首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disruptive effects of calcium upon neurofilaments and glial filaments were studied in white matter of rat optic nerve and spinal cord and in rat peripheral nerve. Filament ultrastructure and tissue protein composition were compared following a calcium influx into excised tissues. A calcium influx was induced by freeze-thawing tissues in media containing calcium (5 mM) while control tissues were freeze-thawed in the presence of EGTA (5 mM). Experimental and control tissues were either fixed by immersion in glutaraldehyde and processed for electron microscopic examination or homogenized in a solubilizing buffer and analyzed for protein content by SDS-polyacrylamide gel electrophoresis. Morphological studies showed that calcium influxes led to the loss of neurofilaments and glial filaments and to their replacement by an amorphous granular material. These morphological changes were accompanied by the loss of neurofilament triplet proteins and glial fibrillary acidic (GFA) protein from whole-tissue homogenates. In addition, a calcium-sensitive 58,000-mol-wt protein was identified in rat optic and peripheral nerve. The findings indicate the widespread occurrence of neurofilament proteolysis following calcium influxes into CNS and PNS tissues. The parallel breakdown of glial filaments and loss of GFA protein subunits suggest the presence of additional calcium-activated proteases(s) in astroglial cells.  相似文献   

2.
Calcium-dependent protease activity capable of degrading a number of endogenous proteins was found in rat red blood cell membranes. This protease activity, like that found in human red blood cells, was activated by low concentrations of calcium, but in the rat red blood cells, unlike the human red blood cells, calcium-activated protease activity was membrane-bound. A number of endogenous membrane-bound proteins were degraded after the addition of calcium to the membranes. These included spectrin bands 1 and 2 as well as bands 3, 2.1, and 2.2. No calcium-induced aggregation (transglutaminase activity) was noted in the rat red blood cell membranes.  相似文献   

3.
The degradation of neurofilament (NF) proteins was examined by immunoblot methods to identify, characterize, and monitor the appearance of immunoreactive breakdown products during the loss of NF triplet proteins. Individual NF proteins and their breakdown products were identified using polyclonal and monoclonal antibodies to NF proteins. NF degradation was compared during calcium-activated proteolysis of isolated rat NF, during an experimental influx of calcium into excised rat spinal nerve roots, and during NF breakdown in transected rat peripheral nerve. These different experimental conditions produced similar patterns of NF fragmentation, including the transient appearance of NF immunobands between Mr 150,000-200,000 and 110,000-120,000 as well as the appearance and accumulation of NF immunobands between Mr 45,000 and 65,000. Most immunoreactive NF fragments remained Triton-insoluble. Low levels of the same immunoreactive fragments were present in control neural tissues, suggesting that calcium-activated proteolysis may be operative in the turnover and/or processing of NF proteins in vivo. Very similar patterns of NF degradation during experimental calcium influxes into different CNS and PNS tissues are indicative of the widespread distribution of calcium-activated NF protease in neural tissues.  相似文献   

4.
Segments of rat peripheral nerve were excised and incubated in vitro under conditions which hasten or retard the penetration of calcium into tissues. The nerve segments were then homogenized in 1%SDS, 8 M-urea and 50mM-dithioerythritol and the extracted proteins were analyzed by SDS polyacrylamide disc gel electrophoresis. Representative samples were also fixed and processed for electron microscopic examinations. Incubational conditions which favored the penetration of calcium into the tissues caused widespread granular disruption of neurofilaments as well as the selective loss of 200,000, 150,000 and 69,000 MW proteins from the nerve segments. These structural and chemical changes occurred in the 24-48 h interval during incubation at 37oC under nutrient conditions, but were accelerated under energy-deprived conditions and with high-calcium media. The same changes occurred in nerve segments incubated for 2h in media containing calcium with Triton X-100 detergent or A23187 ionophore and in nerve segments freeze-thawed in 0.5 mM-calcium. These changes did not occur after parallel incubations in calcium-free media. These findings support the view that 200,000, 150,000 and 69,000 MW proteins are components of neurofilaments and that they are susceptible to a calcium-induced disruption.  相似文献   

5.
We have examined the proteolytic breakdown of neurofilament proteins (NFPs) in isolated Mauthner axoplasm (M-axoplasm). Documentation of proteolytic breakdown of NFPs in M-axoplasm is important because NFPs are not degraded in distal segments of severed Mauthner axons (M-axons) maintained in vivo for up to 62 days at 20°C. By incubating M-axoplasm with 2 mM calcium in vitro, we have demonstrated that M-axoplasm contains an endogenous calcium-activated neutral protease that degrades NFPs. This calcium-activated proteolysis of M-axoplasm NFPs produced novel bands on silver-stained gels. These novel bands were presumed to be NFP breakdown products because they reacted with antibodies to the α-intermediate filament antigen (anti-IFA) on immunoblots from these gels. Incubations of M-axoplasm with 2 mM calcium plus exogenous calpain produced novel bands similar to those observed for M-axoplasm incubated with 2 mM calcium. Incubations of M-axoplasm with 2m M calcium plus calpain inhibitors did not produce these novel bands. These in vitro data indicate that M-axoplasm contains calpain that degrades NFPs and produces novel bands similar to those observed from distal segments of severed M-axons maintained in vivo longer than 62 days postseverance. Factors that affect the activity of calpain or affect the ability of calpain to degrade NFPs could account for the delayed degradation of NFPs in distal segments of severed M-axons maintained in vivo. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Multiple forms of Ca-activated protease from rat brain and muscle   总被引:4,自引:0,他引:4  
Three Ca-dependent proteases have been identified in rat brain and skeletal muscle using ion exchange, gel filtration, and substrate affinity chromatography. A high degree of homology exists among three enzymes from different sources. Both the high molecular weight protease (154,000) and lower molecular weight protease (96,000) show high affinity for calcium while the third protease (76,000) had low affinity for calcium. Transformation among the three enzymes was calcium-induced and the process was unidirectional, generating a lower molecular weight form with decreased affinity for calcium. The protease with low affinity for calcium was susceptible to calcium-induced inactivation by autocatalysis. Immunologically the three proteases were equivalent, if not identical, and the brain and muscle proteases cross-react. All three proteases degraded neurofilament proteins; however, the protease with low affinity for calcium had 3 to 6 times higher specific activity. It is suggested that the high molecular weight enzyme (154,000) may be the native form of the Ca-dependent protease present in vivo.  相似文献   

7.
The sequence of changes occurring in transected rat sciatic nerve was examined by electron microscopy and by sodium dodecyl sulfate (SDS) polyacrylamide disc gel electrophoresis. Representative segments of transected nerves were processed for ultrastructural examinations between 0 and 34 days after the transection of sciatic nerves immediately below the sacro-sciatic notch. The remainder of the transected nerves and the intact portions of sciatic nerves were desheathed and immediately homogenized in 1 percent SDS containing 8 M urea and 50 mM dithioerythritol. Solubilized proteins were analyzed on 12 percent gels at pH 8.3 in a discontinuous electrophoretic system. Initial changes were limited to the axons of transected nerve fibers and were characterized by the loss of microtubules and neurofilaments and their replacement by an amorphous floccular material. These changes became widespread between 24 and 48 h after transection. The disruption of neurofilaments during this interval occurred in parallel with a selective loss of 69,000, 150,000 and 200,000 mol wt proteins from nerve homogenates, thus corroborating the view that these proteins represent component subunits of mammalian neurofilaments. Furthermore, the selective changes of neurofilament proteins in transected nerves indicate their inherent lability and suggest their susceptibility to calcium-mediated alterations. Electrophoretic profiles of nerve proteins during the 4-34-day interval after nerve transection reflected the breakdown and removal of myelin, the proliferation of Schwann cells and the deposition of endoneurial collagen. A marked increase of intermediate-sized filaments within proliferating Schwann cell processes was not accompanied by the appearance of neurofilamentlike proteins in gels of nerve homogenates.  相似文献   

8.
Rat sciatic nerve segments were incubated in five different media. Disappearance of neurofilament (NF) triplet proteins (200K, 160K, and 68K MW) occurred in medium containing Ca2+ and was inhibited by the addition of E-64-c or leupeptin. Therefore, the presence in the peripheral nerve of an enzyme whose properties are similar to those of Ca2+-activated neutral protease (CANP) is suggested. The extraction of crude CANP from rat sciatic nerve was performed. CANP activity was completely recovered (0.129 ± 0.008 U/g) in the precipitate salted out by the addition of 0 to 50% saturated ammonium sulfate to the soluble fraction of the peripheral nerve (crude CANP). Properties of the crude CANP were examined using NF as a substrate and were found to be similar to those of the CANP extracted from skeletal muscle. Identification of the crude CANP with the CANP extracted from rat skeletal muscle was performed using the immunoreplica method. Bands corresponding to 73K were detected in both CANPs.  相似文献   

9.
Calcium-induced cleavage and breakdown of spectrin in the rat lens   总被引:3,自引:0,他引:3  
Incubation of intact rat lenses under conditions that stimulated a net influx of calcium resulted in a pronounced loss of transparency and a major decrease in the levels of spectrin. The progressive loss of this cytoskeletal component coincided with the appearance of polypeptides of approximately 150 kDa which showed immunoreactivity with an antibody raised to spectrin. These bands disappeared on further incubation. It is, therefore, suggested that a calcium-activated protease is present in the lens which is capable of degrading spectrin by the initial removal of approximately 90 kDa fragments. This process calcium-induced proteolysis may be the basis for the cytoskeletal reorganisation observed during the differentiation of lens fibre cells and may be involved in cataract development.  相似文献   

10.
The membrane bound phosphoprotein B-50 (MW 48K) was isolated from rat brain tissue. The fraction containing the highest endogenous B-50 phosphorylating activity (ASP 57–82%) contains protease activity. In the absence of calcium a time-dependent decrease of the protein B-50 is observed. Under these conditions another phosphoprotein B-60 (MW 46K) appears in the incubation medium. Addition of calcium and/or calmodulin enhances the protease activity whereas the substrate specificity is lost. Results of both isoelectric focussing and peptide mapping indicate that B-50 and B-60 are related proteins. These data support our hypothesis that the recently isolated behaviorally active peptide PIP (MW approx. 1600 D) is the smaller cleavage product of the proteolytic degradation of B-50 to B-60.  相似文献   

11.
A Ca2+ activated protease(s) capable of hydrolyzing several polypeptides at neutral pH including cytoskeletal proteins, actin, myosin, tubulin and neurofilament triplet was identified in calf brain cortex. The enzyme activity precipitates at 75 mM KCl, pH 6.5 – 7.0 and is inhibited by the sulfhydryl inhibitors, N-ethylmaleimide and para-chloromercuribenzoate and the protease inhibitors, antipain, pepstatin and leupeptin, leupeptin being the most effective.  相似文献   

12.
Initiation of germination of heat-activated Streptomyces viridochromogenes spore occurs in media containing only calcium ions and organic buffer. The calcium-induced initiation of germination was accompanied by a decrease in absorbance of the spore suspension, an increased rate of endogenous metabolism, the loss of spore carbon, and the loss of heat resistance. Calcium amounts to 0.28% of the dry weight of freshly harvested spores. The amount of calcium remained the same after incubation of spores in water after heat activation. The spore content of calcium doubled after incubation in 0.5 mM CaCl2 for 5 min at 4 degrees C and during calcium-induced germination. Nearly all of the calcim appears to be bound to sites external to the spore membrane, since the chelating agents (ethylenedinitrilo) tetraacetic acid and arsenazo III removed virtually all of the calcium ions. The calcium ions must be present during the entire initiation of germination period. Germination ceases after an (ethylenedinitrilo) tetraacetic acid wash and begins again immediately after addition of calcium ions.  相似文献   

13.
Calcium modulation of keratinocyte growth in culture was studied by both transmission (TEM) and scanning electron microscopy (SEM). Under standard culture conditions (1.2-1.8 mM calcium), cells were connected by desmosomes and stratified to 4-6 cell layers. Many aspects of in vitro epidermal maturation were analogous to the in vivo process, with formation of keratohyalin granules, loss of nuclei, formation of cornified envelopes and shedding of cornified cells containing keratin filaments. When the medium calcium concentration was lowered to 0.02-0.1 mM, the pattern of keratinocyte growth was strikingly changed. Cells grew as a monolayer with no desmosomal connections and proliferated rapidly, shedding largely non-cornified cells into the medium. Large bundles of keratin filaments were concentrated in the perinuclear cytoplasm. The elevation of extracellular calcium to 1.2 mM induced low calcium keratinocytes to stratify, keratinize and cornify in a manner analogous to that seen when plated in standard calcium medium. The earliest calcium-induced ultrastructural change was the asymmetric formation of desmosomes between adjacent cells. Desmosomal plaques with associated tonofilaments were observed 5 min after calcium addition; symmetric desmosomes were formed within 1-2 h. This system is presented as a useful model for the study of the regulation of desmosome assembly and disassembly.  相似文献   

14.
We studied the effects of aluminum salts on the degradation of human neurofilament subunits (NF-H, NF-M, and NF-L, the high, middle, and low molecular weight subunits, respectively) and other cytoskeletal proteins using calcium-activated neutral proteinase (calpain) purified from human brain. Calpain-mediated proteolysis of NF-L, tubulin, and glial fibrillary acidic protein (GFAP), three substrates that displayed constant digestion rates in vitro, was inhibited by AlCl3 (IC50 = 200 microM) and by aluminum lactate (IC50 = 400 microM). Aluminum salts inhibited proteolysis principally by affecting the substrates directly. After exposure to 400 microM aluminum lactate and removal of unbound aluminum, human cytoskeletal proteins were degraded two- to threefold more slowly by calpain. When cytoskeleton preparations were exposed to aluminum salt concentrations of 100 microM or higher, proportions of NF-M and NF-H formed urea-insoluble complexes of high apparent molecular mass, which were also resistant to proteolysis by calpain. Complexes of tubulin and of GFAP were not observed under the same conditions. Aluminum salts irreversibly inactivated calpain but only at high aluminum concentrations (IC50 = 1.2 and 2.1 mM for aluminum lactate and AlCl3, respectively), although longer exposure to the ion reduced by twofold the levels required for protease inhibition. These interactions of aluminum with neurofilament proteins and the effects on proteolysis suggest possible mechanisms for the impaired axoplasmic transport of neurofilaments and their accumulation in neuronal perikarya after aluminum administration in vivo.  相似文献   

15.
Contraction of skeletal muscle is triggered by release of calcium from the sarcoplasmic reticulum. In this study, highly purified normal and dystrophic mouse sarcoplasmic reticulum vesicles were compared with respect to calcium release characteristics. Sarcoplasmic reticulum vesicles were actively loaded with calcium in the presence of an ATP-regenerating system. Calcium fluxes were followed by dual wavelength spectrophotometry using the metallochromic indicators antipyrylazo III and arsenazo III, and by isotopic techniques. Calcium release from sarcoplasmic reticulum vesicles was elicited by (a) changing the free calcium concentration of the assay medium (calcium-induced calcium release); (b) addition of a permeant anion to the assay medium, following calcium loading in the presence of a relatively impermeant anion (depolarization-induced calcium release); (c) addition of the lipophilic anion tetraphenylboron (TPB?) to the assay medium and (d) using specific experimental conditions, i.e. high phosphate levels and low magnesium (spontaneous calcium release). Drugs known to influence Ca2+ release were shown to differentially affect the various types of calcium release. Caffeine (10 mM) was found to enhance calcium-induced calcium release from isolated sarcoplasmic reticulum. Ruthenium red (20 μM) inhibited both calcium-induced calcium release and tetraphenylboron-induced calcium release, and partially inhibited spontaneous calcium release and depolarization-induced calcium release. Local anesthetics inhibited spontaneous calcium release in a time-dependent manner, and inhibited calcium-induced calcium release instantaneously, but did not inhibit depolarization-induced calcium release. Use of pharmacological agents indicates that several types of calcium release operate in vitro. No significant differences were found between normal and dystrophic sarcoplasmic reticulum in calcium release kinetics or drug sensitivities.  相似文献   

16.
The distribution of intermediate filament proteins in optic nerve and spinal cord from rat, hamster, goldfish, frog, and newt were analyzed by two-dimensional gel electrophoresis. General as well as specific monoclonal and polyclonal antibodies were reacted against putative intermediate filament proteins. In vitro incubations of excised optic nerve in the presence of [35S]methionine distinguished between neuronal and nonneuronal intermediate filament proteins. The proteins of the intermediate filament complex in the two tissues for rat and hamster were similar. The typical neurofilament triplet and glial fibrillary acidic protein (GFAP) were observed. Vimentin was more concentrated in the optic nerve than in the spinal cord. The goldfish, newt, and frog contained neurofilament proteins in the 145-150K range and in the 70-85K range. In addition, predominant neurofilament proteins in the 58-62K molecular-weight range were found in all three species. In contrast to mammalian species, the goldfish, newt, and frog displayed extensive heterogeneity between optic nerve and spinal cord in the expression of both neuronal and nonneuronal intermediate filament proteins. The distinctive presence of low-molecular-weight intermediate filament proteins and their high concentration in the optic nerve and spinal cord of these nonmammalian vertebrates is discussed in terms of neuronal development and regeneration.  相似文献   

17.
Calcium level in organelles of the slime mold Physarum polycephalum was monitored by chlortetracycline, a low-affinity calcium indicator. It was found that 2,5'-di(tertbutyl)-1,4,-benzohydroquinone (BHQ) at a concentration of 100 microM, but not the highly specific inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), thapsigargin (1-10 microM), elicited calcium release from the CTC-stained intracellular calcium pool. Ionomycin also caused a calcium release (23.7+/-5.1%), which was less than that induced by BHQ (30.1+/-6.0%). Procaine (10 mM), a blocker of ryanodine receptor, completely abolished the responses to BHQ and ionomycin. Another blocker, ryanodine (100 microM), only slightly diminished the responses to ionomycin and BHQ. Apparently, BHQ and ionomycin acting as a Ca2+-ATPase inhibitor and an ionophore, respectively, elicit an increase in [Ca2+]i, which in turn triggers a calcium-induced calcium release (CICR) via the ryanodine receptor. Caffeine, an activator of ryanodine receptor, at a concentration of 25-50 mM produced a Ca2+-release (5.6-16.0%), which was not similar in magnitude to CICR. The response to 25 mM caffeine was only moderately inhibited by 25 mM procaine, and almost completely abolished by 50 mM procaine and 100 microM ryanodine.  相似文献   

18.
A group of proteins in the goldfish optic nerve with a molecular weight of 58K daltons was analyzed by two-dimensional gel electrophoresis. Results show that the proteins are differentially phosphorylated and found exclusively in a cytoskeletal-enriched fraction. The proteins from this fraction can be reconstituted into typical intermediate filament structures, as shown by electron microscopy. Two components which are of neuronal origin are transported within the slow phase of transport. The 58K proteins are the most abundant proteins in the optic nerve, and they are distinct from actin and tubulin. It was concluded that they are intermediate filament proteins. Cytoskeletal preparations of rat spinal cord, rat optic nerve, and goldfish optic nerve were compared by one-dimensional gel electrophoresis. The rat spinal cord contains glial fibrillary acidic protein (GFAP), and the rat optic nerve contains vimentin and GFAP, in addition to the neurofilament triplet. A typical mammalian neurofilament triplet is not detected in the goldfish optic nerve, while the major cytoskeletal constituent is a 58K band which coelectrophoreses with vimentin in the rat optic nerve by one-dimensional gel electrophoresis.  相似文献   

19.
Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE) or remained in a standard environment (SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein immunoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway.  相似文献   

20.
The phosphorylation and proteolysis of squid neurofilament proteins by endogenous kinase and calcium-activated protease activities, respectively, were studied. When axoplasm was incubated in the presence of [gamma-32P]ATP, most of the phosphate was incorporated into two neurofilament proteins: a 220-kilodalton (NF-220) and a high-molecular-weight (HMW) protein. When this phosphorylated axoplasm was subjected to endogenous calcium-activated proteolysis, two significant phosphorylated fragments were generated, i.e., a soluble 110K fragment and a pelletable 100K fragment. Immunochemical and other analyses suggest that the pelletable 100K fragment contains the common helical neurofilament rod region and that the soluble 110K protein is the putative side arm of the NF-220. In contrast, neither the HMW or the NF-220 was detected in the region of the stellate ganglion which contains the cell bodies of the giant axon. However, this region did contain a number of proteins that were sensitive to calcium-activated proteolysis and reacted with a monoclonal intermediate filament antibody. This intermediate filament antibody reacts with most of the axoplasmic proteins that copurify with neurofilaments, i.e., in the order of their intermediate filament antibody staining intensity, a 60K, 65K, 220K, and 74K protein. In the cell body preparation, the intermediate filament antibody labeled, in order of their staining intensity, a 65K, 60K, 74K, and 180K protein. In both the axoplasmic and cell body preparations, endogenous calcium-activated proteolysis generated characteristic fragments that could be labeled with the anti-intermediate filament antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号