首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of [3H]ploridzin by isolated luminal membranes of the rabbit proximal tubule and by slices of rabbit kidney cortex was studied.Kinetic analyses of the relationship between the concentration of phloridizin in the incubation medium and the binding of phloridzin to the membrane indicated two distinct classes of receptors sites. One class, comprising high affinity sites, reached saturation at 20–25 μM phloridzin, had a K(phloridzin) of 8 μM, and 8·10+2 nmoles interacted with 1 mg of brush border protein. The other class, comprising low affinity sites, had a K(phloridzin) of 2.5 mM, and the number of binding sites was 1.25 nmoles/mg Na+ was required for the binding of phloridzin at the high affinity sites. Na+ decreased the apparent Ki for phloridzin; the apparent V of binding was not altered. Binding at the low affinity sites was independent of Na+. Ca2+ was necessary for maximal binding at the high affinity sites. Binding of phloridzin at high affinity sites was more sensitive to N-ethylmalcimide and mersalyl than was binding at low affinity sites. Binding at high affinity sites, but not at low affinity sites, was temperature dependent.d-Glucose was a competitive inhibitor of the high affinity binding of phloridzin. The apparent K1 was 1 mM. D-Glucoe inhibited non-competitively at the low affinity sites. l-Glucose had no influence on phloridzin binding. Phloretin was a competitive inhibitor of high affinity phloridzin binding with an apparent Ki of 16 μM. Phloretin inhibited low affinity bindings of phloridizin non-competitively. Binding of phloridzin at high affinity sites was completely reversible. Binding at low affinity sites was only partially reversed. Phloridzin bound at high affinity sites on the brush border was displaced by phloridzin and phloretin but not by d-glucose.The mechanism of the high affinity binding of phloridzin was distinguished from that of the initial interaction of d-glucose with the membrane. Binding of phloridzin required Na+, whereas the interaction of d-glucose with the membranes had a prominent Na+-independent component.Intact renal cells in cortical slices accumulated phloridzin. The uptake did not saturate, was Na+ independent, and was not competitively inhibited by sugars. These characteristics resemble those for the low affinity binding of phloridzin by isolated membranes. It is suggested that low affinity binding may represent an initial binding followed by uptake of the glycoside into membrane vesicles.  相似文献   

2.
Magnesium-dependent adenosine triphosphatase, purified from sheep kidney medulla using digitonin, has been characterized in a series of kinetic and magnetic resonance studies. Kinetic studies of divalent metal activation using either Mg2+ or Mn2+ indicate a biphasic response to divalent cations. Apparent Km values of 23 μm for free Mg2+ and 3.3 μm for free Mn2+ are obtained at low levels of added metal, while Km values of 0.50 mm for free Mg2+ and 0.43 mm for free Mn2+ are obtained at much higher levels of divalent cations. In all cases the kinetic data indicate that the binding of divalent metals is independent of the substrate, ATP. Kinetic studies of the substrate requirements of the Mg2+-ATPase also yield biphasic Lineweaver-Burk plots. At low ATP concentrations, kinetic studies yield apparent Km values for free ATP of 6.0 and 1.4 μm with Mg2+ and Mn2+, respectively, as the activating divalent metals. At much higher levels of ATP the response of the enzyme to ATP changes so that Km values for free ATP of 8.0 and 2.0 mm are obtained for Mg2+ and Mn2+, respectively. In both cases, however, the binding of ATP is independent of added metal. ADP inhibits the Mg2+-ATPase and the kinetic data indicate that ADP competes with ATP at both the high and low affinity sites. Dixon plots of the data are consistent with competitive inhibition at both ATP sites, with Ki values of 10.5 μm and 4.5 mm. Electron paramagnetic resonance and water proton relaxation rate studies show that the enzyme binds 1 g ion of Mn2+ per 469,000 g of protein. The Mn2+ binding studies yield a KD for Mn2+ at the single high affinity site of 2 μm, in good agreement with the kinetically determined activator constant for Mn2+ at low Mn2+ levels. Moreover, the EPR binding studies also indicate the existence of 34 weak sites for Mn2+ per single high affinity Mn2+ site. The KD for Mn2+ at these sites is 0.55 mm, in good agreement with the kinetic activator constant for Mn2+ of 0.43 mm, consistent with additional activation of the enzyme by the large number of weaker metal binding sites. The enhancement of water proton relaxation by Mn2+ in the presence of the enzyme is also consistent with the tight binding of a single Mn2+ ion per 469,000 Mr protein and the weaker binding of a large number of divalent metal ions. Analysis of the data yields a value for the enhancement for bound Mn2+ at the single tight site, ?b, of 5 and an enhancement at the 34 weak sites of 11. The frequency dependence of water proton relaxation by Mn2+ at the single tight site yields a dipolar correlation time (constant from 8–60 MHz) of 3.18 × 10?9 s. The kinetics and metal binding studies, together with the effect of temperature on ATPase activity at high and low levels of ATP, are consistent with the existence in this preparation of a single Mg2+-ATPase, with high and low affinity sites for divalent metals and for ATP. Observations of both high and low affinities for ATP have been made with two other purified ATPases. The similarities of these systems to the Mg2+-ATPase described here are discussed.  相似文献   

3.
Skeletal muscle myofibrils, in the presence of 2 mM MgCl2 at pH 7.0, were found to have two classes of calcium-binding sites with apparent affinity constants of 2.1 x 106 M -1 (class 1) and ∼3 x 104 M -1 (class 2), respectively. At free calcium concentrations essential for the activation of myofibrillar contraction (∼10-6 M) there would be significant calcium binding only to the class 1 sites. These sites could bind about 1.3 µmoles of calcium per g protein. Extraction of myosin from the myofibrils did not alter their calcium-binding parameters. Myosin A, under identical experimental conditions, had little affinity for calcium. The class 1 sites are, therefore, presumed to be located in the I filaments. The class 1 sites could only be detected in F actin and myosin B preparations which were contaminated with the tropomyosin-troponin complex. Tropomyosin bound very little calcium. Troponin, which in conjunction with tropomyosin confers calcium sensitivity on actomyosin systems, could bind 22 µmoles of calcium per g protein with an apparent affinity constant of 2.4 x 106 M -1. In view of the identical affinity constants of the myofibrils and troponin and the much greater number of calcium-binding sites on troponin it is suggested that calcium activates myofibrillar contraction by binding to the troponin molecule.  相似文献   

4.
Flow dialysis measurements of calcium binding to bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) proteins in 20 mM Tris-HCl buffer at pH 7.5 and 8.3 revealed that S100 proteins bind specifically 4 Ca2+ eq/mol of protein dimer. The specific calcium-binding sites had, therefore, been assigned to typical amino acid sequences on the alpha and beta subunit. The protein affinity for calcium is much lower in the presence of magnesium and potassium. Potassium strongly antagonizes calcium binding on two calcium-binding sites responsible for most of the Ca2+-induced conformational changes on S100 proteins (probably site II alpha and site II beta). Zinc-binding studies in the absence of divalent cations revealed eight zinc-binding sites/mol of S100b protein dimer that we assumed to correspond to 4 zinc-binding sites/beta subunit. Zinc binding to S100b studied with UV spectroscopy methods showed that the occupation of the four higher affinity sites and the four lower affinity sites on the protein dimer were responsible for different conformational changes in S100b structure. Zinc binding on the higher affinity sites regulates calcium binding to S100b by increasing the protein affinity for calcium and decreasing the antagonistic effect of potassium on calcium binding. Zinc-binding studies on S100a and S100 alpha alpha protein showed that the Trp-containing S100 proteins bind zinc more weakly than S100b protein. Calcium-binding studies on zinc-bound S100a proved that calcium- and zinc-binding sites were distinct although there was no increase in zinc-bound S100a affinity for calcium, as in S100b protein. Finally we provide evidence that discrepancies between previously published results on the optical properties of S100b protein probably result from oxidation of the sulfhydryl groups in the protein.  相似文献   

5.
The conformational changes induced by the binding of Ca(II) to rabbit skeletal muscle troponin-C (TNC) have been followed by proton magnetic resonance spectroscopy. Ca(II)-free TNC (apo-TNC) contains definite ordered regions. Ca(II) titration of the high affinity sites (cf. Potter , Gergely, 1975) causes a large folding of the backbone, some of which involves refolding of an ordered region(s) and changes in several side-chains e.g. Glu, Asp and Phe. Titration of the low affinity sites does not alter the backbone but leads to changes among hydrophobic side-chains (one or more Val, Leu, Ile; two or more Phe, Glu and Asp) that define an ordered region(s) of apo-TNC. The rate constants for the conformation changes of the low and high affinity sites are approximately 10 s?1 and < 20 s?1, respectively. Final stages of the titration include a downfield shifted methyl group (likely Ile) and a Phe residue. The thermal stabilities of apo-TNC, TNC · Ca2(II) and native TNC were compared. It was concluded that Ca(II) binding by the two high affinity sites both directs and stabilizes much of the structure. The role of the changes of the low affinity sites, which are thought to activate contraction, are briefly discussed.  相似文献   

6.
Monomeric actin labeled with the fluorescent probe N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-I-AEDANS-actin) displays a fast fluorescence intensity increase immediately upon addition of salt and then a slow fluorescence intensity change concurrent with Ca2+/Mg2+ exchange at the high affinity divalent cation binding site on actin. The fast change appears to reflect competitive binding of K+ at low affinity (nonspecific) sites and of Mg2+ or Ca2+ at low and intermediate affinity sites. Binding of cation at the low affinity sites (but apparently not at the intermediate affinity sites) results in an increase in k-Ca and k-Mg and thus a decrease in affinity for divalent cations at the high affinity site. The effect of Mg2+ on k-Ca is twice that of K+ for equal fractional saturations of the low affinity binding, and the effect of K+ and Mg2+ together on k-Ca reflects competitive binding at the low affinity sites. Thus the affinity and kinetics of divalent cation binding at the high affinity site of actin are significantly affected by concurrent cation binding at low affinity sites.  相似文献   

7.
Summary The maximum parsimony method was used to reconstruct the genealogical history of the family of intracellular calcium-binding proteins represented by six major present-day lineages, three of which - calcium dependent modulator protein, heart and skeletal muscle troponin Cs, and alkali light chains of myosin - were found to share a closer kinship with one another than with the other lineages. Similarly, parvalbumins and regulatory light chains of myosin were depicted as more closely related, whereas the branch of intestinal calcium-binding protein proved to have the most distant separation. The computer-generated amino acid sequence for the common ancestor of these six lineages described a four domain protein in which each domain of approximately 40 amino acid residues had a mid-region, 12 residue segment that bound calcium and had properties most resembling those of the calcium dependent modulator protein. It could then be deduced that parvalbumins evolved by deletion of domain I, inactivation of calcium-binding properties in domain II, and acquisition of increased affinity for Ca++ and Mg++ in domains III and IV. Regulatory light chains of myosin lost the cation binding property from three domains, retaining it in I, whereas alkali light chains of myosin lost this ability from each of the four domains. In skeletal muscle troponin C all domains retained their calcium-binding activity; however, like parvalbumins, domains III and IV acquired high affinity properties. Cardiac troponin C lost its binding activity from domain I but otherwise resembled the skeletal muscle form. Finally, intestinal calcium-binding protein evolved by deletion of domains III and IV.Positive selection could be implicated in these evolutionary changes in that the rate of fixation of mutations substantially increased in the mid portions of those domains which were loosing calcium-binding activity. Likewise, when the cation binding sites were changing from low to high affinity, an accelerated rate of fixed mutations was observed. Once this new functional parameter was selected these regions showed a remarkable conservatism, as did those binding sites which were maintaining the lower affinity. Moreover even in sequence regions not directly involved in cation binding, the lineage of troponin C became very conservative over the past 300 million years, perhaps because of the necessity for maintaining specific interfaces in order for the molecule to interact with troponin I and T in a functional thin myofilament. A similar phenomenon was observed in domain II of the regulatory light chains of the myosin lineage suggesting a possible binding site with the heavy chain of myosin.This paper is dedicated to the memory of Jean-Francois Pechère, deceased  相似文献   

8.
Previous studies have demonstrated high affinity 3H-dopamine binding sites on mammalian striatal membranes. These putative dopamine receptors of unknown physiological significance have been termed D-3 sites. Such studies have failed, however, to demonstrate high affinity 3H-dopamine binding to D-2 sites, which can be labeled by 3H-butyrophenones, and which represent the putative dopamine receptors most stronly implicated in the behavioral correlates of dopaminergic CNS activity. We now report that preincubation of membrane homogenates with Mg++ and inclusion of Mg++ (1–10mM) or other divalent metal cations during binding allows high affinity D-2 specific 3H-dopamine binding in rat striatal membranes, and that these ions also increase the Bmax of D-3 specific 3H-dopamine binding. GTP, GDP, and GppNHp can completely abolish all D-2 specific 3H-dopamine binding, while only a magnesium-dependent portion of D-3 sites appears to be GTP sensitive. These data are consistent with the hypothesis that the striatal D-2 receptor exists in two agonist affinity states whose interconversion is effected by guanine nucleotides and divalent metal cations. The GTP sensitive/magnesium dependent nature of 3H-dopamine binding to so-called D-3 sites suggests that some such sites may in fact represent a high agonist-affinity state of the D-1 adenylate cyclase stimulating dopamine receptor also found in this tissue.  相似文献   

9.
Lactobacillus casei cells grown in the presence of limiting folate contained large amounts of a membrane-associated binding protein which mediates folate transport. Binding to this protein at 4°C was time and concentration dependent and at low levels (1 to 10 nM) of folate required 60 min to reach a steady state. The apparent dissociation constant (Kd) for folate was 1.2 nM at pH 7.5 in 100 mM K-phosphate buffer, and it varied by less than twofold when measured over a range of pH values (5.5 to 7.5) or in buffered salt solutions of differing ionic compositions. Conversely, removal of ions and their replacement with isotonic sucrose (pH 7.5) led to a 200-fold reduction in binding affinity for folate. Restoration of the high-affinity state of the binding protein could be achieved by the readdition of various cations to the sucrose medium. Kd measurements over a range of cation concentrations revealed that a half-maximal restoration of binding affinity was obtained with relatively low levels (10 to 50 μM) of divalent cations (e.g., Ca2+, Mg2+, and ethylenediammonium2+ ions). Monovalent cations (e.g., Na+, K+, and Tris+) were also effective, but only at concentrations in the millimolar range. The Kd for folate reached a minimum of 0.6 nM at pH 7.5 in the presence of excess CaCl2. In cells suspended in sucrose, the affinity of the binding protein for folate increased 20-fold by decreasing the pH from 7.5 to 4.5, indicating that protons can partially fulfill the cation requirement. These results suggest that the folate transport protein of L. casei may contain both a substrate- and cation-binding site and that folate binds with a high affinity only after the cation-binding site has been occupied. The presence of these binding sites would support the hypothesis that folate is transported across the cell membrane via a cation-folate symport mechanism.  相似文献   

10.
The binding of calcium and terbium to purified chick vitamin D-dependent intestinal calcium-binding protein was studied by terbium fluorescence, circular dichroism, and intrinsic protein fluorescence techniques. Calcium-binding protein bound, with high affinity, at least 3 mol of terbium/mol of protein; numerous low affinity terbium-binding sites were also noted. The three highest affinity sites were resolved into one very high affinity site (site A) and two other sites (sites B and C) with slightly lower affinity. Resonance energy transfer from tryptophan residues to terbium occurred only with site A. This site was filled before sites B and C. Competition experiments in which calcium was used to displace terbium bound to the protein showed that larger amounts of calcium were needed to displace terbium from site A than from sites B and C. Energy transfer from terbium to holmium indicated that the terbium-binding sites (B and C) were located close to each other (about 7-12 A) but were distant (greater than 12 A) from site A. The addition of EDTA to calcium-binding protein resulted in a 25% decrease in intrinsic protein fluorescence, suggesting a conformational change in the protein. The titration of EDTA-treated calcium-binding protein with calcium resulted in recovery of intrinsic protein fluorescence. A reversible calcium-dependent change in the ellipticity of calcium-binding protein in circular dichroism experiments was also seen. These observed properties suggest that vitamin D-dependent chick intestinal calcium-binding protein behaves in a manner similar to other well-known calcium-binding regulatory proteins.  相似文献   

11.
Glycoprotein (GP) IIb is the alpha subunit of platelet integrin GPIIb-IIIa. Analysis of the primary structure of this subunit has indicated the presence of four stretches of amino acid residues that are highly conserved among various integrin alpha subunits and that have been suggested to be putative calcium-binding sites. To verify the Ca(2+)-binding capacity of these conserved domains and their implication in integrin adhesive functions, a fragment corresponding to the amino acid sequence of GPIIb from positions 171 to 464 was expressed. The nucleotide sequence coding for this GPIIb domain was generated by polymerase chain reaction, cloned into the pTG1924 expression vector, and expressed in Escherichia coli strain TGE901. The recombinant protein was purified by gel exclusion chromatography and used in equilibrium dialysis experiments. The results demonstrate that the four binding sites can be occupied by Ca2+. Two classes of binding sites can be detected, including two sites with a Kd of 30 microns and two sites of lower affinity with a Kd of 120 microns. Interaction of Ca2+ with these two classes of sites was inhibited by a large excess of Mg2+ or Mn2+, suggesting that these cations are competitive for the same sites on GPIIb. Thus, the four Ca(2+)-binding sites of GPIIb are not similar and exhibit different affinities for divalent ions. To verify the functional implication of these Ca(2+)-binding sites, the effect of Ca2+ on the binding of fibrinogen to the recombinant protein was analyzed using a solid-phase assay. The results indicate that optimal fibrinogen binding occurs when the four calcium-binding sites are occupied and establish the functional importance of this Ca(2+)-binding domain in the ligand-binding activity of GPIIb.  相似文献   

12.
Adenosine binding sites on 108CC15 neuroblastoma × glioma hybrid cells and rat brain membranes were investigated using [3H]adenosine as labelled ligand. Both the hybrid cells and brain membranes were found to have a high affinity binding site, Kd 0.8 and 3 nM respectively. The same ligand was used to demonstrate two lower affinity binding sites on brain membranes, Kds 1.4 and 29.1 μM and a single low affinity site on the hybrid cells, Kd 2.6 μM. Structure activity studies of the low affinity binding site on hybrid cells showed this to be an ‘R’ adenosine receptor of the A2 subtype. It is concluded that [3H]adenosine can be used to demonstrate both high and low affinity binding sites and that 108CC15 hybrid cells provide a valuable system for studying adenosine receptors.  相似文献   

13.
Changes in the turbidity of suspensions of bovine rod outer segment fragments induced by rhodopsin bleaching were measured in the presence of various concentrations of divalent cations at acidic pH (4.7–5.4). Unlike the situation at neutral pH, the turbidity of the suspensions increased drastically by bleaching at acidic pH. It was found that the extent of turbidity change became maximum at a particular concentration of divalent cations (i.e., 5 mM CaCl2, 5 mM MgCl2, or 5 mM mixed divalent cations). However, the turbidity increment in the presence of 5 mM MgCl2 was greatly enhanced by the addition of a minute amount of CaCl2. These results evidently show that the membrane characteristic is abruptly changed by bleaching at acidic pH in particular. It is also suggested that there are two kinds of binding sites for Ca ions: one is a Ca2+ specific site, and the other is a nonspecific site to which Mg2+ can also bind.  相似文献   

14.
Summary The specific binding of [3H]corticosterone to hepatocytes is a nonsaturable, reversible and temperature-dependent process. The binding to liver purified plasma membrane fraction is also specific, reversible and temperature dependent but it is saturable. Two types of independent and equivalent binding sites have been determined from hepatocytes. One of them has high affinity and low binding capacity (K D=8.8nm andB max=1477 fmol/mg protein) and the other one has low affinity and high binding capacity (K D=91nm andB max=9015 fmol/mg). In plasma membrane only one type of binding site has been characterized (K D=11.2nm andB max=1982 fmol/mg). As it can be deduced from displacement data obtained in hepatocytes and plasma membrane the high affinity binding sites are different from the glucocorticoid, progesterone nuclear receptors and the Na+,K+-ATPase digitalis receptor. Probably it is of the same nature that the one determinate for [3H]cortisol and [3H]corticosterone in mouse liver plasma membrane. Beta-and alpha-adrenergic antagonists as propranolol and phentolamine did not affect [3H]corticosterone binding to hepatocytes and plasma membranes; therefore, these binding sites are independent of adrenergic receptors. The binding sites in hepatocytes and plasma membranes are not exclusive for corticosterone but other steroids are also bound with very different affinities.  相似文献   

15.
Several factors are known to regulate ligand binding to 5-hydroxytryptamine (5-HT) receptors. In the present experiments we have investigated the mechanism by which bicarbonate ion modify central 5-HT receptor sensitivity in rats. Mn2+ (10−6–10−3M) increased specific [3H]5-HT binding to 5-HT1 receptor sites (+60–70%), this effect being further enhanced by the addition of HCO3 (+300–400%), while the binding of [3H]spiperone binding to 5-HT2 receptor sites was not affected by Mn2+ and HCO3. The effect of other divalent cations, Mg2+, Cu2+, Ca2+ and Fe2+, however, were not enhanced by the addition of HCO3. Scatchard analysis indicated that the effect of bicarbonate ion was associated with increase in the number of high affinity binding sites and appearance of low affinity binding sites. This effect of bicarbonate ion was characterized by decreased dissociation rate of the specific binding, was temperature-dependent, reduced by N-ethylmaleimide and iodoacetamide, and was completely inhibited by ascorbate, dithiothreitol and 2-mercaptoethanol. The effect was not influenced by GTP or GppNHp but it was significantly inhibited by ATP. Pretreatment of membranes with Triton X-100 (0.1%) increased the effect of bicarbonate ion. From these results, it is suggested that bicarbonate ion specifically interacts with Mn2+ and selectively increases [3H]5-HT binding.  相似文献   

16.
Summary Time courses of phlorizin binding to the outside of membrane vesicles from porcine renal outer cortex and outer medulla were measured and the obtained families of binding curves were fitted to different binding models. To fit the experimental data a model with two binding sites was required. Optimal fits were obtained if a ratio of low and high affinity phlorizin binding sites of 1:1 was assumed. Na+ increased the affinity of both binding sites. By an inside-negative membrane potential the affinity of the high affinity binding site (measured in the presence of 3 mM Na+) and of the low affinity binding site (measured in the presence of 3 or 90 mM Na+) was increased. Optimal fits were obtained when the rate constants of dissociation were not changed by the membrane potential. In the presence of 90 mM Na+ on both membrane sides and with a clamped membrane potential,K D values of 0.4 and 7.9 M were calculated for the low and high affinity phlorizin binding sites which were observed in outer cortex and in outer medulla. Apparent low and high affinity transport sites were detected by measuring the substrate dependence ofd-glucose uptake in membrane vesicles from outer cortex and outer medulla which is stimulated by an initial gradient of 90 mM Na+(out>in). Low and high affinity transport could be fitted with identicalK m values in outer cortex and outer medulla. An inside-negative membrane potential decreased the apparentK m ofhigh affinity transport whereas the apparentK m of low affinity transport was not changed. The data show that in outer cortex and outer medulla of pighigh and low affinity Na+-d-glucose cotransporters are present which containlow and high affinity phlorizin binding sites, respectively. It has to be elucidated from future experiments whether equal amounts of low and high affinity transporters are expressed in both kidney regions or whether the low and high affinity transporter are parts of the same glucose transport moleculc.  相似文献   

17.
Since vitamin E deficiency is associated with increased susceptibility of erythrocytes to hemolysis, we investigated the presence of tocopherol binding sites in human red blood cells. Erythrocytes were found to have specific binding sites for d-α-[3H]tocopherol with properties of receptors. Kinetic studies of binding demonstrated two binding sites: one with high affinity (equilibrium association constant Ka = 2.6·107 M?1), low capacity (7600 sites/cell) and the second with low affinity (Ka = 1.24·106 M?1), high capacity (150000 sites/cell). These sites are at least partly protein in nature.  相似文献   

18.
Summary Inside out and right side out vesicles were used to study the sidedness of Ca binding to the human red cell membrane. It was shown that these vesicles exhibited only a limited permeability to Ca, enabling the independent characterization of Ca binding to the extracellular and cytoplasmic membrane surfaces. Ca binding was studied in 10 mM Tris HCl at pH 7.4, 22±2°C and was shown to be complete in under 5 min. Scatchard plots were made from Ca binding data obtained at free Ca concentrations in the range of 10–6 to 10–3M. Under these conditions inside out vesicles exhibit two independent binding sites for Ca with association constants of 1×105 and 6×103 M–1, and right side out vesicles exhibit three independent binding sites with association constants of 2×105, 1.4×104 and 3×102M–1. Upon the addition of 0.1M KCl a third, high affinity site was found on inside out vesicles with an association constant of 3×105, (in 0.1 M KCl). Ca binding to inside out vesicles increased nearly linearly with pH in the, range of pH 4 to pH 11, while binding to right side out vesicles remained practically unchanged in the range of pH 7 to pH 9. Progressive increase of the ionic strength of the medium by the addition of K, Mg or Tris decreased Ca binding to inside out vesicles as did the addition of ATP. Comparison of a series of cation competitors for Ca binding sites on inside out vesicles at 0.003 mM Ca showed that La was the most effective competitor of all while Cd was the most effective divalent cation competitor of those tested. Our findings suggest that the effects of low concentrations of Ca at the inner surface of the red cell membrane are mediated primarily through Ca binding to site 1 (and, possibly site 2) of inside out vesicles of which there are approximately 1.6×105 per equivalent cell.  相似文献   

19.
Summary Over the past few years calcium has emerged as an important bioregulator. Upon external stimulation, the cell generates a transient Ca2+ increase, which is transformed into a cellular event through a molecular cascade. The first step in this cascade is the binding of calcium to proteins present in the cytosol. These proteins capable of binding Ca2+ under physiological conditions all belong to the same evolutionary family that evolved from a common ancestor. However, they strongly differ in the properties of their calcium binding sites. Calmodulin, the ubiquitous calcium binding protein present in all eukaryotic cells, is very close to the ancestor protein, presents four calcium binding sites which bind calcium, magnesium and monovalent ions competitively and is involved in the triggering of cellular processes. Parvalbumin, another member of the family, is more specialized and found mostly in fast-twitch skeletal muscle. It binds calcium and magnesium with high affinity and seems to be involved in muscle relaxation. On the other hand, troponin C which confers Ca2+ sensitivity to acto-myosin interaction exhibits both triggering and relaxing sites. The study of intracellular Ca2– binding proteins has shown that calcium binding proteins have evolved from a simple common structure to fulfill different functions.Abbreviations CaBP calcium-binding protein - ICaBP the vitamin D-dependent intestinal Cat+binding protein - S-100 the glial S-100 protein - RLC the phosphorylatable myosin regulatory light chain - CaM calmodulin - Pa parvalbumin - TnC troponin C - TnI troponin I - Hepes N-2-hydroxyethylpipezarine, N-2-ethane-sulfonic acid - W7 N-(6-Aminohexyl)-5-chloro-l-Naphtalene sulfonamide - SDS sodium dodecyl sulfate - NMR nuclear magnetic resonance  相似文献   

20.
The antogonist [3H]-mepyramine is used to label histamine H1-receptors in guinea pig lung. Scatchard analysis reveals two classes of binding sites. Monovalent cations decrease steady-state binding (Na+ > Li+ > K+), while divalent cations (Mg++, Ca++, Mn++, Ba++) exhibit a biphasic curve, increasing binding at low concentrations and decreasing it at higher levels. Na+ decreases both affinity and number of binding sites. Dissociation curve shows two components, and Na+ accelerates the rate of dissociation of the slower component. GTP does not affect the binding of the antagonist 3H-Mepyramine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号