首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the thyroid state on the cytosolic free Ca2+ concentration, [Ca2+]i, of resting and K+-depolarized cardiomyocytes were studied using the fluorescent Ca2+ indicator fura2. The mean resting [Ca2+]i in euthyroid myocytes (89 +/- 8 nM) was not significantly different from that in hyperthyroid myocytes (100 +/- 14 nM). The resting O2-consumption rate was identical for both groups when expressed per mg protein, but a 35% higher value was observed in the hyperthyroid group when expressed per cell on account of the cellular hypertrophy induced by thyroid hormone. Potassium induced depolarization (50 mM [K+]0) raised the level of [Ca2+]i by 50% in both groups. When ATP-coupled respiration was blocked with oligomycin, the 50 mM K+-induced rise in [Ca2+]i was accompanied in both groups by a 40% rise in glycolytic activity as inferred from measurement of lactate production. Ca2+-fluorescence transients were recorded from electrically stimulated myocytes of euthyroid, hyperthyroid and hypothyroid rats. The time taken to reach peak fluorescence (TPL) and that to 50% decay of peak fluorescence (RL0.5) decreased in the direction hypothyroid----hyperthyroid, indicating an increase in Ca2+ fluxes in the same direction. Isoproterenol (1 microM) enhanced the peak Ca2+ fluorescence in electrically stimulated hypothyroid and euthyroid myocytes but not in hyperthyroid myocytes. Both the TPL and RL0.5 were decreased by isoproterenol in euthyroid, but more so in hypothyroid myocytes. None of these parameters were influenced by isoproterenol in the hyperthyroid group. We conclude that (1) thyroid hormone increases neither the O2-consumption rate nor the level of [Ca2+]i of resting cardiomyocytes and (2) the effects of the beta-receptor-agonist isoproterenol on Ca2+ transients of electrically stimulated myocytes, are inversely related to the documented changes in beta-receptor density in heart tissue occurring with alterations in the thyroid state.  相似文献   

2.
3.
Regulation of intracellular Mg2+ activity in the heart is not well characterized. Cardiac myocytes were prepared as primary cultures from 7 day old chick embryo hearts and intracellular Mg2+ concentration [( Mg2+]i) was determined in single ventricular cells with mag-fura-2. Basal [Mg2+]i was 0.48 +/- 0.03 mM in normal culture medium. There was no correlation of basal [Mg2+]i with cellular contraction or intracellular [Ca2+]i (determined with fura-2). Cardiocytes cultured (16 hr) in low Mg (0.16 mM) media contained 0.21 +/- 0.05 mM Mg2+ which returned to normal levels when placed in Mg media with a refill time of 20 min. Basal [Ca2+]i (121 +/- 11 nM) and stimulated [Ca2+]i (231 +/- 41 nM) was similar to control cells. Verapamil, 25 microM, reversibly blocked Mg2+ refill. In conclusion, the basal [Mg2+]i of isolated cardiomyocytes is considerably below the Mg2+ electrochemical equilibrium allowing passive Mg2+ influx. The influx pathway for Mg2+ is inhibited by verapamil and appears to be independent of Ca2+ as assessed by fura-2.  相似文献   

4.
The functional consequences of overexpression of rat heart Na+/Ca2+ exchanger (NCX1) were investigated in adult rat myocytes in primary culture. When maintained under continued electrical field stimulation conditions, cultured adult rat myocytes retained normal contractile function compared with freshly isolated myocytes for at least 48 h. Infection of myocytes by adenovirus expressing green fluorescent protein (GFP) resulted in >95% infection as ascertained by GFP fluorescence, but contraction amplitude at 6-, 24-, and 48-h postinfection was not affected. When they were examined 48 h after infection, myocytes infected by adenovirus expressing both GFP and NCX1 had similar cell sizes but exhibited significantly altered contraction amplitudes and intracellular Ca2+ concentration ([Ca2+]i) transients, and lower resting and diastolic [Ca2+]i when compared with myocytes infected by the adenovirus expressing GFP alone. The effects of NCX1 overexpression on sarcoplasmic reticulum (SR) Ca2+ content depended on extracellular Ca2+ concentration ([Ca2+]o), with a decrease at low [Ca2+]o and an increase at high [Ca2+]o. The half-times for [Ca2+]i transient decline were similar, suggesting little to no changes in SR Ca2+-ATPase activity. Western blots demonstrated a significant (P < or = 0.02) threefold increase in NCX1 but no changes in SR Ca2+-ATPase and calsequestrin abundance in myocytes 48 h after infection by adenovirus expressing both GFP and NCX1 compared with those infected by adenovirus expressing GFP alone. We conclude that overexpression of NCX1 in adult rat myocytes incubated at high [Ca2+]o resulted in enhanced Ca2+ influx via reverse NCX1 function, as evidenced by greater SR Ca2+ content, larger twitch, and [Ca2+]i transient amplitudes. Forward NCX1 function was also increased, as indicated by lower resting and diastolic [Ca2+]i.  相似文献   

5.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

6.
Regulatory effects of extracellular magnesium ions ([Mg2+]o) on intracellular free ionized calcium ([Ca2+]i) were studied in cultured vascular smooth muscle cells (VSMCs) from rat aorta by use of the fluorescent indicator fura-2 and digital imaging microscopy. With normal Mg2+ (1.2 mM)-containing incubation media, [Ca2+]i in VSMCs was 93.6 +/- 7.93 nM with a heterogeneous cellular distribution. Lowering [Mg2+]o to 0 mM or 0.3 mM (the lowest physiological range) resulted in 5.8-fold (579.5 +/- 39.99 nM) and 3.5-fold (348.0 +/- 31.52 nM) increments of [Ca2+]i, respectively, without influencing the cellular distribution of [Ca2+]i. Surprisingly, [Mg2+]o withdrawal induced changes of cell geometry in many VSMCs, i.e., the cells rounded up. However, elevation of [Mg2+]o up to 4.8 mM only induced slight decrements of [Ca2+]i (mean = 72.0 +/- 4.55 nM). The large increment of [Ca2+]i induced by [Mg2+]o withdrawal was totally inhibited when [Ca2+]o was removed. The data suggest that: (1) [Mg2+]o regulates the level of [Ca2+]i in rat aortic smooth muscle cells, and (2) [Mg2+] acts as an important regulatory ion by modulating cell shapes in cultured VSMc and their metabolism to control vascular contractile activities.  相似文献   

7.
Oxygen-free radicals are thought to be a major cause of beta-cell dysfunction in diabetic animals induced by alloxan or streptozotocin. We evaluated the effect of H2O2 on cytosolic Ca2+ concentration ([Ca2+]i) and the activity of ATP-sensitive potassium (K+ATP) channels in isolated rat pancreatic beta-cells using microfluorometry and patch clamp techniques. Exposure to 0.1 mM H2O2 in the presence of 2.8 mM glucose increased [Ca2+]i from 114.3+/-15.4 nM to 531.1+/-71.9 nM (n=6) and also increased frequency of K+ATP channel openings. The intensity of NAD(P)H autofluorescence was conversely reduced, suggesting that H2O2 inhibited the cellular metabolism. These three types of cellular parameters were reversed to the control level on washout of H2O2, followed by a transient increase in [Ca2+]i, the transient inhibition of K+ATP channels associated with action currents and increase of the NAD(P)H intensity with an overshoot. In the absence of external Ca2+, 0.1 mM H2O2 increased [Ca2+]i from 88.8+/-7.2 nM to 134.6+/-8.3 nM. Magnitude of [Ca2+]i increase induced by 0.1 mM H2O2 was decreased after treatment of cells with 0.5 mM thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pump (45.8+/-4.9 nM vs 15.0+/-4.8 nM). Small increase in [Ca2+]i in response to an increase of external Ca2+ from zero to 2 mM was further facilitated by 0.1 mM H2O2 (330.5+/-122.7 nM). We concluded that H2O2 not only activates K+ATP channels in association with metabolic inhibition, but also increases partly the Ca2+ permeability of the thapsigargin-sensitive intracellular stores and of the plasma membrane in pancreatic beta-cells.  相似文献   

8.
Calcium-activated potassium channels in chondrocytes.   总被引:2,自引:0,他引:2  
The presence of calcium-activated potassium channels in chondrocytes of growing cartilage was tested. Results obtained with fura-2 on cultured resting chondrocytes indicate that the cells respond to an elevation of extracellular calcium concentration ([Ca2+]o) from 0.1 to 2 mM increasing the intracellular concentration of the ion ([Ca2+]i) from 117 to 187 nM. This increment may be blocked by 3 microM La3+. Patch clamp experiments in cell-attached configuration showed that, when [Ca2+]i rises, the open probability (Po) of the K+ channels increases. Increments in both Po and unitary currents of the K+ channels can be obtained after applying 2.5 microM A23187 with 2 mM [Ca2+]o. Hence, the results demonstrate that, in chondrocytes, a class of Ca(2+)-activated K+ channels is present and their activity is related to an increase of [Ca2+]i.  相似文献   

9.
Using fluorescent Ca2+ indicator fura-2 and whole-cell patch-clamp techniques, we examined the effect of 2-nicotinamidoethyl nitrate (nicorandil) on the intracellular free Ca2+ concentration ([Ca2+]i) and electrical properties in single guinea pig ventricular myocytes. Nicorandil (10 nM approximately 1 mM) reduced the resting level [Ca2+]i monitored as fura-2 fluorescence ratio in a concentration-dependent manner. Dibutyryl guanosine 3':5'-cyclic monophosphate (cyclic GMP), a membrane permeable cyclic GMP analogue, mimicked the nicorandil action. Neither application of caffeine (10 mM) nor deprivation of extracellular Na+ ions could prevent the nicorandil action on [Ca2+]i. In contrast, the nicorandil effect was virtually blocked by sodium orthovanadate (40 microM), a Ca2+ pumping ATPase inhibitor. During electrophysiological experiments, nicorandil shortened action potential durations (205 +/- 80 ms to 153 +/- 76 ms) by increasing a glibenclamide-sensitive outward K+ conductance. However, the drug produced little hyperpolarization (approximately 2 mV) because the resting potential of ventricular myocytes was close to the K+ equilibrium potential. The involvement of voltage-dependent Ca-channel current and Na-Ca exchanger was considered to be minimal under physiological conditions. It is thus concluded that nicorandil decreases basal [Ca2+]i via cyclic GMP-mediated activation of the plasma membrane Ca2+ pump in guinea pig ventricular myocytes.  相似文献   

10.
Intracellular calcium ion ([Ca2+]i) transients were measured in single rat ventricular myocytes with the fluorescent indicator furaptra. Cells were voltage clamped with a single patch electrode containing the K+ salt of furaptra and fluorescence at 500 nm was measured during illumination with 350 and 370 nm light. Depolarizing voltage-clamp pulses elicited [Ca2+]-dependent fluorescent transients in 30 of 33 cells tested. The peak change in [Ca2+]i elicited by 50-ms depolarizations from -70 to +10 mV was 1.52 +/- 0.25 microM (mean +/- SEM, n = 7). The size of the [Ca2+]i transient increased in response to 10 microM isoproterenol, prolongation of the depolarization, and increasing pipette [Na+]. Because furaptra is sensitive to Ca2+ and Mg2+, changes in [Mg2+]i during the [Ca2+]i transient could not be measured. Instead, a single-compartment model was developed to simulate changes in [Mg2+] during [Ca2+] transients. The simulations predicted that a 2 microM [Ca2+] transient was accompanied by a slow increase in [Mg2+] (14-29 microM), which became larger as basal [Mg2+] increased (0.5-2.0 mM). The [Mg2+] transient reached a peak approximately 1 s after the peak of the [Ca2+] transient with the slow changes in [Mg2+] dominated by competition at the Ca2+/Mg2+ sites of Troponin. These changes in [Mg2+], however, were so small and slow that they were unlikely to affect the furaptra fluorescence signal at the peak of the [Ca2+]i transient. The [Ca2+]i transient reported by furaptra appears to be larger than that reported by other Ca2+ indicators; however, we conclude this larger transient is at least as accurate as [Ca2+]i transients reported by the other indicators.  相似文献   

11.
Muscle LIM protein (MLP) may serve as a scaffold protein on the actin-based cytoskeleton, and mice deficient in this protein (MLPKO) have been recently reported to develop dilated cardiomyopathy. To determine the causes of depressed contractility in this model, we measured intracellular Ca2+ concentration ([Ca2+]i) transients (fluo 3), cell shortening, L-type Ca2+ channel current (I(Ca,L)), Na/Ca exchanger current (I(Na/Ca)), and sarcoplasmic reticulum (SR) Ca content in left ventricular MLPKO myocytes. I(Ca,L)-voltage relationships, I(Na/Ca) density, and membrane capacitance did not differ between wild-type (WT) and MLPKO myocytes. The peak systolic [Ca2+]i was significantly increased in MLPKO myocytes (603 +/- 54 vs. 349 +/- 18 nM in WT myocytes). The decline of [Ca2+]i transients was accelerated in MLPKO myocytes, and SR Ca2+ content was increased by 21%, indicating that SR Ca2+-ATPase function is normal or enhanced in MLPKO myocytes. Confocal imaging of actin filaments stained with tetramethylrhodamine isothiocyanate-labeled phalloidin showed disorganization of myofibrils and abnormal alignment of Z bands, and fractional shortening was significantly diminished in MLPKO myocytes compared with that in WT myocytes at comparable peak [Ca2+]i. Thus a reduced [Ca2+]-induced shortening may be involved in the pathogenesis of myocardial dysfunction in this genetic model of heart failure.  相似文献   

12.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

13.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells.  相似文献   

14.
Increase in extracellular Mg2+ concentration ([Mg2+]o) reduces Ca2+ accumulation during reoxygenation of hypoxic cardiomyocytes and exerts protective effects. The aims of the present study were to investigate the effect of increased [Mg(2+)](o) on Ca2+ influx and efflux, free cytosolic Ca2+ ([Ca2+]i) and Mg2+ concentrations ([Mg2+]i), Ca2+ accumulation in the presence of inhibitors of mitochondrial or sarcoplasmatic reticulum Ca2+ transport, and finally mitochondrial membrane potential (Delta(psi)m). Isolated adult rat cardiomyocytes were exposed to 1 h of hypoxia and subsequent reoxygenation. Cell Ca2+ was determined by 45Ca2+ uptake, and the levels of [Mg2+]i and [Ca2+]i were determined by flow cytometry as the fluorescence of magnesium green and fluo 3, respectively. Ca2+ influx rate was significantly reduced by approximately 40%, whereas Ca2+ efflux was not affected by increased [Mg2+]o (5 mM) during reoxygenation. [Ca2+]i and [Mg2+]i were increased at the end of hypoxia, fell after reoxygenation, and were unaffected by increased [Mg2+]o. Clonazepam, a selective mitochondrial Na+/Ca2+ exchange inhibitor (100 microM), significantly reduced Ca2+ accumulation by 70% and in combination with increased [Mg2+]o by 90%. Increased [Mg2+]o, clonazepam, and the combination of both attenuated the hypoxia-reoxygenation-induced reduction in Delta(psi)m, determined with the cationic dye JC-1 by flow cytometry. A significant inverse correlation was observed between Delta(psi)m and cell Ca2+ in reoxygenated cells treated with increased [Mg2+]o and clonazepam. In conclusion, increased [Mg2+]o (5 mM) inhibits Ca2+ accumulation by reducing Ca2+ influx and preserves Delta(psi)m without affecting [Ca2+]i and [Mg2+]i during reoxygenation. Preservation of mitochondria may be an important effect whereby increased [Mg2+]o protects the postischemic heart.  相似文献   

15.
The significance of altered Ca2+ influx and efflux pathways on contractile abnormalities of myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) was investigated by varying extracellular Ca2+ concentration ([Ca2+]o, 0.6-5.0 mM) and pacing frequency (0.1-5.0 Hz). Myocytes isolated from 3-wk MI hearts were significantly longer than those from sham-treated (Sham) hearts (125 +/- 1 vs. 114 +/- 1 micrometer, P < 0.0001). At high [Ca2+]o and low pacing frequency, conditions that preferentially favored Ca2+ influx over efflux, Sham myocytes shortened to a greater extent than 3-wk MI myocytes. Conversely, under conditions that favored Ca2+ efflux (low [Ca2+]o and high pacing frequency), MI myocytes shortened more than Sham myocytes. At intermediate [Ca2+]o and pacing frequencies, differences in steady-state contraction amplitudes between Sham and MI myocytes were no longer significant. Collectively, the interpretation of these data was that Ca2+ influx and efflux pathways were subnormal in MI myocytes and that they contributed to abnormal cellular contractile behavior. Because Na+/Ca2+ exchange activity, but not whole cell Ca2+ current, was depressed in 3-wk MI rat myocytes, our results on steady-state contraction are consistent with, but not proof of, the hypothesis that depressed Na+/Ca2+ exchange accounted for abnormal contractility in MI myocytes. The effects of depressed Na+/Ca2+ exchange on MI myocyte mechanical activity were further evaluated in relaxation from caffeine-induced contractures. Because Ca2+ uptake by sarcoplasmic reticulum was inhibited by caffeine and with the assumption that intracellular Na+ and membrane potential were similar between Sham and MI myocytes, myocyte relaxation from caffeine-induced contracture can be taken as an estimate of Ca2+ extrusion by Na+/Ca2+ exchange. In MI myocytes, in which Na+/Ca2+ exchange activity was depressed, the half time of relaxation (1.54 +/- 0.14 s) was significantly (P < 0.02) prolonged compared with that measured in Sham myocytes (1.10 +/- 0.10 s).  相似文献   

16.
Quantitative measurement of [Ca2+]i with the fluorescent Ca(2+)-indicators Indo-1 and Fura-2 is complicated by the possibility that the value of the dissociation constant (Kd) may be influenced by binding to intracellular proteins. We investigated this question in cultured chick ventricular myocytes by use of two different Indo-1 calibration methods. First, the Indo-1 fluorescence ratio (R) (400/500 nm) was measured in beating myocytes loaded by exposure to Indo-1/AM. Then, cells were exposed to the Ca2+ ionophore Br A-23187 and fluorescence ratio was measured in the presence of 500 nM Ca2+ (EGTA-Ca2+ buffer). Subsequently cells were permeabilized to Ca2+ by a 1 min exposure to 25 microM digitonin in the presence of 'zero' Ca2+ (10 mM EGTA) and saturating 1 mM Ca2+ to obtain Rmin, Rmax and beta. We then calculated [Ca2+]i from the formula ([Ca2+]i = Kd [( R - Rmin)/(Rmax - R)]beta). With Kd = 250 nM, calculated systolic [Ca2+]i was 750 +/- 44 nM and diastolic 269 +/- 19 nM (means +/- SEM, n = 16). The R value calculated for an assumed [Ca2+]i = 500 nM using the above formula and digitonin derived constants was very similar to the value measured using Br A-23187 (digitonin, 0.67 +/- 0.03: Br A-23187, 0.66 +/- 0.03, ns). As the Br A-23187 method is independent of the value chosen for Kd, we conclude that the Kd of 250 nM for Indo-1 measured in free solutions closely approximates the Kd for intracellular Indo-1 in these cells, and that therefore the Kd of Indo-1 for Ca2+ does not appear to be markedly affected by binding to proteins or other intracellular molecules.  相似文献   

17.
Single cell [Ca2+], studies were performed in chicken and rat osteoclasts loaded with fura-2 and exposed to a variety of treatments. Under resting conditions, basal [Ca2+]i, was 79.2 +/- 47.3 and 84.3 +/- 65.7 nM (averages +/- S.D.; n = 141 and 126) in the osteoclasts of the two species, respectively. Basal [Ca2+]i was stable in all rat and in approximately 80% of chicken osteoclasts. In the remaining 20%, spontaneous, irregular [Ca2+], fluctuations were observed (amplitude range: 50-200 nm over basal values). Increase of [Ca2+]o over the concentration of the Krebs-Ringer incubation medium (2 mM) induced rises of [Ca2+] in almost all cells investigated. [Ca2+] rises were already appreciable with 0.5 mM [Ca2+]o additions and reached high values with 4 mM additions: 390 +/- 113 and 364 +/- 214 nM [Ca2+], in rat and chicken osteoclasts, respectively (n = 122 and 101). Qualitatively, the responses to [Ca2+]o additions consisted of discrete [Ca2+]i transients, biphasic (an initial spike followed by a plateau), or monophasic (either the spike or the plateau). In a few chicken osteoclasts, the [Ca2+]i increase occurring after [Ca2+]o addition consisted of multiple, irregular fluctuations, similar to those observed in 20% of these cells under resting conditions. In individual osteoclasts subsequently exposed to multiple [Ca2+]o increase pulses, the type of the [Ca2+]i transient (mono- or biphasic) was maintained, and the size was dependent on the magnitude of the [Ca2+]o additions. Effects similar to those of [Ca2+]o were induced by the addition of Cd2+ or Ba2+ (but not La3+ or Mg2+) into the medium. The Cd2+ effect was maintained in part even in a Ca2+-free medium. Of various hormones and factors, parathormone, 1,25-dihydroxyvitamin D3, and prostaglandin E2 were inactive. In contrast, calcitonin was active in rat osteoclasts (which express numerous receptors). [Ca2+]i increases were small (19 +/- 17.9 nM; n = 21) when the hormone was administered alone; they were synergistic (severalfold potentiation) when the hormone was administered before or after [Ca2+]o. The [Ca2+]i effects of calcitonin were mimicked by 8Br-cAMP (31 +/- 26 nM; n = 12) when the nucleotide was administered alone; marked synergism when it was administered in combination with [Ca2+]o. This paper demonstrates for the first time that changes of [Ca2+]i are induced in osteoclasts by treatments with [Ca2+]o and calcitonin and can therefore be involved in intracellular mediation of the physiological effects of these two extracellular signals.  相似文献   

18.
Changes in the cytoplasmic free calcium concentration ([Ca2+]i) in pancreatic B-cells play an important role in the regulation of insulin secretion. We have recorded [Ca2+]i transients evoked by single action potentials and voltage-clamp Ca2+ currents in isolated B-cells by the combination of dual wavelength emission spectrofluorimetry and the patch-clamp technique. A 500-1000 ms depolarization of the B-cell from -70 to -10 mV evoked a transient rise in [Ca2+]i from a resting value of approximately 100 nM to a peak concentration of 550 nM. Similar [Ca2+]i changes were associated with individual action potentials. The depolarization-induced [Ca2+]i transients were abolished by application of nifedipine, a blocker of L-type Ca2+ channels, indicating their dependence on influx of extracellular Ca2+. Following the voltage-clamp step, [Ca2+]i decayed with a time constant of approximately 2.5 s and summation of [Ca2+]i occurred whenever depolarizations were applied with an interval of less than 2 s. The importance of the Na(+)-Ca2+ exchange for B-cell [Ca2+]i maintenance was evidenced by the demonstration that basal [Ca2+]i rose to 200 nM and the magnitude of the depolarization-evoked [Ca2+]i transients was markedly increased after omission of extracellular Na+. However, the rate by which [Ca2+]i returned to basal was not affected, suggesting the existence of additional [Ca2+]i buffering processes.  相似文献   

19.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

20.
Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in cell suspensions. These results suggest that an increase in [Ca2+]i may be an early event in PAF activation of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号