首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Maackia amurensis leukoagglutinin has been shown to react specifically with the Neu5Ac (alpha 2,3) Gal sequence of asparagine-linked complex type oligosaccharides. We report here the preparation of Maackia amurensis lectin-gold complexes and their application for light and electron microscopic detection of the Neu5 Ac (alpha 2,3) Gal sequence in various tissues. The use of the lectin directly gold labeled was superior to a two-step cytochemical affinity technique using a fetuin-gold complex. The Maackia amurensis lectin-gold staining was inhibited by pre-incubation of the lectin-gold complexes with 50 mM alpha 2,3 sialyllactose, whereas alpha 2,6 sialyllactose up to concentrations of 1 M had no effect, thus demonstrating the high specificity of the histochemical staining. In addition to N-glycanase-sensitive asparagine-linked oligosaccharides, beta-elimination-sensitive serine/threonine-linked oligosaccharides could be detected. Data are presented which show that cellular staining patterns obtained with Maackia amurensis lectin-gold complexes may differ from those with elderberry bark lectin-gold, which detects the Neu5 Ac (alpha 2,6) Gal/GalN Ac sequence. Electron microscopic double labeling for direct study of the differential distribution of the Neu5 Ac (alpha 2,3) Gal and Neu5 Ac (alpha 2,6) Gal sequences is reported. Therefore, the availability of two sialic acid binding lectins with different linkage specificity for histochemistry provides the first opportunity to study tissue and cell type expression of these terminal sequences of glycoproteins.  相似文献   

2.
In this report we have compared the lectin-like properties of Pertussis toxin with two plant lectins which are known to possess different specificities towards terminal Neu5Ac Gal linkages on glycoconjugates. The hemagglutinin from elderberry bark (Sambucus nigra) has a binding specificity for terminal Neu5Ac alpha (2-6) Gal sequences and was found to bind a series of glycoconjugates with a similar specificity as Pertussis toxin. The binding specificity of Pertussis toxin was different from that of the leukoagglutinin from the seeds of Maackia amurensis which preferentially binds terminal Neu5Ac alpha (2-3) Gal sequences. These observations confirm the specificity of Pertussis toxin for Neu5Ac alpha (2-6) Gal glycoconjugate sequences.  相似文献   

3.
A new plant lectin from elderberry (Sambucus nigra L.) bark, which was shown by immunochemical techniques to bind specifically to terminal Neu5Ac(alpha 2-6)Gal/GalNAc residues of glycoconjugates, was immobilized onto Sepharose 4B (SNA-Sepharose) and its carbohydrate binding properties was determined using a series of standard compounds. Oligosaccharides, glycopeptides, or glycoproteins containing terminal Neu5Ac(alpha 2-6)Gal/GalNAc sequences bound to SNA-Sepharose and were eluted with 50-100 mM lactose, whereas those with Neu5Ac(alpha 2-3)Gal/GalNAc failed to bind to this column. Furthermore, the SNA-Sepharose column was capable of resolving two oligosaccharides/glycopeptides based on the number of Neu5Ac(alpha 2-6)Gal units present in each molecule. Application of this technique to two glycoproteins, fetuin and orosomucoid, revealed the presence of microheterogeneity. It was also shown that esterification of the carboxyl group of Neu5Ac units, or branching at the O-3 of the subterminal GalNAc (probably also Gal) destroyed the binding ability of the molecule.  相似文献   

4.
The sialic acid-specific leukoagglutinating lectin from the seeds of Maackia amurensis (MAL) has been studied by the techniques of quantitative precipitin formation, hapten inhibition of precipitation, hapten inhibition using an enzyme-linked immunosorbent assay, and lectin affinity chromatography. The ability of the immobilized lectin to fractionate oligosaccharides based on their content of sialic acid has also been investigated. Our results indicate that MAL reacts with greatest affinity with the trisaccharide sequence Neu5Ac/Gc alpha 2,3Gal beta 1,4GlcNAc/Glc. The lectin requires three intact sugar units for binding and does not interact when the beta 1,4-linkage is replaced by a beta 1,3-linkage nor when the "reducing sugar" of the trisaccharide is reduced. Results from enzyme-linked immunosorbent assays show that an N-acetyllactosamine repeating sequence is not required; however, the N-acetyllactosamine repeating sequence does appear to enhance the binding of MAL to a series of glycolipids. In addition, the sialic acid may be substituted with either N-acetyl or N-glycolyl groups without reduction in binding. The C-8 and C-9 hydroxyl groups of sialic acid do not play a role in binding as shown by the strong reaction of periodate-treated glycoproteins. Comparison of the specificity of the three sialic acid-binding lectins indicates that Limax flavus agglutinin binds to Neu5Ac in any linkage and in any position in a glycoconjugate, Sambucus nigra lectin requires a disaccharide of the structure Neu5Ac alpha 2,6Gal/GalNAc, and MAL has a binding site complimentary to the trisaccharide Neu5Ac alpha 2,3Gal beta 1,4GlcNAc/Glc, to which sialic acid contributes less to the total binding affinity than for either S. nigra lectin or L. flavus agglutinin.  相似文献   

5.
Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7??) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.  相似文献   

6.
Carbohydrate binding properties of a new plant lectin isolated from elderberry (Sambucus nigra L.) (SNA) bark were studied using the techniques of quantitative precipitation, hapten inhibition, and equilibrium dialysis. Purified SNA precipitates highly sialylated glycoproteins such as fetuin, orosomucoid, and ovine submaxillary mucin, but not their asialo derivatives. Hapten inhibition experiments showed that both D-Gal and D-GalNAc are weak inhibitors of SNA-glycophorin precipitation, but neither New5Ac nor Neu5Gc is an inhibitor. A series of oligosaccharides which contain the terminal Neu5Ac(alpha 2-6)Gal sequence showed an extremely high inhibitory potency (1,600-10,000 times more inhibitory than Gal). On the other hand, oligosaccharides with the Neu5Ac(alpha 2-3)Gal linkage were only 30-80 times more inhibitory than Gal, thus showing a marked preference for the 2,6-linked isomer. Hapten inhibition with Gal and its epimers suggested that the equatorial OH at C-3 and the axial OH at C-4 of the D-pyranose ring are strict requirements for binding. Conversion of the Neu5Ac residue to its 7-carbon analogue by selective periodate oxidation of its glyceryl side chain, followed by NaBH4 reduction, completely destroyed the ability of fetuin and orosomucoid to precipitate with SNA. Moreover, the same treatment of Neu5Ac(alpha 2-3)lactitol also abolished its ability to inhibit the precipitation reaction, suggesting that the glyceryl side chain of NBu5Ac (especially the C-8 and/or C-9 portion) is an important determinant for SNA. The increased inhibitory potency of various glycosides with beta-linked nonpolar aglycons suggested the presence of a hydrophibic interacting region adjacent to the carbohydrate binding site. The results of equilibrium dialysis using [3H] Neu5Ac(alpha 2-6)lactitol as ligand showed the presence of two equivalent, noninteracting carbohydrate binding sites in this tetrameric glycoprotein lectin (Ka = 3.9 X 10(5) M-1).  相似文献   

7.
K Yamashita  K Umetsu  T Suzuki  T Ohkura 《Biochemistry》1992,31(46):11647-11650
Two lectins were purified from tuberous roots of Trichosanthes japonica. The major lectin, which was named TJA-II, interacted with Fuc alpha 1-->2Gal beta/GalNAc beta 1-->groups, and the other one, which passed through a porcine stomach mucin-Sepharose 4B column, was purified by sequential chromatography on a human alpha 1-antitrypsin-Sepharose 4B column and named TJA-I. The molecular mass of TJA-I was determined to be 70 kDa by sodium dodecyl sulfate gel electrophoresis. TJA-I is a heterodimer of 38-kDa (36-kDa) and 32-kDa (30-kDa) subunits with disulfide linkage(s), and the difference between 38 and 36 kDa, and between 32 and 30 kDa, is due to secondary degradation of the carboxyl-terminal side. It was determined by equilibrium dialysis that TJA-I has four equal binding sites per molecule, and the association constant toward tritium-labeled Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4GlcOT is Ka = 8.0 x 10(5) M-1. The precise carbohydrate binding specificity was studied using hemagglutinating inhibition assay and immobilized TJA-I. A series of oligosaccharides possessing a Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc or HSO3(-)-->6Gal beta 1-->4GlcNAc group showed tremendously stronger binding ability than oligosaccharides with a Gal beta 1-->4GlcNAc group, indicating that TJA-I basically recognizes an N-acetyllactosamine residue and that the binding strength increases on substitution of the beta-galactosyl residue at the C-6 position with a sialic acid or sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Seko A  Ohkura T  Ideo H  Yamashita K 《Glycobiology》2012,22(2):181-195
Human serum Krebs von den Lugen-6 (KL-6) antigen is a MUC1 glycoprotein (KL-6/MUC1) recognized by anti-KL-6 monoclonal antibody (KL-6/mAb) and has been utilized as a diagnostic marker for interstitial pneumonia. KL-6/mAb is thought to recognize the specific glycopeptides sequence of MUC1, but the precise glycan structure of the epitope is unclear. In this study, we determined the carbohydrate structures of KL-6/MUC1 to search the carbohydrate epitopes for KL-6/mAb. KL-6/MUC1 was purified from the culture medium of human breast cancer YMB-S cells by KL-6/mAb-affinity chromatography; the O-linked glycan structures were determined in combination with paper electrophoresis, several lectin column chromatographies, sialidase digestion and methanolysis. KL-6/MUC1 contained core 1 and extended core 1 glycans modified with one or two sialic acid/sulfate residues. Based on these structures, several synthetic glycans binding to anti-KL-6/mAb were compared with one another by surface plasmon resonance. Sequentially, related radiolabeled oligosaccharides were enzymatically synthesized and analyzed for binding to a KL-6/mAb-conjugated affinity column. 3'-sialylated, 6'-sulfated LNnT [Neu5Acα2-3(SO(3)(-)-6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc], 3'-sialylated, 6-sulfated core 1 [Neu5Acα2-3Galβ1-3(SO(3)(-)-6)GalNAc] and disulfated core 1 SO(3)(-)-3Galβ1-3(SO(3)(-)-6)GalNAc exhibited substantial affinity for KL-6/mAb, and 3'-sulfated core 1 derivatives [SO(3)(-)-3Galβ1-3(±Neu5Acα2-6)GalNAc] and 3'-sialylated core 1 weakly interacted with KL-6/mAb. These results indicated that the possible carbohydrate epitopes of KL-6/mAb involve not only 3'-sialylated core 1 but also novel core 1 and extended core 1 with sulfate and sialic acid residues. Epitope expressing changes with suppression or over-expression of the Gal6ST (Gal 6-O-sulfotransferase) gene, suggesting that Gal6ST is involved in the biosynthesis of the unique epitopes of KL-6/mAb.  相似文献   

9.
The oligosaccharides present in the milk of an African elephant (Loxodonta africana africana), collected 4 days post partum, were separated by size exclusion-, anion exchange- and high-performance liquid chromatography (HPLC) before characterisation by (1)H NMR spectroscopy. Neutral and acidic oligosaccharides were identified. Neutral oligosaccharides characterised were isoglobotriose, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and a novel oligosaccharide that has not been reported in the milk or colostrum of any other mammal: Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. Acidic oligosaccharides that are also found in the milk of Asian elephant were Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc, while Neu5Gc(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc have not been found in Asian elephant milk. The oligosaccharides characterised contained both alpha(2-3)- and alpha(2-6)-linked Neu5Ac residues. They also contain only the type II chain, as found in most non-human, eutherian mammals.  相似文献   

10.
Glycophorin A (GPA), the major sialoglycoprotein of the human erythrocyte membrane, was isolated from erythrocytes of healthy individuals of blood groups A, B and O using phenol-water extraction of erythrocyte membranes. Interaction of individual GPA samples with three lectins (Psathyrella velutina lectin, PVL; Triticum vulgaris lectin, WGA and Sambucus nigra I agglutinin SNA-I) was analyzed using a BIAcore biosensor equipped with a surface plasmon resonance (SPR) detector. The experiments showed no substantial differences in the interaction between native and desialylated GPA samples originating from erythrocytes of either blood group and each of the lectins. Desialylated samples reacted weaker than the native ones with all three lectins. PVL reacted about 50-fold more strongly than WGA which, similar to PVL, recognizes GlcNAc and Neu5Ac residues. SNA-I lectin, recognizing alpha2-6 linked Neu5Ac residues, showed relatively weak reaction with native and only residual reaction with desialylated GPA samples. The data obtained show that SPR is a valuable method to determine interaction of glycoproteins with lectins, which potentially can be used to detect differences in the carbohydrate moiety of individual glycoprotein samples.  相似文献   

11.
A mouse monoclonal IgM antibody, directed against human blood group B determinant, was isolated from hybridoma culture growth medium. Chemical analysis indicated presence of N- and O-linked oligosaccharides. The N- and O-linked carbohydrate chains were liberated using two different conditions of reductive alkaline degradation. Structural analysis was carried out on the isolated chains using chemical analysis, 500-MHz 1H-NMR spectroscopy and fast-atom-bombardment mass spectrometry. The following composite structures of the N-linked chains were found: (formula; see text) where R = OH for biantennary structures and R = Neu5Ac alpha 2-3Gal beta 1-4 GlcNAc beta 1- or Neu5Ac alpha 2-3Gal beta 1-3[Neu5Ac alpha 2-6]GlcNAc beta 1- for triantennary structures. The O-linked oligosaccharides, found in the light chains, were shown to have the structure Neu5Ac alpha 2-3Gal beta 1-3GalNAc. The native IgM antibody could be separated on a concanavalin-A-Sepharose column into two subfractions, differing in the presence of a high-mannose-type oligosaccharide.  相似文献   

12.
Enzymatic alpha 2,3-sialylation of GalNAc has not been described previously, although some glycoconjugates containing alpha 2,3-sialylated GalNAc residues have been reported. In the present experiments, recombinant soluble alpha 2,3-sialyltransferase ST3Gal II efficiently sialylated the X(2) pentasaccharide GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, globo-N-tetraose GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and the disaccharide GalNAc beta 1-3Gal in vitro. The purified products were identified as Neu5Ac alpha 2-3GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, Neu5Ac alpha 2-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and Neu5Ac alpha 2-3GalNAc beta 1-3Gal, respectively, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, enzymatic degradations, and one- and two-dimensional NMR-spectroscopy. In particular, the presence of the Neu5Ac alpha 2-3GalNAc linkage was firmly established in all three products by a long range correlation between Neu5Ac C2 and GalNAc H3 in heteronuclear multiple bond correlation spectra. Collectively, the data describe the first successful sialyltransfer reactions to the 3-position of GalNAc in any acceptor. Previously, ST3Gal II has been shown to transfer to the Gal beta 1-3GalNAc determinant. Consequently, the present data show that the enzyme is multifunctional, and could be renamed ST3Gal(NAc) II. In contrast to ST3Gal II, ST3Gal III did not transfer to the X(2) pentasaccharide. The Neu5Ac alpha 2-3GalNAc linkage of sialyl X(2) was cleaved by sialidases from Arthrobacter ureafaciens and Clostridium perfringens, but resisted the action of sialidases from Newcastle disease virus and Streptococcus pneumoniae. Therefore, the latter two enzymes cannot be used to differentiate between Neu5Ac alpha 2-3GalNAc and Neu5Ac alpha 2-6GalNAc linkages, as has been assumed previously.  相似文献   

13.
We previously identified several peptide sequences that mimicked the terminal sugars of complex glycans. Using plant lectins as analogs of lectin-type cell-surface receptors, a tetravalent form of a peptide with the sequence NPSHPLSG, designated svH1C, bound with high avidity to lectins specific for glycans with terminal 5-acetylneuraminic acid (Neu5Ac)-galactose (Gal)/N-acetylgalactosamine (GalNAc) sequences. In this report, we show by circular dichroism and NMR spectra that svH1C lacks an ordered structure and thus interacts with binding sites from a flexible conformation. The peptide binds with high avidity to several recombinant human siglec receptors that bind preferentially to Neu5Ac(α2,3)Gal, Neu5Ac(α2,6)GalNAc or Neu5Ac(α2,8)Neu5Ac ligands. In addition, the peptide bound the receptor NKG2D, which contains a lectin-like domain that binds Neu5Ac(α2,3)Gal. The peptide bound to these receptors with a KD in the range of 0.6 to 1 μM. Binding to these receptors was inhibited by the glycoprotein fetuin, which contains multiple glycans that terminate in Neu5Ac(α2,3)Gal or Neu5Ac(α2,6)Gal, and by sialyllactose. Binding of svH1C was not detected with CLEC9a, CLEC10a or DC-SIGN, which are lectin-type receptors specific for other sugars. Incubation of neuraminidase-treated human peripheral blood mononuclear cells with svH1C resulted in binding of the peptide to a subset of the CD14+ monocyte population. Tyrosine phosphorylation of siglecs decreased dramatically when peripheral blood mononuclear cells were treated with 100 nM svH1C. Subcutaneous, alternate-day injections of svH1C into mice induced several-fold increases in populations of several types of immune cells in the peritoneal cavity. These results support the conclusion that svH1C mimics Neu5Ac-containing sequences and interacts with cell-surface receptors with avidities sufficient to induce biological responses at low concentrations. The attenuation of inhibitory receptors suggests that svH1C has characteristics of a checkpoint inhibitor.  相似文献   

14.
The carbohydrate binding specificity of Allomyrina dichotoma lectin II was investigated by analyzing the behavior of various complex type oligosaccharides and human milk oligosaccharides on an A. dichotoma lectin II-agarose column. Basically, the lectin interacts with the Gal beta 1----4GlcNAc group. Substitution of their terminal galactose residues by Neu5Ac alpha 2----6 will enhance their affinity to the lectin. By contraries, substitution at the C-2 or C-3 position of their terminal galactose with other sugars including sialic acid deprives their affinity to the lectin. With this characteristic, the immobilized lectin column can be used to separate complex type oligosaccharides with the Neu5Ac alpha 2----6Gal beta 1----4GlcNAc group from their isomeric oligosaccharides with the Neu5Ac alpha 2----3Gal beta 1----4GlcNAc group, where Neu5Ac is N-acetylneuraminic acid.  相似文献   

15.
Helicobacter pylori, like many other microbes, has the ability to bind to carbohydrate epitopes. Several sugar sequences have been reported as active for the bacterium, including some neutral, sulfated, and sialylated structures. We investigated structural requirements for the sialic acid-dependent binding using a number of natural and chemically modified gangliosides. We have chosen for derivatization studies two kinds of binding-active glycolipids, the simple ganglioside S-3PG (Neu5Ac alpha 3Gal beta 4GlcNAc beta 3Gal beta 4Glc beta 1Cer, sialylparagloboside) and branched polyglycosylceramides (PGCs) of human origin. The modifications included oxidation of the sialic acid glycerol chain, reduction of the carboxyl group, amidation of the carboxyl group, and lactonization. Binding experiments confirmed a preference of H. pylori for 3-linked sialic acid and penultimate 4-linked galactose. As expected, neolacto gangliosides (with Gal beta 4GlcNAc in the core structure) were active in our assays, whereas gangliosides with lacto (Gal beta 3GlcNAc) and ganglio (Gal beta 3GalNAc) carbohydrate chains were not. Negative binding results were also obtained for disialylparagloboside (with terminal NeuAc alpha 8NeuAc) and NeuAc alpha 6-containing glycolipids. Chemical studies revealed dependence of the binding on Neu5Ac and its glycerol and carboxyl side chains. Most of the derivatizations performed on these groups abolished the binding; however, some of the amide forms turned out to be active, and one of them (octadecylamide) was found to be an excellent binder. The combined data from molecular dynamics simulations indicate that the binding-active configuration of the terminal disaccharide of S-3PG is with the sialic acid in the anticlinal conformation, whereas in branched PGCs the same structural element most likely assumes the synclinal presentation.  相似文献   

16.
Crude oligosaccharides were recovered from bottlenose dolphin (Tursiops truncatus) colostrum after chloroform/methanol extraction of lipids and protein precipitation, and purified using gel filtration, anion exchange chromatography and high performance liquid chromatography (HPLC). Their chemical structures characterized by NMR spectroscopy were as follows: GalNAc(beta1-4)[Neu5Ac(alpha2-3)]Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc and Gal(alpha1-4)Gal(beta1-4)Glc. The monosialyltetrasaccharide and neutral trisaccharide have not previously been found as free forms in any natural sources including milk or colostrum, although these structures have been found in the carbohydrate units of glycosphingolipids GM2 and Gb3.  相似文献   

17.
The regional difference in the carbohydrate components of the ductus epididymis epithelium of a lizard was delineated by means of 13 lectins. Basal cells expressed only N-acetylglucosamine (GlcNAc). Throughout the ductus, the secretory cells showed oligosaccharides with terminal N-acetylneuraminic acid (Neu5Ac)α(2,6)galactose (Gal)/N-acetylgalactosamine (GalNAc) and internal mannose (Man) and/or glucose (Glc) in the whole cytoplasm, oligosaccharides terminating in Neu5Acα(2,6)Galβ(1,3)GalNAc, Neu5Acα(2,6)Galβ (1,4)GlcNAc, GalNAc, GlcNAc, and fucose (Fuc) in the supra-nuclear zone, and also glycans terminating in Neu5Acα(2,3)Galβ (1,4)GlcNAc, Neu5Acα(2,6)Galβ(1,3)GalNAc, Galβ (1,4)GlcNAc on the luminal surface. In the caput and corpus regions, the supra-nuclear cytoplasm was characterized by terminal Galβ(1,4)GlcNAc and αGalNAc, the luminal surface by αGalNAc and Gal. The Golgi zone, showing oligosaccharides with terminal Neu5Acα(2,3)Galβ (1,4)GlcNAc, Neu5Acα(2,6)Galβ (1,3)GalNAc, Neu5Acα(2,6)Galβ (1,4)GlcNAc, and internal GlcNAc, expressed terminal Galβ (1,4)GlcNAc and αGalNAc in the caput, and terminal β GalNAc in the corpus. The granules showed all the investigated carbohydrates in their peripheral zone except terminal βGalNAc and Fuc, whereas internal Man/Glc and terminal Gal were expressed in the central core, and Fuc throughout the ductus, terminal GlcNAc in the caput and corpus, and terminal αGalNAc only in the corpus.  相似文献   

18.
Do the complexity and the bulkiness of a protein affect the affinity between protein and ligand? We attempted to investigate this problem by using ab initio fragment molecular orbital (FMO) method to calculate the binding energy between human influenza viral hemagglutinin (HA) and human oligo-saccharide receptor. We compared the binding energies of 4 different sizes of human A virus HA H3 subtype complexed with human receptor Neu5Ac(alpha2-6)Gal as a model. The full shape receptor binding domain complexed with Neu5Ac(alpha2-6)Gal had the highest binding energy 170.3kcal/mol at the FMO-HF/STO-3G level, which was 52.3kcal/mol higher than that of the smallest domain-receptor complex. These data provide the consideration of the backyard bulkiness beyond the binding site of protein to the protein-ligand stability.  相似文献   

19.
H Kaku  N Shibuya 《FEBS letters》1992,306(2-3):176-180
A stable subunit of Sambucus sieboldiana bark lectin (MSSA) was prepared by selective reduction of disulfide bridges between the subunits and alkylation with 4-vinylpyridine. Amino acid analysis of MSSA revealed that 1.4 cysteine residues per subunit were selectively modified. MSSA failed to agglutinate rabbit erythrocytes and precipitate fetuin. However, MSSA retained the ability to bind to fetuin, as detected by ELISA. Neu5Ac alpha 2-6lactose inhibited the binding to fetuin of both SSA and MSSA. Flow cytometric analysis showed that human histocytic lymphoma U937 cells were clearly stained with FITC-labeled MSSA (FITC-MSSA) without any detectable agglutination and that this staining was almost completely inhibited by the addition of Neu5Ac alpha 2-6lactose (2 mM). Treatment of U937 cells with native FITC-SSA at the sub-agglutinating concentration (0.3 microgram/ml) showed much poorer fluorescence intensity than that of MSSA, suggesting that MSSA is an invaluable tool for the detection of cell surface glycoconjugates containing NeuAc alpha 2-6Gal/GalNAc sequences by flow cytometry.  相似文献   

20.
Glycopeptides have been isolated from the urine of two patients, aged 5 and 6, with a new lysosomal storage disease characterized by a deficiency in alpha-N-acetylgalactosaminidase activity. Isolation of these glycopeptides was achieved using gel filtration and ion-exchange chromatography. Structural determination was done using one- and two-dimensional 500 MHz 1H-NMR spectroscopy and FAB mass spectrometry of native and derivatized glycopeptides. The following structures were inferred as being present: Glycopeptide A (up to 140 mg/l urine) (1)-(3) Neu5Ac alpha 2-3Gal beta 1-3 (Neu5Ac alpha 2-6)GalNAc alpha 1-R A1: R = Ser A2: R = Thr A3: R = Thr-Pro Glycopeptide B (up to 80 mg/l urine) (4)-(6) Neu5Ac alpha 2-3Gal beta 1-4GlcNAc beta 1-6 (Neu5Ac alpha 2-3-Gal beta 1-3) GalNAc alpha 1-R B1: R = Ser B2:R = Thr B3: R = Thr-Pro  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号