首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to evaluate the effectiveness of supplementation of cellulase and xylanase to diets of growing goats to improve nutrient digestibility, utilisation of energy and mitigation of enteric methane emissions. The experiment was conducted in a 5 × 5 Latin square design using five goats with permanent rumen fistulae and five treatments consisted of two levels of cellulase crossed over with two levels of xylanase plus unsupplemented Control. The cellulase (243 U/g) derived from Neocallimastix patriciarum was added at 0.8 and 1.6 g/kg dry matter intake (DMI) and the xylanase (31,457 U/ml) derived from Aspergillus oryzae was fed at 1.4 and 2.2 ml/kg DMI. There were no differences in apparent digestibility of organic matter, neutral detergent fibre, acid detergent fibre and rumen fermentation parameters (i.e. ammonia-nitrogen [N], volatile fatty acids) among all treatments. Dietary cellulase and xylanase addition did not influence energy and N utilisation. But compared to xylanase addition at the higher dose, at the low xylanase dose the retained N, the availability of retained N and digested N were increased (< 0.01). Moreover, enzyme addition did not affect the enteric methane emission and community diversity of ruminal methanogens. The present results indicated that previous in vitro findings were not confirmed in ruminant trials.  相似文献   

2.
Aims:  Investigation of the effects of saponin-rich fractions on rumen fermentation, methane production and the microbial community.
Methods and Results:  Saponins were extracted from Carduus , Sesbania and Knautia leaves and fenugreek seeds. Two levels of saponin-rich fractions with a substrate were incubated using the Hohenheim gas method. Methane was measured using an infrared-based methane analyser and microbial communities using quantitative PCR. On addition of saponin-rich fractions, methane and short-chain fatty acid production was not affected. The protozoal counts decreased by 10–39%. Sesbania saponins decreased methanogen population by 78%. Decrease in ruminal fungal population (20–60%) and increase in Fibrobacter succinogenes (21–45%) and Ruminococcus flavefaciens (23–40%) were observed.
Conclusions:  The saponins evaluated possessed anti-protozoal activity; however, this activity did not lead to methane reduction. Fenugreek saponins seemed to have potential for increasing rumen efficiency. The saponins altered the microbial community towards proliferation of fibre-degrading bacteria and inhibition of fungal population.
Significance and Impact of the Study:  The uni-directional relationship between protozoal numbers and methanogenesis, as affected by saponins, is not obligatory. All saponins might not hold promise for decreasing methane production from ruminants.  相似文献   

3.
4.
丝状真菌发酵体系中菌体形态对产量有着重要影响。考察富马酸产生菌Rhizopus oryzae ME—F12种子培养过程中不同pH条件、孢子悬浮液密度以及CaCl2添加量对其形态的影响。结果表明,当控制种子培养液pH2.3~2.7、接种孢子的终密度为1.5×10^8~3.0×10^8/L和添加0.5g/LCaCl2时,培养可获得直径约为0.65mm光滑规整茵球,后继的产酸发酵中富马酸量高达58.9g/L。正交实验表明,pH是影响菌球形成的最主要因素,孢子液密度主要影响菌体生物量,而CaCl2则是菌球表面光滑度的主要影响因素。  相似文献   

5.
The objectives of the trial were to study the effects of dietary crude protein (CP) and tannic acid (TA) on rumen fermentation, microbiota and nutrient digestion in beef cattle. Eight growing beef cattle (live weight 350 ± 25 kg) were allocated in a 2 × 2 crossover design using two levels of dietary CP [111 g/kg dry matter (DM) and 136 g/kg DM] and two levels of TA (0 and 16.9 g/kg DM) as experimental treatments. Each experimental period lasted 19 d, consisting of 14-d adaptation and 5-d sampling. The impacts of dietary CP and TA on ruminal microbiota were analysed using high-throughput sequencing of 16S rRNA gene. Results indicated that no interactions between dietary CP and TA were found on rumen fermentation and nutrient digestibility. Increasing dietary CP level from 111 to 136 g/kg DM increased the ruminal concentrations of ammonia nitrogen (NH3-N) (p < 0.01) and improved the CP digestibility (p < 0.001). Adding TA at 16.9 g/kg DM inhibited rumen fermentation and decreased the digestibility of dietary CP (p < 0.001), DM (p < 0.05) and organic matter (p < 0.01). Increasing the dietary CP level or adding TA did not affect the relative abundances of the major bacteria Firmicutes and Proteobacteria at the phylum level and Prevotella_1 and Christensenellaceae_R-7_group at the genus level, even though adding TA increased the Shannon index of the ruminal bacterial community. TA was partly hydrolysed to pyrogallol, gallic acid and resorcinol in rumen fluid and the inhibitory effects of TA on rumen fermentation and nutrient digestibility could have been resulted from the TA metabolites including pyrogallol, gallic acid and resorcinol as well as the protein-binding effect.  相似文献   

6.
Two experiments were conducted to evaluate the effects of Bacillus subtilis natto, which was initially isolated from fermented soybeans on milk production, rumen fermentation and ruminal microbiome in dairy cows. In Experiment 1, 36 early lactation Chinese Holstein dairy cows (56 ± 23 days in milk) were randomly assigned to three groups: Control, cows were fed total mixed ration (TMR); BSNLOW, TMR plus 0.5 × 1011 colony-forming units (cfu) of B. subtilis natto/cow per day; and BSNHIGH, TMR plus 1.0 × 1011 cfu of B. subtilis natto/cow per day. During the 70-day treatment period, daily milk production and daily milk composition were determined in individual cows. The results showed that supplementing dairy cows with 0.5 × 1011 and 1.0 × 1011 cfu of B. subtilis natto linearly increased (P < 0.01) milk production (25.2 and 26.4 kg/day v. 23.0 kg/day), 4% fat-corrected milk (27.3 and 28.1 kg/day v. 24.2 kg/day), energy-corrected milk (27.3 and 28.2 kg/day v. 24.2 kg/day), as well as milk fat (1.01 and 1.03 kg/day v. 0.88 kg/day), protein (0.77 and 0.82 kg/day v. 0.69 kg/day) and lactose yield (1.16 and 1.22 kg/day v. 1.06 kg/day) but decreased milk somatic cell counts (SCC) by 3.4% to 5.5% (P < 0.01) in BSNLOW and BSNHIGH treatments compared with Control. In Experiment 2, four rumen-cannulated dairy cows were fed the basal diet from 1 to 7 days (pre-trial period) and rumen samples were collected on days 6 and 7; the same cows then were fed 1.0 × 1011 cfu/day B. subtilis natto from days 8 to 21 (trial period) and rumen samples were collected on days 20 and 21. B. subtilis natto was discontinued from days 22 to 28 (post-trial period) and rumen samples were collected on days 27 and 28. Compared with the pre- and post-periods, ruminal pH decreased by 2.7% to 3.0% during the trial period (P < 0.01), whereas ammonia nitrogen (NH3-N), total volatile fatty acids and molar proportion of propionate (P < 0.01) and valerate (P < 0.05) increased. Molar proportion of acetate decreased and the acetate to propionate ratio was lower (P < 0.01) during the trial period. However, no differences for 24-h in sacco dry matter digestibility were detected among different periods (treatments) though NDF digestibility was reduced in the trial and post-trial periods (P < 0.01). Compared with pre-trial period, total ruminal bacteria, proteolytic and amylolytic bacteria in rumen enumerated by culture methods increased by 15.0%, 16.2% and 11.7%, respectively (P < 0.01) but protozoa decreased to 5.35 log10 cfu/ml (P < 0.01) during the trial period. These results demonstrate that B. subtilis natto improves milk production and milk components yield, decreases SCC and promotes the growth of total ruminal bacteria, proteolytic and amylolytic bacteria, which indicate that B. subtilis natto has potential to be applied as a probiotic for dairy cows.  相似文献   

7.
富马酸生产菌少根根霉的诱变筛选   总被引:2,自引:0,他引:2  
以实验室原少根根霉为出发菌种,通过紫外线和LiCl诱变处理,发现当紫外线照射时间为3min,并在质量分数4%LiCl的平板中培养,可诱变出富马酸高产菌。利用溴甲酚绿加塑料小管的平板进行初筛,其生成的富马酸通过塑料小管底部渗透到指示培养基中,产生变色圈,根据变色圈大小可初步判断诱变株的产酸能力,大大缩短了筛选时间。在葡萄糖质量浓度为80g/L时,诱变后的3#菌种在发酵72h后能产生55.02g/L的富马酸,比原菌种的富马酸产量提高了2.49倍。  相似文献   

8.
The present experiment was undertaken to determine the effects of dietary addition of rumen-protected folic acid (RPFA) on ruminal fermentation, nutrient degradability, enzyme activity and the relative quantity of ruminal cellulolytic bacteria in growing beef steers. Eight rumen-cannulated Jinnan beef steers averaging 2.5 years of age and 419 ± 1.9 kg body weight were used in a replicated 4 × 4 Latin square design. The four treatments comprised supplementation levels of 0 (Control), 70, 140 and 210 mg RPFA/kg dietary dry matter (DM). On DM basis, the ration consisted of 50% corn silage, 47% concentrate and 3% soybean oil. The DM intake (averaged 8.5 kg/d) was restricted to 95% of ad libitum intake. The intake of DM, crude protein (CP) and net energy for growth was not affected by treatments. In contrast, increasing RPFA supplementation increased average daily gain and the concentration of total volatile fatty acid and reduced ruminal pH linearly. Furthermore, increasing RPFA supplementation enhanced the acetate to propionate ratio and reduced the ruminal ammonia N content linearly. The ruminal effective degradability of neutral detergent fibre from corn silage and CP from concentrate improved linearly and was highest for the highest supplementation levels. The activities of cellobiase, xylanase, pectinase and α-amylase linearly increased, but carboxymethyl-cellulase and protease were not affected by the addition of RPFA. The relative quantities of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes increased linearly. With increasing RPFA supplementation levels, the excretion of urinary purine derivatives was also increased linearly. The present results indicated that the supplementation of RPFA improved ruminal fermentation, nutrient degradability, activities of microbial enzymes and the relative quantity of the ruminal cellulolytic bacteria in a dose-dependent manner. According to the conditions of this experiment, the optimum supplementation level of RPFA was 140 mg/kg DM.  相似文献   

9.
Hydrogen is an important intermediate that is produced during carbohydrate fermentation to volatile fatty acid and utilized by methanogens to produce methane in the rumen. Ruminal volatile fatty acid and dissolved methane concentrations are more than 500 times greater than dissolved hydrogen concentration. Therefore, we hypothesized that dissolved hydrogen might have a higher sensitivity in response to dietary changes compared with volatile fatty acid and dissolved methane. Using goats, we investigated the effects of increasing dietary starch content (maize replaced with wheat bran) and supplementing with rhubarb rhizomes and roots on the relationships among dissolved hydrogen, dissolved methane and other fermentation end products. The study was conducted in a replicated 4×4 Latin square with a 2×2 factorial arrangement of four treatments: two starch levels (220 v. 320 g/kg dry matter (DM)), without and with rhubarb supplement (0% v. 2.8% of total mixed ration). Increased dietary starch and rhubarb supplementation did not alter volatile fatty acid concentrations or methane emissions in terms of g/day, g/g DM intake and g/g organic matter digested. However, goats fed the high-starch diet had greater dissolved hydrogen (P=0.005) and relative abundance of Selenomonas ruminantium (P<0.01), and lower (P=0.02) copy number of protozoa than those fed the low-starch diet. Rhubarb increased ruminal dissolved H2 (P=0.03) and total volatile fatty acid concentration (P<0.001), but decreased copies of bacteria (P=0.002). In conclusion, dissolved hydrogen appears to be more sensitive to dietary changes with starch content and rhubarb supplementation, when compared with volatile fatty acid concentrations and methane production.  相似文献   

10.
This study investigated the effects of disodium fumarate (DF) on methane emission, ruminal fermentation and microbial abundance in goats under different forage (F) : concentrate (C) ratios and fed according to maintenance requirements. Four ruminally fistulated, castrated male goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and the main factors being the F : C ratios (41 : 59 or 58 : 42) and DF supplementation (0 or 10 g/day). DF reduced methane production (P < 0.05) on average by 11.9%, irrespective of the F : C ratio. The concentrations of total volatile fatty acids, acetate and propionate were greater in the rumen of goats supplemented with DF (P < 0.05), whereas the abundance of methanogens was lower (P < 0.05). In high-forage diets, the abundance of Selenomonas ruminantium, a fumarate-reducing bacterium, was greater in the rumen of goats supplemented with DF. The abundance of fungi, protozoa, Ruminococus flavefaciens and Fibrobacter succinogenes were not affected by the addition of DF. Variable F : C ratios affected the abundance of methanogens, fungi and R. flavefaciens (P < 0.05), but did not affect methane emission. The result implied that DF had a beneficial effect on the in vivo rumen fermentation of the goats fed diets with different F : C ratios and that this effect were not a direct action on anaerobic fungi, protozoa and fibrolytic bacteria, the generally recognized fiber-degrading and hydrogen-producing microorganisms, but due to the stimulation of fumarate-reducing bacteria and the depression of methanogens.  相似文献   

11.
【目的】通过体外静态模拟瘤胃发酵法研究溶菌酶对瘤胃发酵、甲烷生成及微生物菌群结构的影响。【方法】采用单因素多水平试验设计,溶菌酶添加水平分别为0(L-0,对照组)、0.1 mg/100 m L(L-0.1)、1 mg/100 m L(L-1)、10 mg/100 m L(L-10)和100 mg/100 m L(L-100),定时测定产气量和甲烷产量,培养24 h后,发酵液用于发酵参数和微生物菌群数量的q PCR测定,其中L-0、L-1和L-100三个组发酵液同时进行16S r RNA基因Illumina高通量测序。【结果】与对照组相比,低剂量溶菌酶添加(L-0.1组)不影响甲烷产量、氨氮浓度、干物质消失率、有机物消失率和总挥发性脂肪酸等瘤胃发酵参数(P0.05);随着剂量提高,L-1处理组甲烷产量、氨氮浓度显著降低(P0.05),丙酸浓度显著增加(P0.05),并且干物质消失率、有机物消失率和总挥发性脂肪酸不受影响(P0.05);而较高剂量组(L-10和L-100组)虽然甲烷产量显著降低,丙酸浓度显著增加(P0.05),但干物质消失率和有机物消失率也显著降低(P0.05)。q PCR结果显示高剂量组(L-100组)总菌、原虫、甲烷菌数量与对照组相比显著降低(P0.05),而L-0.1、L-1和L-10组总菌、真菌和原虫数量与对照组相比均无显著变化(P0.05)。高通量测序主成分分析(PCA)显示对照组与溶菌酶添加组间瘤胃细菌组成的明显区分,说明添加溶菌酶显著改变了瘤胃细菌菌群结构。溶菌酶通过增加月形单胞菌和琥珀酸弧菌等丙酸生成菌的相对丰度,使更多的氢被用于生成丙酸,导致甲烷产量降低;溶菌酶可抑制普雷沃氏菌和拟杆菌属等蛋白降解菌的生长,进而减少蛋白质过度降解,降低氨氮浓度。【结论】添加适宜浓度(1 mg/100 m L)的溶菌酶可通过调控瘤胃微生态改变瘤胃发酵模式,降低瘤胃甲烷和氨的生成,短期内并不影响饲料消化。  相似文献   

12.
A study to compare two feeding systems, stall feeding (SF) and grazing plus supplementation (GR) was carried out, based on intake, performance and rumen fermentation characteristics of lambs. While SF animals received ad libitum complete feed blocks (CFB), GR animals were allowed grazing for 8 h on a pasture and supplemented with concentrate mixture at 250 g per head per day. Intake in grazing animals was determined using chromium III oxide as internal marker. Intake of dry matter (DM), crude protein (CP) and organic matter (OM) were higher ( P < 0.01) in SF than in GR animals. Similarly, digestibility of OM, CP and energy were higher ( P < 0.01) in SF animals. Average daily gain in SF animals (101 g) was significantly ( P < 0.01) higher than in GR animals (78 g) but total wool yield was similar for the two groups (856 g, SF; 782 g, GR). The pH of the rumen content, concentration of total volatile fatty acids and total activities of carboxymethyl cellulase, xylanase and esterase in the rumen liquor were similar. The concentrations (mg/dl) of total nitrogen (125, SF; 63, GR) and NH3-nitrogen (42, SF; 31, GR) were higher in SF animals than that of GR animals. A significantly higher activity ( P < 0.05) of microcrystalline cellulase (24.5 v. 7.7 units) and lower activity ( P < 0.05) of protease (309 v. 525 units), was observed in the rumen of SF animals than in GR animals. SF animals could therefore harness more energy through degradation of plant cell walls thus reducing breakdown of plant proteins as gluconeogenic source. The SF system of feeding where CFB was offered to sheep appeared superior to GR in terms of intake, nutrient utilisation and animal performance. Therefore the SF feeding system where CFB are offered to animals can be advocated as an alternative to grazing and supplementation feeding strategy for sheep production, especially where the pastures are highly eroded and need resting for regeneration or curing. The CFB feeding can also be adopted under adverse conditions like drought and famine, a common phenomenon in arid and semiarid conditions.  相似文献   

13.
The objective of this study was to evaluate the effects of malic acid (MA) supplementation on rumen fermentation, urinary excretion of purine derivatives (PDs) and whole gastro-intestinal tract feed digestibility in steers. Eight ruminally cannulated Simmental steers (465 ± 13 kg) were used in a replicated 4 × 4 Latin square design. The treatments were: control (without MA), LMA (MA-low), MMA (MA-medium) and HMA (MA-high) with 0.0, 7.8, 15.6 and 23.4 g MA per kg dry matter (DM), respectively. Diets consisted of corn stover and concentrate (60/40, DM basis). DM intake was approximately 9 kg per day, which was 90% of ad libitum intake including 5.4 kg corn stover and 3.6 kg concentrate. Ruminal pH (range of 6.91 to 6.56), ratio of acetate to propionate (range of 3.88 to 3.25), ammonia N (range of 9.03 to 6.42 mg/100 ml) and lactate (range of 91.25 to 76.31 mg/100 ml) decreased linearly as MA supplementation increased, whereas total volatile fatty acid (VFA) concentration (range of 55.68 to 61.49 mM) linearly (P < 0.05) increased with increase in MA supplementation. In situ ruminal neutral detergent fiber (aNDF) degradation of corn stover was improved but the crude protein (CP) degradability of concentrate mix was decreased with increasing the dose of MA. Urinary excretion of PDs was quadratically (P < 0.01) changed with altering MA supplementation (67.88, 72.74, 75.81 and 73.78 mmol/day for control, LMA, MMA and HMA, respectively). Similarly, digestibilities of DM, organic matter (OM), NDF and acid detergent fiber (ADF) in the total tract were also quadratically increased with increasing MA, and no differences in terms of CP and ether extract digestibility were observed. The results indicate that MA supplementation has the potential to improve rumen fermentation and feed digestion in beef cattle. The MA stimulates the digestive microorganisms or enzymes in a quadratic response. In the experimental conditions of this trial, the optimum MA dose was 15.6 g MA per kg DM.  相似文献   

14.
Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, the iclR gene was deleted to redirect the carbon flux through the glyoxylate shunt. In addition, the fumA, fumB, and fumC genes were also deleted to enhance fumaric acid formation. The resulting strain was able to produce 1.45 g/L of fumaric acid from 15 g/L of glucose in flask culture. Based on in silico flux response analysis, this base strain was further engineered by plasmid‐based overexpression of the native ppc gene, encoding phosphoenolpyruvate carboxylase (PPC), from the strong tac promoter, which resulted in the production of 4.09 g/L of fumaric acid. Additionally, the arcA and ptsG genes were deleted to reinforce the oxidative TCA cycle flux, and the aspA gene was deleted to block the conversion of fumaric acid into L ‐aspartic acid. Since it is desirable to avoid the use of inducer, the lacI gene was also deleted. To increase glucose uptake rate and fumaric acid productivity, the native promoter of the galP gene was replaced with the strong trc promoter. Fed‐batch culture of the final strain CWF812 allowed production of 28.2 g/L fumaric acid in 63 h with the overall yield and productivity of 0.389 g fumaric acid/g glucose and 0.448 g/L/h, respectively. This study demonstrates the possibility for the efficient production of fumaric acid by metabolically engineered E. coli. Biotechnol. Bioeng. 2013; 110: 2025–2034. © 2013 Wiley Periodicals, Inc.  相似文献   

15.

Aims

The objective of this study was to evaluate the potential of secondary plant metabolites from 38 sources to serve as antimethanogenic additives in ruminant diets. The effect of leaf tannins from these different plant sources on rumen fermentation, protozoal populations and methanogenesis was also studied.

Methods and Results

Samples (200 mg dry matter, DM) were incubated without and with polyethylene glycol (PEG)‐6000 (400 mg DM) as a tannin binder during 24‐h incubation in the in vitro Hohenheim gas system. In the leaf samples, total phenol (g kg?1 DM) was maximum in Pimenta officinalis (312) followed by Oenothera lamarckiana (185) and Lawsonia inermis (105). Of the 38 samples, condensed tannins exceeded 4·0 g kg?1 in only Alpinia galanga (7·50), Cinnamomum verum (4·58), Pelargonium graveolens (18·7) and Pimenta officinalis (23·2) and were not detected in seven samples. When the bioactivity of the leaf samples was assessed using the tannin bioassay, the percentage increase in the amount of gas produced during incubation of samples with the tannin‐binding agent PEG‐6000 over the amount produced during incubation without the tannin binder ranged from nil (zero) to 367%, with the highest being recorded with A. galanga leaves. The ratio of methane reduction per ml of total gas reduction was maximum with Rauvolfia serpentina (131·8) leaves, followed by Indigofera tinctoria (16·8) and Withania somnifera (10·2) leaves. Total and differential protozoal counts increased with added PEG in twenty‐two samples, maximum being in Pimenta officinalis. Increased accumulation of total volatile fatty acids during incubation with added PEG‐6000 was recorded, and the values ranged from zero to 61%. However, the increase was significant in only 11 of the 38 tannin sources tested indicating noninterference of tannin on in vitro fermentation of carbohydrates by the majority of samples tested. Conversely, in 26 of 38 plant sources, the leaf tannins reduced N‐digestibility as evidenced by increased accumulation of NH3‐N with added PEG.

Conclusions

Our study unequivocally demonstrated that plants containing secondary metabolites such as Rauvolfia serpentine, Indigofera tinctoria and Withania somnifera have great potential to suppress methanogenesis with minimal adverse effect of feedstuff fermentation.

Significance and Impact of the Study

It was established that methanogenesis was not essentially related to the density of protozoa population in vitro. The tannins contained in these plants could be of interest in the development of new additives in ruminant nutrition.  相似文献   

16.
A total of 156 plant species from 35 botanical families collected from diversified grasslands in the French Massif Central were screened in vitro for their potential to combine high nutritive value for ruminants and a reduced impact on the environment. The vegetative part of plants were analyzed for their chemical composition and incubated in a batch system containing buffered rumen fluid at 39°C for 24 h. The gas production and composition were recorded, and the fermentation end-product concentrations in the incubation medium and the in vitro true organic matter digestibility (IVTOMD) were determined. The results were expressed relative to perennial ryegrass (PRG) values used as a reference. We observed that no relationship between methane (CH4) and volatile fatty acids (VFA) was evidenced for 12 plants, the fermentation of these plants producing significantly less CH4 for a similar level of VFA production. In all, 13 plants showed 50% less CH4 production per unit of organic matter truly digested (OMTD) than PRG. Among these plants, two reduced CH4 by more than 80% and four species had an IVTOMD higher than 80%. The underlying modes of action seem to be different among plants: some result in an accumulation of H2 in the fermentation gas, but others do not. In terms of nitrogen (N) use efficiency, the fermentation of 37 plants halved the ratio between ammonia (N–NH3) and plant N content compared with PRG, of which six showed a complete absence of N–NH3 in the medium. Among these plants, four maintained the IVTDMO at values not significantly different from PRG (P>0.05). Considering the multi-criteria selection, 16 plants showed simultaneously a reduction of more than 80% in N–NH3 production and 30% in CH4 emission per unit of OMTD compared with PRG, including three with an IVTOMD higher than 80%. Overall, the botanical families that reduced simultaneously CH4 and N–NH3 most efficiently were the Rosaceae, Onagraceae, Polygonaceae and Dipsacaceae. The Onagraceae also gave high values for IVTOMD.  相似文献   

17.
The objectives of the trial were to compare the effects of supplementing rare earth elements (REE) lanthanum (La), cerium (Ce) and praseodymium (Pr) on rumen fermentation, nutrient digestion, methane (CH4) production, nitrogen (N) balance and plasma biochemical parameters in beef cattle. Four Simmental male cattle, aged 12 months, with initial average liveweight of 333 ± 9 kg and fitted with rumen cannulas, were fed with a basal ration composed of concentrate mixture and maize silage. Animals received a basal ration without adding REE (Control) or three treatments, i.e. supplementing LaCl3, CeCl3 or PrCl3 at 204 mg/kg DM to the basal ration, respectively, which were allocated in a 4 × 4 Latin square design. Each experimental period lasted 15 d, consisting of 12 d for pre-treatment and three subsequent days for sampling. Results showed that all tested levels of REE tended to increase neutral detergent fibre digestibility (p = 0.064) and tended to decrease rumen CH4 production (p = 0.056). Supplementing LaCl3 and CeCl3 decreased total N excretion and urinary N excretion, increased N retention (< 0.05), tended to increase total urinary purine derivatives (PD) (= 0.053) and microbial N flow (= 0.095), whereas supplementing PrCl3 did not affect N retention, urinary PD and microbial N flow. No differences were found in the effects of nutrient digestibility, CH4 production and plasma biochemical parameters among LaCl3, CeCl3 and PrCl3. Further trials using graded levels of LaCl3, CeCl3 and PrCl3 in a wide range are needed to obtain more pronounced results for comparing effects of La, Ce and Pr on rumen fermentation and nutrient digestion in beef cattle.  相似文献   

18.
The effects of selenium (Se) on ruminant microbial fermentation were investigated in vitro using rumen microflora collected from a rumen-fistulated dairy cow. First, the effects ofl-selenomethionine (SeMet; at 0.2 or 2 ppm Se) in the presence or absence of wheat bran (WB, 500 mg per incubation flask) were evaluated. Second, the effects of several forms of Se (elemental Se: 50 ppm Se; sodium selenite: 2 ppm Se; SeMet: 2 ppm Se) were compared. Results showed that the amounts of short-chain fatty acids (SCFAs) tended to be increased by SeMet treatment, whereas SeMet in the presence of WB transiently suppressed fermentation. The addition of SeMet tended to increase the production of acetate while reducing the production of butyrate with and without WB supplementation. Among the different Se compounds tested, the amounts of SCFAs were greater with SeMet treatment, which yielded a higher proportion of acetate compared to other treatments. Selenite did not influence the total SCFAs concentrations; however, it increased the relative proportion of butyrate at the expense of acetate. Elemental Se did not significantly affect fermentation. Higher bacterial Se concentrations were observed for selenite than for SeMet. It was concluded that Se supplementation can influence rumen microbial fermentation and that Se compounds differ in this regard.  相似文献   

19.
This in vitro study aimed at understanding how abiotic, that is chemical and electrochemical potentials, and biotic factors combine to impact the outputs of rumen volatile fatty acid (VFA). Using a 48-run design optimized by means of an exchange algorithm, the curvilinear effects of pH, Eh and partial pressure of dihydrogen (H2) on fermentation yields were investigated in 6-h batch cultures of mixed rumen microbes, fed on glucose so as to bypass the enzymatic hydrolysis and conversion steps preceding the glycolytic pathway. The role played by rumen microbiota in the expression of these effects was explored by testing three inocula grown on feeds supplying a microflora adapted to fibre, slowly degradable or readily degradable starch as the dominant dietary polysaccharide. Data were fitted to 2nd-order polynomial models. In fibre-adapted cultures, the yields of major VFA were mainly influenced by pH and H2 partial pressure, in opposite ways. In wheat grain-adapted cultures, the VFA yields underwent the opposite influences of pH, in a curvilinear way for propionate, and Eh since acetate production yield was not significantly modified by any factor. In maize grain-adapted cultures, acetate production yield was not modified by any factor but H2 in a quadratic way when the production yields of higher VFA underwent opposite influences of pH and Eh. In conclusion, the effects of environmental factors were dependent on the nature of the inoculum, a major source of variation, and more particularly on its adaptation to high- or low-fibre diets. These effects were loosely interrelated, the pH being the most active factor before the Eh and H2 partial pressure.  相似文献   

20.
AIMS: To assess the effect of protozoal species on rumen fermentation characteristics in vitro. METHODS AND RESULTS: Entodinium caudatum, Isotricha intestinalis, Metadinium medium, and Eudiplodinium maggii from monofaunated wethers and mixed protozoa from conventional wethers were obtained by centrifugation, re-suspended at their normal densities in rumen fluid supernatants from defaunated or conventional wethers and incubated in vitro. The presence of protozoa increased the concentration of ammonia and altered the volatile fatty acids balance with more acetate and butyrate produced at the expense of propionate. Differences among species were observed, notably in the production of methane, which increased with E. caudatum as compared to other ciliates and to defaunated and mixed protozoa treatments (P < 0.05). The increased methanogenesis was not correlated to protozoal biomass indicating that the metabolism of this protozoan and/or its influence on the microbial ecosystem was responsible for this effect. CONCLUSIONS: Entodinium caudatum stimulated the production of methane, a negative effect that was reinforced by a concomitant increase in protein degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: Comparison of individual species of protozoa highlighted the particular influence of E. caudatum on rumen fermentation. Its elimination (targeted defaunation) from the rumen could reduce methane production without affecting feed degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号