首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous synaptic vesicle alpha- and beta-tubulin were shown to be the major substrates for a Ca2+-calmodulin-regulated protein kinase system in enriched synaptic vesicle preparations from rat cortex as determined by two-dimensional gel electrophoresis and peptide mapping. The activation of this endogenous tubulin kinase system was dependent on Ca2+ and the Ca2+ binding protein, calmodulin. Under maximally stimulated conditions, approximately 40% of the tubulin present in enriched synaptic vesicles was phosphorylated within less than 50 s by the vesicle Ca2+-calmodulin kinase. Evidence is presented indicating that the Ca2+-calmodulin tubulin kinase is an enzyme system distinct from previously described cyclic AMP protein kinases. alpha-Tubulin and beta-tubulin were identified as major components of previously designated vesicle phosphorylation bands DPH-L and DPH-M. The Ca2+-calmodulin tubulin kinase is very labile and specialized isolation procedures were necessary to retain activity. Ca2+-activated synaptic vesicle tubulin phosphorylation correlated with vesicle neurotransmitter release. Depolarization-dependent Ca2+ uptake in intact synaptosomes simultaneously stimulated the release of neurotransmitters and the phosphorylation of synaptic vesicle alpha- and beta-tubulin. The results indicate that regulation of the synaptic vesicle tubulin kinase by Ca2+ and calmodulin may play a role in the functional utilization of synaptic vesicle tubulin and may mediate some of the effects of Ca2+ on vesicle function and neurosecretion.  相似文献   

2.
Ca2+-calmodulin tubulin kinase activity was isolated from brain cytosol and separated from its substrate protein, tubulin, and Ca2+ regulatory protein, calmodulin. Characterization of the Ca2+-tubulin kinase system revealed a Km of 4 μM, 0.5 μM, 60 μM for Ca2+, calmodulin and ATP, respectively. The tubulin kinase system bound to a calmodulin affinity column in the presence of Ca2+ and was released from the column by chelation with EGTA. A major 55,000 and a minor 65,000 dalton peptide were identified as the only calmodulin binding proteins in the enzyme fraction, indicating that one or both of these peptides represent the calmodulin binding subunit of the Ca2+-calmodulin tubulin kinase system.  相似文献   

3.
Chronic morphine treatment of rats decreased the level of phosphorylation of synaptic membrane proteins of the striatum assayed in vitro. Although the patterns of phosphorylated proteins separated on SDS-gel electrophoresis from morphine-tolerant rats resembled patterns produced by lowering Ca2+ levels in the assay, supplementation of the protein kinase assay with Ca2+ and its binding protein, calmodulin, did not restore full kinase activity. The addition of methadone or etorphine to the protein kinase in vitro however, was able to block the Ca2+-calmodulin stimulation of phosphorylation in both synaptic membranes and intact synaptosomes. These data suggest that opioids produce an irreversible (or slowly reversible) defect in the Ca2+-dependent protein kinase system of striatal membranes.This paper is dedicated to Dr. Derek Richter on his seventy-fifth birthday.  相似文献   

4.
K inesin-like c almodulin-b inding p rotein (KCBP) is a recently identified novel kinesin-like protein that appears to be unique to and ubiquitous in plants. KCBP is distinct from all other known KLPs in having a calmodulin-binding domain adjacent to its motor domain. We have used different regions of KCBP to study its interaction with tubulin subunits and the regulation of this interaction by Ca2+-calmodulin. The results show that the carboxy-terminal part of the KCBP, with or without calmodulin-binding domain, binds to tubulin subunits and this binding is sensitive to nucleotides. In the presence of Ca2+-calmodulin the motor with calmodulin-binding domain does not bind to tubulin. This Ca2+-calmodulin modulation is abolished in the presence of antibodies specific to the calmodulin-binding domain of KCBP. Similar binding studies with the carboxy-terminal part of KCBP lacking the calmodulinbinding domain show no effect of Ca2+-calmodulin. These results indicate that Ca2+-calmodulin modulates the interaction of KCBP with tubulin subunits and this modulation is due to the calmodulin-binding domain in the KCBP. Calcium-dependent calmodulin modulation of KCBP interaction with tubulin suggests regulation of KCBP function by calcium, the first such regulation of a kinesin heavy chain among all the known kinesin-like proteins.  相似文献   

5.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

6.
Calponin, a thin filament–associated protein, inhibits actin-activated myosin ATPase activity, and this inhibition is reversed by phosphorylation. Calponin phosphorylation by protein kinase C and Ca2+/calmodulin-dependent protein kinase II has been shown in purified protein systems but has been difficult to demonstrate in more physiological preparations. We have previously shown that calponin is phosphorylated in a cell-free homogenate of swine carotid artery. The goal of this study was to determine whether protein kinase C and/or Ca2+/calmodulin-dependent protein kinase II catalyzes calponin phosphorylation. Ca2+-dependent calponin phosphorylation was not inhibited by calmodulin antagonists. In contrast, both Ca2+- and phorbol dibutyrate/1-oleoyl-2-acetyl-sn-glycerol–dependent calponin phosphorylation were inhibited by the pseudosubstrate inhibitor of protein kinase C and staurosporine. Our results also demonstrate that stimulation with either Ca2+, phorbol dibutyrate, or 1-oleoyl-2-acetyl-sn-glycerol activates endogenous protein kinase C. We interpret our results as clearly demonstrating that the physiological kinase for calponin phosphorylation is protein kinase C and not Ca2+/calmodulin-dependent protein kinase II. We also present data showing that the direct measurement of 32P incorporation into calponin and the indirect measurement of calponin phosphorylation using nonequilibrium pH gradient gel electrophoresis provide similar quantitative values of calponin phosphorylation. J. Cell. Physiol. 176:545–552, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
A soluble Ca2+- and Ca2+—calmodulin-activated protein kinase was partially purified from wheat germ. The phosphorylation of histones and casein catalyzed by this enzyme is largely Ca2+-dependent. After repeated gel filtration of the protein kinase in the presence of 1 mM EGTA, the phosphorylation of casein and histones by the enzyme is activated 3-fold and up to 16-fold, respectively, by added calmodulin (12.5 μM). Such activation of the protein kinase by calmodulin is Ca2+-dependent. The protein kinase binds to calmodulin—Sepharose 4B in a Ca2+-dependent fashion. This type of Ca2+-activated protein kinase may be involved in stimulus—response coupling in plants.  相似文献   

8.
We describe a Triton-insoluble cytoskeletal fraction extracted from cerebral cortex of young rats retaining an endogenous Ca2+-mediated mechanism acting in vitro on Ca2+/calmodulin-dependent protein kinase II (CaM-KII) activity and on phosphorylation and proteolysis of the 150 kDa neurofilament subunit (NF-M), α and β tubulin. Exogenous Ca2+ induced a 70% decrease in the in vitro phosphorylation of the NF-M and tubulins and a 30–50% decrease in the total amount of these proteins. However, when calpastatin was added basal phosphorylation and NF-M and tubulin content were recovered. Furthermore, exogenous Ca2+/calmodulin induced increased in vitro phosphorylation of the cytoskeletal proteins and CaM-KII activity only in the presence of calpastatin, suggesting the presence of Ca2+-induced calpain-mediated proteolysis. This fraction could be an interesting model to further studies concerning the in vitro effects of Ca2+-mediated protein kinases and proteases associated with the cytoskeletal fraction.  相似文献   

9.
DEAE-cellulose column chromatography of Neurospora crassa soluble mycelial extracts leads to the resolution of three major protein kinase activity peaks designated PKI, PKII, and PKIII.PKII activity is stimulated by Ca2+ and Neurospora or brain calmodulin. Maximal stimulation was observed at 2 µM-free Ca2+ and 1 µg/ml of the modulator. The stimulatory effect of the Ca2+-calmodulin complex was blocked by EGTA and by some calmodulin antagonists such as phenothiazine drugs or compound 48/80.PKII phosphorylates different proteins, among which histone II-A at a low concentration and CDPKS, the synthetic peptide specific for Ca2+-calmodulin dependent protein kinases, are the best substrates. Some phosphorylation can be detected in the absence of any exogenous acceptor. PKII activity assayed in the presence of histone II-A or in the absence of exogenous phosphate acceptor (autophosphorylation) co-elute in a DEAE-cellulose column at 0.28 M NaCl. As result of the autophosphorylation reaction of the purified enzyme a main phosphorylated component of 70 kDa was resolved by SDS-polyacrylamide gel electrophoresis. It is possible that this component is an active part of this enzyme.  相似文献   

10.
Published studies of the Ca2+-pump ATPase of the human erythrocyte membrane record a variety of patterns of activation by Ca2+ and calmodulin and also suggest that activation by Ca2+-calmodulin is slow rather than immediate. We have re-analysed these points in various types of human erythrocyte membrane preparation of widely different permeability characteristics, both in the intact state and after being rendered fully permeable by saponin. The various membrane preparations initially showed very different patterns of activation, but when permeabilised with saponin they all exhibited identical characteristics: these included highly cooperative activation by Ca2+ with maximum activity at ~ 1 μM-Ca2+ and high sensitivity to calmodulin. Activation of Ca2+-ATPase by Ca2+-calmodulin in freely permeable ghosts was immediate. We therefore conclude that the Ca2+-pump ATPase exhibits high sensitivity to Ca2+ and calmodulin and responds rapidly to Ca2+-calmodulin. Apparent evidence to the contrary seems likely to have been a result of misinter-pretation of data derived from studies of partially sealed erythrocyte ghosts in which the added activators, Ca2+ and calmodulin, did not have free access to the appropriate sites on the ATPase.  相似文献   

11.
Calmodulin   总被引:2,自引:0,他引:2  
Summary Ca2+ as an important cellular regulator has long been recognized. Calmodulin is unique among several proteins considered to be Ca2+ receptors in its ubiquitous distribution in eukaryotic cells and in its multiple effects through interaction with different enzymes and proteins. Apparently, calmodulin is the major Ca2+ receptor in most of these cells and most of metabolic active Ca2+ exists as a Ca2+-calmodulin complex.The importance of calmodulin as a Ca2+ mediator is also indicated by its role as the Ca2+-sensor in the regulation of Ca2+ pump which effectively maintains a low steady level of intracellular free Ca2+. The participation of calmodulin in the regulation of intracellular Ca2+ level suggests the desire for the cell to maintain adequate steady levels of metabolic active Ca2+. A low calmodulin concentration may in effect slow down the Ca2+ pump allowing a higher concentration of intracellular free Ca2+, but may also require higher Ca2+ threshold for Cat+ effects. A prominent difference in calmodulin contents of different eukaryotic cells has been noted and this difference may reflect the difference in the extents and the types of Ca2+-mediated reactions that operate in the cells. It is also possible that calmodulin concentration may fluctuate in response to different metabolic conditions. The evident for such possibility has been provided by the observations that cAMP-dependent protein kinase and ATP together with cAMP or neurotransmitters that stimulate cAMP synthesis cause the release of calmodulin from synaptic membranes (139, 140). However, the cytosolic calmodulin increased as the result of its release from the membranes is unlikely to be sufficient for eliciting calmodulin-mediated Ca2+ effects without a concomitant significant increase of intracellular Ca2+. The calmodulin release, in effect, may decrease the Ca2+ threshold of these effects.The manifestation of calmodulin-mediated Ca2+ effects in a particular type of cells appears determined mainly by the calmodulin-regulated enzymes existing in the cells. Within the same cells, however, the particular species of Ca2+-calmodulin complex serving as the active calmodulin, the affinity of the enzyme for the active calmodulin and the localization of the enzyme in the cells may determine the circumstance under which particular reactions are expressed.During the past years, substantial progress has been made in understanding calmodulin in terms of primary structure and molecular properties and in discovering many Ca2+-dependent, calmodulin-regulated enzymes and cellular activities. Our understanding of calmodulin and its relation to the wide range of Ca2+-dependent enzymes and activities has provided a framework for comprehending Ca2+ functions in the cells at the molecular level. Further works, however, are required to unravel fully the detailed mechanisms and properties that govern the calmodulin-enzyme interactions and to narrow further the gaps between Ca2+-elicited cellular expressions and the molecular events that lead to such expressions.  相似文献   

12.
Caldesmon is an actin- and myosin-binding protein found in smooth muscle that inhibits actin activation of myosin ATPase activity. The activity of caldesmon is controlled by phosphorylation and by binding to Ca2+-calmodulin. We investigated the effects of phosphorylation by p21-activated kinase 3 (PAK) and calmodulin on the 22 kDa C-terminal fragment of caldesmon (CaD22). We substituted the major PAK sites, Ser-672 and Ser-702, with either alanine or aspartic acid to mimic nonphosphorylated and constitutively phosphorylated states of caldesmon, respectively. The aspartic acid mutation of CaD22 weakened Ca2+-calmodulin binding but had no effect on inhibition of ATPase activity. Phosphorylation of the aspartic acid mutant with PAK resulted in the slow phosphorylation of Thr-627, Ser-631, Ser-635, and Ser-642. Phosphorylation at these sites weakened Ca2+-calmodulin binding further and reduced the inhibitory activity of CaD22 in the absence of Ca2+-calmodulin. Phosphorylation of these sites of the alanine mutant of CaD22 had no effect on Ca2+-calmodulin binding but did reduce inhibition of ATPase activity. Thus, the region between residues 627 and 642 may contribute to the overall regulation of caldesmon's activity.  相似文献   

13.
Ca2+-phospholipid dependent phosphorylation of smooth muscle myosin   总被引:5,自引:0,他引:5  
Isolated myosin light chain from chicken gizzard has been shown to serve as a substrate for Ca2+-activated phospholipid-dependent protein kinase. Autoradiography showed that Ca2+-activated phospholipid-dependent protein kinase phosphorylated mainly the 20,000-dalton light chain of chicken gizzard myosin. Exogenously added calmodulin had no effect on myosin light chain phosphorylation catalyzed by the enzyme. The 20,000-dalton myosin light chain, both in the isolated form and in the whole myosin form, served as the substrate for this enzyme. In contrast to the isolated myosin light chain, the light chain of whole myosin was phosphorylated to a lesser extent by the Ca2+-activated phospholipid dependent kinase. Our results suggest the involvement of phospholipid in regulating Ca2+-dependent phosphorylation of the 20,000-dalton light chain of smooth muscle myosin.  相似文献   

14.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca2+ channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca2+-binding proteins are of particular importance as sensors of presynaptic Ca2+, and a multiple of them are indeed utilized in the signaling of Ca2+ channels. However, despite its conserved structure, CaM is the only known EF-hand Ca2+-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca2+ channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca2+-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca2+-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca2+, PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca2+ channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

15.
The level of resistance to antibiotics of various chemical structure in actinobacteria of the genus Streptomyces is shown to be regulated by Ca2+ ions. The inhibitors of Ca2+/calmodulin and Ca2+/phospholipid-dependent serine/threonine protein kinases (STPK) are found to reduce antibiotic resistance of actinobacteria. The effect of Ca2+-dependent phosphorylation on the activity of the enzymatic aminoglycoside phosphotransferase system protecting actinobacteria from aminoglycoside antibiotics was studied. It is shown that inhibitors of Ca2+/calmodulin and Ca2+/phospholipid-dependent STPK reduced the Ca2+-induced kanamycin resistance in Streptomyces lividans cells transformed by a hybrid plasmid which contained the aminoglycoside phosphotransferase VIII (APHVIII) gene. In S. coelicolor A3(2) cells, the protein kinase PK25 responsible for APHVIII phosphorylation in vitro was identified. It is suggested that STPK play a major role in the regulation of antibiotic resistance in actinobacteria.  相似文献   

16.
Ca2+-calmodulin is crystallized with two new and potent drugs: a bisindol derivative (KAR-2, 3”-(β-chloroethyl)-2”,4”-dioxo-3,5”-spiro-oxazolidino-4-deacetoxy-vinblastine) with antitumor activity and an arylalkylamine fendiline analogue (N-(3,3-diphenylpropyl)-N'-[1-(3,4-di-n-butoxy-phenyl)-ethyl]-1,3-diaminopropane) with anticalmodulin activity. The crystals diffract beyond 2.8 Å and differ in unit cell parameters from each other as well as from crystals of Ca2+-calmodulin or Ca2+-calmodulin-ligand complexes, as reported thus far. Attempts to crystallize Ca2+-free calmodulin without drugs failed, in consonance with earlier results; however, single Ca2+-free calmodulin crystals diffracting beyond 2.5 Å resolution were grown in the presence of KAR-2. Results indicate that binding of the two drugs to apocalmodulin or Ca2+-calmodulin may induce unique novel protein conformers, targets of further detailed X-ray studies. © 1997 Wiley-Liss Inc.  相似文献   

17.
One of the most active areas of neurobiology research concerns mechanisms involved in paradigms of synaptic plasticity. A popular model for cellular leaning and memory is long term potentiation (LTP) in hippocamus. LTP requires postsynaptic influx of Ca2+ which triggers multiple biochemical pathways resulting in pre- and postsynaptic mechanisms enhancing long term synaptic efficiency. This article focuses on an acute postsynaptic Mechanism that can enhance responsiveness of glutamate receptors. Evidence is presented that calcium/calmodulin/dependent protein kinase II, the major potsynaptic density protein at excitatory glutaminergic synapses, can phosphorylate glutamate receptors and enhance ion current flowing through them. 1994 John Wiley & Sons, Inc.  相似文献   

18.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

19.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium · calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium · calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium · calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+40Ca2+ exchange.  相似文献   

20.
A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10−7 molar. and half-maximal activation was at about 3 × 10−7 molar. The optimum pH for its Ca2+-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separted from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号