共查询到20条相似文献,搜索用时 15 毫秒
1.
On the dehydration of (R)-lactate in the fermentation of alanine to propionate by Clostridium propionicum 总被引:2,自引:0,他引:2
All the enzymes of the pathway of (S)-alanine fermentation to acetate and propionate were detected in cell-free extracts of Clostridium propionicum . Among these (S)-glutamate dehydrogenase (NAD), (R)-lactate dehydrogenase (NAD) and propionate CoA-transferase were purified to apparent homogeneity. Their structures were presumably alpha 6, alpha 2 and alpha 4, respectively. The latter enzyme was specific for short-chain monocarboxylic acids with a pronounced preference for (R)-lactate over the (S)-enantiomer. The key step of the pathway, the dehydration of (R)-lactate required acetyl phosphate and CoASH under anaerobic conditions. It was inhibited by hydroxylamine, arsenate, azide (1 mM each) or by 0.1 mM 2,4-dinitrophenol. Thus it closely resembled the dehydration of (R)-2-hydroxyglutarate in Acidaminococcus fermentans , although an activation was not necessary. 相似文献
2.
3.
4.
Interconversion of valine and leucine by Clostridium sporogenes. 总被引:4,自引:0,他引:4
Clostridium sporogenes has been found to require L-leucine and L-valine for growth in a minimal medium, although valine can be replaced by isobutyrate and leucine by isovalerate. Cells grown in minimal media incorporated significant 14C from [14C]valine into leucine and from [14C]leucine into valine. Growth with [4,5-3H]leucine also resulted in the incorporation of 3H into valine. These results indicate that these bacteria can interconvert leucine and valine. 相似文献
5.
Biohydrogenation of linoleic acid by Clostridium sporogenes, Clostridium bifermentans, Clostridium sordellii and Bacteroides sp. 总被引:1,自引:0,他引:1
A. Verhulst G. Semjen U. Meerts G. Janssen G. Parmentier S. Asselberghs H. Van Hespen H. Eyssen 《FEMS microbiology letters》1985,31(4):255-259
Abstract Several strains of Clostridium bifermentans, Clostridium sporogenes and Clostridium sordellit and one strain of Bacteroides sp. hydrogenate linoleic acid into transvaccenic acid in vitro following the same pathway. Linoleic acid (18:2; 9- cis , 12- cis ) was first isomerised into 9- cis , 11- trans -octadecadienoic acid, after which the 9- cis double bond was reduced. These species also hydrogenated linoleic acid into an octadecenoic acid in vivo when mono-associated with gnotobiotic rats. Several other species of Clostridium and Bacteroides did not hydrogenate linoleic acid. 相似文献
6.
7.
8.
The strictly anaerobic pathogenic bacterium Clostridium difficile occurs in the human gut and is able to thrive from fermentation of leucine. Thereby the amino acid is both oxidized to isovalerate plus CO(2) and reduced to isocaproate. In the reductive branch of this pathway, the dehydration of (R)-2-hydroxyisocaproyl-coenzyme A (CoA) to (E)-2-isocaprenoyl-CoA is probably catalyzed via radical intermediates. The dehydratase requires activation by an ATP-dependent one-electron transfer (J. Kim, D. Darley, and W. Buckel, FEBS J. 272:550-561, 2005). Prior to the dehydration, a dehydrogenase and a CoA transferase are supposed to be involved in the formation of (R)-2-hydroxyisocaproyl-CoA. Deduced amino acid sequences of ldhA and hadA from the genome of C. difficile showed high identities to d-lactate dehydrogenase and family III CoA transferase, respectively. Both putative genes encoding the dehydrogenase and CoA transferase were cloned and overexpressed in Escherichia coli; the recombinant Strep tag II fusion proteins were purified to homogeneity and characterized. The substrate specificity of the monomeric LdhA (36.5 kDa) indicated that 2-oxoisocaproate (K(m) = 68 muM, k(cat) = 31 s(-1)) and NADH were the native substrates. For the reverse reaction, the enzyme accepted (R)- but not (S)-2-hydroxyisocaproate and therefore was named (R)-2-hydroxyisocaproate dehydrogenase. HadA showed CoA transferase activity with (R)-2-hydroxyisocaproyl-CoA as a donor and isocaproate or (E)-2-isocaprenoate as an acceptor. By site-directed mutagenesis, the conserved D171 was identified as an essential catalytic residue probably involved in the formation of a mixed anhydride with the acyl group of the thioester substrate. However, neither hydroxylamine nor sodium borohydride, both of which are inactivators of the CoA transferase, modified this residue. The dehydrogenase and the CoA transferase fit well into the proposed pathway of leucine reduction to isocaproate. 相似文献
9.
Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores. 总被引:4,自引:0,他引:4
下载免费PDF全文

Three techniques for studying effects of microwave radiation on microorganisms were introduced. Spores of Clostridium sporogenes (PA 3679) were chosen as a test organism because the kinetic parameters for thermal inactivation are well known and because of the importance of the genus Clostridium to the food industry. For the first technique, a specially designed kinetics vessel was used to compare inactivation rates of microwave-heated and conventionally heated spores at steady-state temperatures of 90, 100, and 110 degrees C. Rates were found to be similar at the 95% confidence level. The second and third techniques were designed to study the effect of relatively high power microwave exposure at sublethal temperatures. In the second approach, the suspension was continuously cooled via direct contact with a copper cooling coil in a well-mixed vessel, outside the microwave oven. The suspension was pumped through a Teflon loop in the oven, where it continuously absorbed approximately 400 W of microwave power. Inactivation occurred in both irradiated and unirradiated samples. It was suspected that copper ions entered the suspension from the copper coil and were toxic to the spores. The fact that the results were similar, however, implied the absence of nonthermal microwave effects. In the third approach, the copper coil was replaced with a silicone tubing loop in a microwave transparent vessel. The suspension was continuously irradiated at 150 W of microwave power. No detectable inactivation occurred. Results indicated that the effect of microwave energy on viability of spores was indistinguishable from the effect of conventional heating. 相似文献
10.
11.
12.
The physiology of Clostridium sporogenes was investigated in defined, minimal media. In batch culture, the major end products of glucose dissimilation were acetate, ethanol and formate. When L-proline was present as an electron acceptor, acetate production was strongly enhanced at the expense of ethanol. As judged by assay of the relevant enzymes, glucose was metabolized via the Embden-Meyerhof-Parnas pathway. The growth energetics of Cl. sporogenes were investigated in glucose- or L-valine-limited chemostat cultures. In the former case, the addition of L-proline to the medium caused a significant increase in the molar growth yield (as calculated by extrapolation to infinite dilution rate). This finding adds weight to the view that the reduction of L-proline by Cl. sporogenes is coupled to the conservation of free energy. 相似文献
13.
14.
15.
CoASH and some of its acyl derivatives, especially acetyl-SCoA, occupy a central position in the energy metabolism of the anaerobic Clostridium kluyveri, both as intermediates and as regulatory effectors. The steady state concentrations of these compounds were determined in growing cultures of this organism using an anaerobic and fast deproteinization technique and radio isotope assays. Acetyl-SCoA was determined as [1-14C]citrate formed in the presence of [4-14C]oxaloacetate and citrate synthase; 0.49 mol/g cell wet wt. were found CoASH, CoAS-SCoA after borohydride reduction, and total acyl derivatives of coenzyme A after hydrolysis of the thiol esters were converted to thioethers with [2,3-14C]N-ethylmaleimide and brought to radiochemical purity by chromatographic methods. While disulfides of coenzyme A were undetectable, 0.13 mol CoASH and 1.17 mol of total acyl-SCoA per g wet wt. were found. These data are consistent with the regulatory scheme of the energy metabolism of C. kluyveri previously proposed.Abbreviations DTE
dithioerythritol
- NEM
N-ethylmaleimide
- NES
N-ethylsuccinimide
Enzymes (EC 2.7.2.1)
Acetate kinase, ATP: acetate phosphotransferase
- (EC 3.1.3.1)
Alkaline phosphatase, orthophosphoric monoester phosphohydrolase
- (GOT)
Aspartate aminotransferase
- (EC 2.6.1.1)
L-aspartate:2-oxoglutarate aminotransferase
- (CS)
Citrate synthase
- (EC 4.1.3.7)
citrate oxaloacetate-lyase (pro 3S-CH2COOacetyl-CoA)
- (EC 2.8.3.8)
CoA-transferase, acyl-CoA:acetate CoA-transferase
- (EC 1.1.1.37)
Malate dehydrogenase, L-malate:NAD+ oxidoreductase
- (EC 1.18.1.3)
NADH:ferredoxin reductase, ferredoxin:NAD+ oxidoreductase
- (EC 3.1.4.1)
Phosphodiesterase (snake venom), orthophosphoric diester phosphohydrolase
- (EC 2.3.1.8)
Phosphotransacetylase, acetyl-CoA:orthophosphate acetyltransferase
- (EC 2.3.1.9)
Thiolase, acetyl-CoA:acetyl-CoA C-acetyltransferase
A preliminary account of this work has been given (Decker et al. 1976) 相似文献
16.
17.
Thiolase (acetyl coenzyme A acetyltransferase; EC 2.3.1.9) from Clostridium acetobutylicum is a key enzyme in the production of acids and solvents in this organism. The purification and properties of the enzyme have already been described (D. P. Wiesenborn, F. B. Rudolph, and E.T. Papoutsakis, Appl. Environ. Microbiol. 54:2717-2722, 1988). The thl gene encoding the thiolase has been cloned by using primary antibodies raised to the purified enzyme. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was prepared and screened by immunoblots with the antithiolase antibodies. Phage DNA was purified from positive plaques, and restriction enzyme digests identified an approximately 4.8-kb AccI fragment common to all positive plaques. A corresponding fragment was also found in AccI digests of C. acetobutylicum chromosomal DNA. The fragment was purified and EcoRI linkers were attached before being subcloned into pUC19. Maxicell analysis showed the production of an approximately 42-kDa protein, whose size corresponded to the molecular size of the purified thiolase, from the clostridial insert. Enzyme activity assays and Western blot (immunoblot) analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated whole-cell extracts of Escherichia coli harboring the cloned thl confirmed the presence of the thiolase encoded within the cloned DNA. 相似文献
18.
Putrefactive anaerobe 3679 (Clostridium sporogenes), a gram-positive bacterium, was examined by light and electron microscopy during normal growth and in a medium containing sorbate (50 mM, pH 6.5), hydrochloric acid (pH of medium adjusted from 7 to 5 with HCl), or nitrite (1 mM, pH 7). During the early exponential growth phase, untreated cells were filamentous and nonseptate, but became septate later and divided when the culture entered the stationary phase. Untreated short and filamentous cells had a double-layered cell wall. Sorbate-treated cells were usually filamentous and nonseptate, but with distorted shapes characterized by numerous bends and bulges. Septation, when present, resulted in minicells. The inner cell wall appeared to be thickened and the outer wall was absent in many areas. Acid-treated cells were similar to sorbate-treated cells but contained septa. Considerable cellular debris was present in the suspension. Nitrite-treated cells were also filamentous, bent, and bulged but the cell wall appeared normal. Considerable cellular debris was also present in suspensions of nitrite-treated cells. Changes in morphology are discussed in relation to possible mechanisms of cell growth regulation and the inhibitory action of sorbate, acid, and nitrite. 相似文献
19.
20.
Various defined and minimal media are described for the growth of Clostridium sporogenes NCIB 8053. The organism requires 10 amino acids and one vitamin for growth, whilst three other vitamins are growth stimulatory. L-alpha-hydroxy acid analogues can replace eight, and fatty acid analogues four, of these amino acids. The organism may generate free energy by a variety of Stickland reactions. Most Stickland acceptors, but not glycine, stimulate the growth of this organism on glucose. Nonetheless, cells grown in the presence of glycine will reductively deaminate it. The media described support the growth of several other strains of this species. The simplified growth media which we have developed permit quantitative studies of the physiology of this organism. 相似文献