组样本的优势菌群均为子囊菌门(Ascomycota),在属分类水平上,发病组的优势菌群为炭疽菌属(Colletotrichum)和假拟盘多毛孢属(Pseudopestalotiopsis),而健康组的优势菌为枝孢属(Cladosporium)。此外,2组样本内生真菌在群落结构组成上也有显著差异,发病组中假拟盘多毛孢属(Pseudopestalotiopsis)、炭疽菌属(Colletotrichum)和节菱孢属(Arthrinium)的相对丰度显著高于健康组,健康组中被孢霉属(Mortierella)、曲霉属(Aspergillus)、织球壳菌属(Plectosphaerella)、Lectera、葡孢霉属(Botryotrichum)、青霉菌属(Penicillium)、赤霉属(Gibberella)、毛壳菌属(Chaetomium)、Lulwoana和轮枝孢属(Verticillium)的相对丰度显著高于发病组。[结论] 综上,茶轮斑病的发生改变了茶树叶片内生真菌的群落结构,使少数物种优势生长。通过研究,明确了真菌病害对茶叶内生真菌群落结构的影响,为病菌的致病机理研究奠定基础,为茶树病害防治提供理论依据。  相似文献   

11.
田甲佳  刘贺  杨季婷  王毅  刘良燕 《广西植物》2023,43(7):1201-1212
为研究云南马铃薯(Solanum tuberosum)内生真菌的多样性,该文以采自云南省德宏芒市、大理喜洲和临沧双江3个地区的马铃薯植株为研究对象,采用组织块分离法、尖端菌丝挑取法对马铃薯根、茎及块茎中的内生真菌进行分离纯化,并采用形态学鉴定方法和ITS序列分析法对分离得到的内生真菌进行鉴定,对内生真菌的定殖率、分离率及多样性指数进行计算和分析。结果表明:(1)共分离得到内生真菌98株,其中从德宏芒市的样品中获得40株,从大理喜洲的样品中获得27株,从临沧双江的样品中获得31株。(2)经鉴定,分离得到的马铃薯内生真菌共涵盖10目10科13属,大多为子囊菌门和担子菌门,优势菌为镰刀菌属(Fusarium)和青霉属(Penicillium),褶皱裸孢壳(Emericella rugulosa)、接骨木镰刀菌(Fusarium sambucinum)、毛韧革菌(Stereum hirsutum)、Psathyrella sulcatotuberculosaEpicoccum catenisporum 5种真菌均为首次从马铃薯植株中分离得到。(3)马铃薯块茎内生真菌的定殖率最高,根部内生真菌定殖率最低; 内生真菌的分离率以马铃薯根部为最高,而茎部最低; 不同组织中内生真菌的多样性指数趋势均为根>块茎>茎。从综合来看,云南马铃薯植株中的内生真菌具有较高的多样性,不同地区的马铃薯样品中内生真菌优势菌不同,马铃薯根部具有最丰富的内生真菌种群和最高的分离率,是最适合进行内生真菌分离的材料。该研究结果为后期探究马铃薯内生真菌对病原菌的拮抗作用奠定了基础,也为马铃薯内生真菌多样性研究提供了参考数据。  相似文献   

12.
Xing YM  Chen J  Cui JL  Chen XM  Guo SX 《Current microbiology》2011,62(4):1218-1224
Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.  相似文献   

13.
Endophytic fungi are ubiquitously distributed in orchids and have a great impact on the host plant. The diversity of endophytic fungi in the medicinal orchid Dendrobium loddigesii Rolfe was investigated and their bioactivities in microbe and plant growth were explored here. Endophytic fungi were identified by using morphological and molecular biological methods. Antimicrobial activity was determined by a standard disk assay. Activity in promoting plant growth was confirmed by root inoculation of endophytic fungi in seedling tray and pot experiments. Overall, 48 isolates were isolated from D. loddigesii and identified to belong to 18 genera, with Fusarium and Acremonium being the most dominant populations. A total of 17 isolates belonging to 9 genera were screened for their antimicrobial activity, and Fusarium spp., 8 of the 17 isolates, was also the dominant population. In the seedling tray experiment, two isolates, one of Fusarium named DL26 and the other of Pyrenochaeta named DL351, were shown to enhance plant growth in alder bark–humus medium, and the latter displayed weak activity against Bacillus subtilis (As 1.308) and Aspergillus fumigatus (As 3.2910). In the pot experiment, after inoculation of DL26 and DL351, five out of seven media were fit for plant-endophyte symbionts. Medium #1 of red brick fragments and sphagna was optimal in accelerating plant growth. In conclusion, a great diversity of endophytic fungi in D. loddigesii was first confirmed in a considerable proportion of antimicrobial isolates. Furthermore, two endophytes exhibited the ability to enhance plant growth although their activities were influenced by the growth media.  相似文献   

14.
Dual biological control, of both insect pests and plant pathogens, has been reported for the fungal entomopathogens, Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) and Lecanicillium spp. (Ascomycota: Hypocreales). However, the primary mechanisms of plant disease suppression are different for these fungi. Beauveria spp. produce an array of bioactive metabolites, and have been reported to limit growth of fungal plant pathogens in vitro. In plant assays, B. bassiana has been reported to reduce diseases caused by soilborne plant pathogens, such as Pythium, Rhizoctonia, and Fusarium. Evidence has accumulated that B. bassiana can endophytically colonize a wide array of plant species, both monocots and dicots. B. bassiana also induced systemic resistance when endophytically colonized cotton seedlings were challenged with a bacterial plant pathogen on foliage. Species of Lecanicillium are known to reduce disease caused by powdery mildew as well as various rust fungi. Endophytic colonization has been reported for Lecanicillium spp., and it has been suggested that induced systemic resistance may be active against powdery mildew. However, mycoparasitism is the primary mechanism employed by Lecanicillium spp. against plant pathogens. Comparisons of Beauveria and Lecanicillium are made with Trichoderma, a fungus used for biological control of plant pathogens and insects. For T. harzianum Rifai (Ascomycota: Hypocreales), it has been shown that some fungal traits that are important for insect pathogenicity are also involved in biocontrol of phytopathogens.  相似文献   

15.
Betelvine is prone to several fungal diseases including leaf spots, foot and root rot caused by Fusarium spp. due to humid conditions prevailing in fields. In the present study, a potent antagonistic bacterial endophyte and a virulent fungal pathogen were selected after rigorous screening of isolates from different betelvine varieties to provide an efficient biocontrol strategy in cultivation of betelvine. Wild varieties of crops are a rich source of untapped endophytes. Of the four betelvine varieties used for isolations and screening, the wild variety was richest in endophytic populations. Using 16S rRNA sequencing, the selected antagonist was identified as Bacillus sp. (NBRI-W9). The pathogen, virulent against cultivated varieties, was identified as Fusarium sp. (NBRI-PMSF12) using ITS 1 and 2 region sequencing. Under in vitro and field conditions, NBRI-W9 was able to induce early rooting, provide plant growth promotion, increase leaf size and yield (leaf number) and provide biocontrol against the Fusarium sp. infection. NBRI-W9 treatments showed bacterial colonization on the leaf surface preferably in the vicinity of pearl glands and the collenchyma region in scanning electron microscope (SEM) studies. NBRI-W9 was observed to directly enter the leaf by degrading cell walls and colonize the subcellular layers. SEM analysis showed direct confrontation of NBRI-W9 with Fusarium on the leaf surface and in the collenchyma region as one of the probable modes of biocontrol.  相似文献   

16.
Fungal Epiphytes and Endophytes of Coffee Leaves (Coffea arabica)   总被引:1,自引:0,他引:1  
Plants harbor diverse communities of fungi and other microorganisms. Fungi are known to occur both on plant surfaces (epiphytes) and inside plant tissues (endophytes), but the two communities have rarely been compared. We compared epiphytic and endophytic fungal communities associated with leaves of coffee (Coffea arabica) in Puerto Rico. We asked whether the dominant fungi are the same in both communities, whether endophyte and epiphyte communities are equally diverse, and whether epiphytes and endophytes exhibit similar patterns of spatial heterogeneity among sites. Leaves of naturalized coffee plants were collected from six sites in Puerto Rico. Epiphytic and endophytic fungi were isolated by placing leaf pieces on potato dextrose agar without and with surface sterilization, respectively. A total of 821 colonies were isolated and grouped into 131 morphospecies. The taxonomic affinities of the four most common nonsporulating fungi were determined by sequencing the nuclear ribosomal internal transcribed spacer (ITS) region: two grouped with Xylaria and one each with Botryosphaeria and Guignardia. Of the most common genera, Pestalotia and Botryosphaeria were significantly more common as epiphytes; Colletotrichum, Xylaria, and Guignardia were significantly more common as endophytes. Suprisingly, more morphospecies occurred as endophytes than as epiphytes. Differences among sites in number of fungi per plant were significant. Thus epiphytic and endophytic communities differed greatly on a single leaf, despite living only millimeters apart, and both communities differed from site to site. Significant correlations between occurrence of fungal morphospecies suggested that fungi may have positive or negative effects on their neighbors. This is the first quantitative comparison of epiphytic and endophytic fungal floras in any plant, and the first to examine endophytic fungi or epiphytic fungi in leaves of coffee, one of the world’s most valuable crops.  相似文献   

17.
This study investigated the plant growth promotion and stress mitigation effects of Penicillium species RDA01, NICS01, and DFC01 on sesame (Sesamum indicum L.) plants. The fungal isolates NICS01 and DFC01 significantly enhanced shoot length, root length, and fresh and dry seedling weight, due to the secretion of various concentrations of amino acids (Asp, Thr, Ser, Asn, Glu, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, Lys, His, Try, and Arg). Penicillium sp. NICS01 increased the amount of chlorophylls, proteins, amino acids, and lignans in the sesame plants more so than in controls. Sesame plant growth was stunted by high soil salinity, and application of the three fungal isolates increased plant survival. The RDA01 and NICS01 strains significantly increased shoot length and fresh and dry seedling weights under salt stress conditions. In addition, an in vitro study of the Penicillium spp. revealed their antagonistic activity toward the pathogenic fungi Fusarium spp. Fusarium spp. reduce shoot length; co-inoculation with the NICS01 or DFC01 isolates significantly increased shoot length in infected plants. Our results suggest that exogenous application of the Penicillium sp. NICS01 can act as a biofertilizer and a biocontrol agent to improve plant growth and enhance plant survival against salt stress and Fusarium infection.  相似文献   

18.
Esca, a major grapevine trunk disease in old grapevines, is associated with the colonization of woody tissues by a broad range of plant pathogenic fungi. To identify which fungal and bacterial species are involved in the onset of this disease, we analysed the microbiota from woody tissues of young (10-year-old) grapevines at an early stage of esca. Using meta-barcoding, 515 fungal and 403 bacterial operational taxonomic units (OTUs) were identified in woody tissues. In situ hybridization showed that these fungi and bacteria co-inhabited in grapevine woody tissues. In non-necrotic woody tissues, fungal and bacterial microbiota varied according to organs and seasons but not diseased plant status. Phaeomoniella chlamydospora, involved in the Grapevine trunk disease, was the most abundant species in non-necrotic tissues from healthy plants, suggesting a possible non-pathogenic endophytic behaviour. Most diseased plants (70%) displayed cordons, with their central white-rot necrosis colonized essentially by two plant pathogenic fungi (Fomitiporia mediterranea: 60%–90% and P. chlamydospora: 5%–15%) and by a few bacterial taxa (Sphingomonas spp. and Mycobacterium spp.). The occurrence of a specific association of fungal and bacterial species in cordons from young grapevines expressing esca-foliar symptoms strongly suggests that that microbiota is involved in the onset of this complex disease.  相似文献   

19.
Studying community structure and dynamics of plant‐associated fungi is the basis for unravelling their interactions with hosts and ecosystem functions. A recent sampling revealed that only a few fungal groups, as defined by internal transcribed spacer region (ITS) sequence similarity, dominate culturable root endophytic communities of nonmycorrhizal Microthlaspi spp. plants across Europe. Strains of these fungi display a broad phenotypic and functional diversity, which suggests a genetic variability masked by ITS clustering into operational taxonomic units (OTUs). The aims of this study were to identify how genetic similarity patterns of these fungi change across environments and to evaluate their ability to disperse and adapt to ecological conditions. A first ITS‐based haplotype analysis of ten widespread OTUs mostly showed a low to moderate genotypic differentiation, with the exception of a group identified as Cadophora sp. that was highly diverse. A multilocus phylogeny based on additional genetic loci (partial translation elongation factor 1α, beta‐tubulin and actin) and amplified fragment length polymorphism profiling of 185 strains representative of the five dominant OTUs revealed a weak association of genetic differences with geography and environmental conditions, including bioclimatic and soil factors. Our findings suggest that dominant culturable root endophytic fungi have efficient dispersal capabilities, and that their distribution is little affected by environmental filtering. Other processes, such as inter‐ and intraspecific biotic interactions, may be more important for the local assembly of their communities.  相似文献   

20.
Fungal endophytes and saprotrophs generally play an important ecological role within plant tissues and dead plant material. Several reports based solely on morphological observations have postulated that there is an intimate link between endophytes and saprotrophs. This study aims to provide valuable insight as to whether some endophytic fungi manifest themselves as saprotrophs upon host decay. Ribosomal DNA-based sequence comparison and phylogenetic relationships from 99 fungal isolates (endophytes, mycelia sterilia, and saprotrophs) recovered from leaves and twigs of Magnolia liliifera were investigated in this study. Molecular data suggest there are fungal taxa that possibly exist as endophytes and saprotrophs. Isolates of Colletotrichum, Fusarium, Guignardia, and Phomopsis, which are common plant endophytes, have high sequence similarity and are phylogenetically related to their saprotrophic counterparts. This provides evidence to suggest that some endophytic species change their ecological strategies and adopt a saprotrophic lifestyle. The implication of these findings on fungal biodiversity and host specificity is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号