首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two feeding experiments were carried out with castrated male pigs weighing between 10 and 30 kg to study acute and persisting dietary effects on growth and on protein and energy metabolism in growing pigs. Pigs were fed semi-synthetic isoenergetic and isonitrogenous diets at 50% protein requirement with either soy protein isolate (SPI) or casein (CAS) as sole protein source. Intake of protein and ME amounted to 9% w/w and 1800 kJ · kg BW ? 0.62 · d ? 1 in Exp. 1, respectively, and 9% w/w and 1430 kJ · kg BW ? 0.62 · d ? 1 in Exp. 2. The CAS diet was supplemented by Lys, Met, Thr and Trp. In Exp. 1 (acute effects), 18 pigs received the CAS diet for 24 days (period 1); 9 pigs were then switched to a SPI diet whereas 9 pigs continued on the CAS diet for another 31 days (period 2). In Exp. 2, a third period of 31 days was added in which the SPI group was switched back to CAS diet. The control group was fed on the CAS diet throughout Exp. 2 (86 days). Altogether the majority of parameters were not affected neither comparing SPI with CAS in Exp. 1 nor inspecting possible persistence of effects in Exp. 2. In detail, in Exp. 1 SPI compared to CAS feeding resulted in a lower efficiency of protein utilisation and lower protein retention. Attendant upon the lower protein retention an increased energy retention as fat was only observed in tendency. SPI feeding caused a decreased body weight, thyroid weight and increased hepatic carbohydrate content that persisted after the diet was changed back to CAS (Exp. 2).  相似文献   

3.
Two feeding experiments were carried out with castrated male pigs weighing between 10 and 30 kg to study acute and persisting dietary effects on growth and on protein and energy metabolism in growing pigs. Pigs were fed semi-synthetic isoenergetic and isonitrogenous diets at 50% protein requirement with either soy protein isolate (SPI) or casein (CAS) as sole protein source. Intake of protein and ME amounted to 9% w/w and 1800 kJ x kg BW (-0.62) x d(-1) in Exp. 1, respectively, and 9% w/w and 1430 kJ x kg BW(-0.62) x d(-1) in Exp. 2. The CAS diet was supplemented by Lys, Met, Thr and Trp. In Exp. 1 (acute effects), 18 pigs received the CAS diet for 24 days (period 1); 9 pigs were then switched to a SPI diet whereas 9 pigs continued on the CAS diet for another 31 days (period 2). In Exp. 2, a third period of 31 days was added in which the SPI group was switched back to CAS diet. The control group was fed on the CAS diet throughout Exp. 2 (86 days). Altogether the majority of parameters were not affected neither comparing SPI with CAS in Exp. 1 nor inspecting possible persistence of effects in Exp. 2. In detail, in Exp. 1 SPI compared to CAS feeding resulted in a lower efficiency of protein utilisation and lower protein retention. Attendant upon the lower protein retention an increased energy retention as fat was only observed in tendency. SPI feeding caused a decreased body weight, thyroid weight and increased hepatic carbohydrate content that persisted after the diet was changed back to CAS (Exp. 2).  相似文献   

4.
The study aimed at determining the effect of protein type and indigestible carbohydrates on the concentration of microbial metabolites in the large intestine of pigs. The experiment involved 36 pigs (15 kg initial body weight) divided into six groups, fed cereal-based diets with highly digestible casein (CAS) or potato protein concentrate (PPC) of lower ileal digestibility. Each diet was supplemented with cellulose, raw potato starch or pectin. After 2 weeks of feeding, pigs were sacrificed and samples of caecal and ascending, transverse and descending colon digesta were collected for analyses of microbial metabolites. PPC increased the concentration of ammonia, p-cresol, indole, n-butyrate, isovalerate and most of the amines in comparison with CAS. Pectin reduced the production of p-cresol, indole, phenylethylamine and isovalerate in the large intestine compared with potato starch. Starch and pectin increased mainly the concentration of n-butyrate and n-valerate in the colon compared to cellulose. Interaction affected mainly amines. Feeding PPC diet with potato starch considerably increased putrescine, cadaverine, tyramine and total amines concentrations compared with PPC diets with pectin and cellulose, whereas feeding CAS diet with starch reduced their concentrations. There was also a significant effect of interaction between diet and intestinal segment on microbial metabolites. In conclusion, PPC intensifies proteolysis in the large intestine and also n-butyrate production. Raw starch and pectin similarly increase n-butyrate concentration but pectin inhibits proteolysis more efficiently than starch. The interactive effects of both factors indicate that pectin and cellulose may beneficially affect fermentative processes in case of greater protein flow to the large intestine.  相似文献   

5.
Combined experiments of the isotope dilution method of [1-13C]leucine, open-circuit calorimetry and nitrogen (N) balance test were used to determine the effect of the source of N supplementation on N balance, whole body protein synthesis (WBPS) and degradation (WBPD) in sheep. The experiment was performed in a replicated 3 × 3 Latin square design. The control diet consisted of timothy hay, ground maize and soybean meal. The urea diet was the control diet supplemented with 1.5% urea. The SBM diet contained the same N and metabolisable energy as the urea diet, which was reached by changing ground maize and soybean meal weights of the control diet. Nitrogen retention was greater (p < 0.05) for the urea diet than the control and SBM diets. Plasma urea concentrations were highest for the SBM diet, followed by the urea diet, and the control diet was lowest. The WBPS and WBPD did not differ between diets, but were numerically lower for the urea and SBM diets. These results suggest that in sheep, urea supplementation influenced N retention without clear changes in WBPS and WBPD.  相似文献   

6.
The portal appearance rates and net rates of amino acids’ absorption were studied in rats fed semi-synthetic diets containing either casein or lactalbumin (CAS and LA, respectively) as the only protein sources. Rats were pre-adapted to the experimental diets for 5 days prior to the absorption studies. Rats fed the LA diet had higher (p < 0.05) portal vein concentrations of free essential amino acids than those fed the CAS diet at 0, 60, 105 and 150 min after feeding. Portal and arterial concentrations of arginine, leucine, tryptophan, lysine and methionine were higher (p < 0.05) in rats fed LA at most time points tested, while concentrations of tyrosine were higher (p < 0.05) in CAS fed rats. When portal flow rates were compared, values for arginine, threonine, alanine, leucine, tryptophan and lysine were higher (p < 0.05) in LA at most time points tested, while proline, tyrosine and valine were higher (p < 0.05) for CAS fed rats after 60 and 105 min feeding. Portal blood flow varied (p < 0.05) with time in rats fed protein-free or LA diets, and was higher (p < 0.05) than that of CAS at 105 min. Intestinal net rates of absorption of tyrosine, valine, leucine and lysine were higher (p < 0.05) for LA fed rats as compared to those fed CAS at most time points tested, while alanine and proline net rates were higher (p < 0.05) for CAS fed rats at 60, 105 and 150 min. Amounts of protein in stomach contents of rats fed the CAS diet were significantly higher (p < 0.05) than those in LA fed rats at 60, 105 and 150 min after feeding. The relative liver weight of the rats fed the CAS diet was lower (p < 0.05) than that of animals fed the LA diet. Lower (p < 0.05) liver glycogen and lipid contents were determined in rats fed CAS diet respect to LA or protein-free fed rats. Results indicate that dietary and plasma amino acids profile are only partially related, and that under normal feeding conditions amino acids from CAS and LA are absorbed at different rates, which is likely to affect liver composition and metabolism.  相似文献   

7.
Abstract

Responses of whole body protein synthesis (WBPS) and glucose irreversible loss rate (ILR) were compared between dietary starch and sucrose in four male goats. Diets were fed at 1.2 times maintenance requirements of ME and CP with 30% of the ME as starch, starch plus sucrose or sucrose, twice daily. The diets consisted of 33, 32, 11 and 24% of alfalfa hay, corn, soybean meal and the carbohydrates, respectively. The WBPS and glucose ILR during 5 – 7 h after feeding were determined by an isotope dilution method of [2H5]phenylalanine, [2H2]tyrosine, [2H4]tyrosine and [13C6]glucose. Sucrose elevated ammonia nitrogen and lowered acetate concentrations in the rumen, but did not differ from starch in nitrogen retention. Glucose ILR and WBPS were similar between the carbohydrates. It was concluded that dietary sucrose would have effects similar to starch on WBPS and glucose kinetics in the absorptive state in goats fed a high-concentrate diet.  相似文献   

8.
In utero environment is known to affect fetal development. Especially, the distinct fetal programming of carcinogenesis was reported in offspring exposed to maternal diets containing soy protein isolate (SPI) or genistein. Therefore, we investigated whether maternal consumption of low-isoflavone SPI or genistein alters hepatic gene expression and liver development in rat offspring. Female Sprague–Dawley rats were fed a casein diet, a low-isoflavone SPI diet or a casein diet supplemented with genistein (250 mg/kg diet) for 2 weeks before mating and throughout pregnancy and lactation. Male offspring were studied on postnatal day 21 (CAS, SPI and GEN groups). Among 965 differentially expressed hepatic genes related to maternal diet (P<.05), the expression of 590 was significantly different between CAS and SPI groups. Conversely, the expression of 88 genes was significantly different between CAS and GEN groups. Especially, genes involved in drug metabolism were significantly affected by the maternal diet. SPI group showed increased cell proliferation, reduced apoptosis and activation of the mTOR pathway, which may contribute to a higher relative liver weight compared to other groups. We observed higher serum homocysteine levels and lower global and CpG site-specific DNA methylation of Gadd45b, a gene involved in cell proliferation and apoptosis, in SPI group compared to CAS group. Maternal SPI diet also reduced histone H3-Lysine 9 (H3K9) trimethylation and increased H3K9 acetylation in offspring. These results demonstrate that maternal consumption of a low-isoflavone SPI diet alters the hepatic gene expression profile and liver development in offspring possibly by epigenetic processes.  相似文献   

9.
A feeding experiment with piglets was performed to examine the efficacy of a wet preservation of Fusarium (FUS)-contaminated maize with sodium sulphite (SoS) based on deoxynivalenol (DON) and zearalenone (ZEN) residue levels in urine, bile and liquor and health traits of piglets. For this purpose, 80 castrated male piglets (7.57 ± 0.92 kg BW) were assigned to four treatment groups: CON? (control diet, with 0.09 mg DON and <0.01 mg ZEN/kg diet), CON+ (diet CON?, wet-preserved with 5 g SoS/kg maize; containing 0.05 mg DON and <0.01 mg ZEN/kg diet), FUS? (diet with mycotoxin-contaminated maize; containing 5.36 mg DON and 0.29 mg ZEN/kg diet), and FUS+ (diet FUS?, wet-preserved with 5 g SoS/kg maize; resulting in 0.83 mg DON and 0.27 mg ZEN/kg diet). After 42 d, 40 piglets (n = 10 per group) were sampled. A clear reduction of DON levels by approximately 75% was detected in all specimens of pigs fed diet FUS+. ZEN was detected in all urine, bile and liquor samples, while their metabolites were only detectable in urine and bile. Additionally, their concentrations were not influenced by SoS treatment. Among the health-related traits, feeding of FUS diets increased the total counts of leukocytes and segmented neutrophil granulocytes irrespective of SoS treatment. SoS treatment increased the total blood protein content slightly with a similar numerical trend in albumin concentration. These effects occurred at an obviously lower level in FUS-fed groups. Moreover, SoS treatment recovered the reduction of NO production induced by feeding diet FUS? indicating an effect on the redox level. As this effect only occurred in group FUS+, it is obviously related to the adverse effects of the Fusarium toxins. In conclusion, treatment of FUS-contaminated maize with SoS decreased the inner exposure with DON as indicated by the lower DON levels in various piglet specimens. However, health-related traits did not consistently reflect this decreased exposure.  相似文献   

10.
Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth have been less well examined. The current study compared effects of feeding soy protein isolate (SPI), WPH and RPI for 14 d on tibial bone mineral density (BMD) and bone mineral content (BMC) in intact and ovariectomized (OVX) rapidly growing female rats relative to animals fed casein (CAS). The effects of estrogenic status on responses to SPI were also explored. Tibial peripheral quantitative computerized tomography (pQCT) showed all three protein sources had positive effects on either BMD or BMC relative to CAS (P < 0.05), but SPI had greater effects in both intact and OVX female rats. SPI and E2 had positive effects on BMD and BMC in OVX rats (P < 0.05). However, trabecular BMD was lower in a SPI + E2 group compared to a CAS + E2 group. In OVX rats, SPI increased serum bone formation markers, and serum from SPI-fed rats stimulated osteoblastogenesis in ex vivo. SPI also suppressed the bone resorption marker RatLaps (P < 0.05). Both SPI and E2 increased alkaline phosphatase gene expression in bone, but only SPI decreased receptor activator of nuclear factor-kappaB ligand (RANKL) and estrogen receptor gene expression (P < 0.05). These data suggest beneficial bone effects of a soy diet in rapidly growing animals and the potential for early soy consumption to increase peak bone mass.  相似文献   

11.

Background

Previous reports suggest that beneficial effects of soy on bone quality are due to the estrogenic actions of isoflavone phytochemicals associated with the protein. However, mechanistic studies comparing the effects of soy diet and estrogens on bone, particularly in rapidly growing animals are lacking.

Methodology and Principal Findings

We studied the effects of short term feeding of soy protein isolate (SPI) on bone in comparison to the effects of 17β-estradiol (E2) in pre-pubertal rats. Female rats were weaned to one of 4 treatments: 1) a control casein-based diet (CAS); 2) CAS with subcutaneous E2 (10 µg/kg/d) (CAS+E2); 3) a SPI-containing diet (SPI); or 4) SPI with subcutaneous E2 (SPI) or SPI with 10 µg/kg/d E2 (SPI+E2) for 14 days beginning on postnatal day 20. SPI increased while E2 decreased bone turnover compared to CAS. In contrast, both treatments decreased serum sclerostin levels. Microarray analysis of RNA isolated from bone revealed 652 genes regulated by SPI, 491 genes regulated by E2, and 266 genes regulated by both SPI diet and E2 compared to CAS. The expression of caveolin-1, a protein localized in the cell membrane, was down-regulated (p<0.05) in rats fed SPI, but not by E2 compared to rats fed casein. Down-regulation of caveolin-1 by SPI was associated with increased BMP2, Smad and Runx2 expression in bone and osteoblasts (p<0.05).

Conclusions/Significance

These results suggest SPI and E2 have different effects on bone turnover prior to puberty. Approximately half of the genes are regulated in the same direction by E2 or SPI, but in combination, SPI blocks the estrogen effects and returns the profile towards control levels. In addition, there are E2 specific and SPI-specific gene changes related to regulation of bone formation.  相似文献   

12.
Nitrogen balances (six days) were determined in male Wistar rats during feeding a diet with sufficient protein or a nearly protein-free diet (n = 2×24), and then during three days of starvation (n = 2×12). The objective was to evaluate the effect of protein withdrawal on minimum nitrogen excretion in urine (UN), corresponding to endogenous UN, during feeding and subsequent starvation periods. The rats fed the protein free-diet had almost the same excretion of urinary N during feeding and starvation (165 and 157 mg/kg W0.75), while it was 444 mg/kg W0.75 in rats previously fed with protein, demonstrating a major influence of protein content in a diet on Nexcretion during starvation. Consequently, the impact of former protein supply on Nlosses during starvation ought to be considered when evaluating minimum N requirement necessary to sustain life.  相似文献   

13.
The aim of this study was to determine the effect of feeding a fish oil (FO)-containing diet on lipid and protein metabolism, postprandial glycaemia and body weight in young, lean, adult dogs. Eight female Beagles were randomly assigned to one of two isonitrogenous and isoenergetic diets, Control or FO, in a crossover design. At the beginning of the experiment and at 30 and 60 d, a baseline blood sample was collected and the dogs then were fed their daily ration. Nitrogen balance began at 07:00 h on day 63 of each experimental period and ended at 07:00 h on day 69. On day 66 of each period, a single dose (7.5 mg/kg) of 15N-glycine was administered orally to each dog via gelatin capsule. Postprandial glycaemia did not differ between treatments or among sampling days within treatment. Cholesterol concentration was increased (p < 0.05) on the Control treatment throughout the experiment when compared to values of day 0. Dogs fed the FO treatment had higher plasma triglyceride and ghrelin concentrations than those fed the Control treatment. Body weight and food intake did not differ between dietary treatments. Faecal excretion was increased (p < 0.05) in the FO treatment. Dry matter digestibility was decreased (p < 0.05) and fat digestibility tended (p < 0.10) to decrease in the FO treatment. Overall, feeding a FO-containing diet showed a protective effect against the rise of plasma cholesterol and it increased plasma ghrelin concentration. However, FO supplementation did not appear to affect protein metabolism or postprandial glycaemia in adult lean dogs.  相似文献   

14.
The effect on genetically obese mice of a milk whey protein isolate (WPI) and soy protein isolate (SPI) and their hydrolysates (WPI-H, SPI-H) on the rate of body fat disappearance was investigated. Male yellow KK mice were made obese by feeding with a high-fat diet containing 30% fat from 6 to 10 weeks of age. They were then fed with an energy-restricted low fat (5.0%) and high protein (35% WPI, WPI-H, SPI or SPI-H) diet for 2 weeks at the 60% level of energy intake by mice on laboratory feed. During the weight reduction period, the body weight of the WPI, WPI-H, SPI and SPI-H groups changed by -9.1, -9.1, -10.0 and -11.1 g/14 days, respectively, the reduction being significantly lower in the SPI-H group than in the WPI and WPI-H groups. The plasma total cholesterol level was significantly lower with the SPI diet, and the plasma glucose level was lower with the SPI and SPI-H diets than with the WPI and WPI-H diets. Although the body protein content was comparable in all the groups, the body fat content was significantly lower with the SPI diet than with the WPI diet, and was also significantly lower with the SPI-H diet than with the WPI and WPI-H diets. The weight of the perirenal fat pads was significantly lower with the SPI-H diet than with the WPI and WPI-H diets. These results indicate that SPI and SPI-H are suitable protein sources in an energy-restricted diet for treating obesity.  相似文献   

15.
Leucine kinetic and nitrogen balance (NBAL) methods were used to determine the dietary protein requirements of strength athletes (SA) compared with sedentary subjects (S). Individual subjects were randomly assigned to one of three protein intakes: low protein (LP) = 0.86 g protein.kg-1.day-1, moderate protein (MP) = 1.40 g protein.kg-1.day-1, or high protein (HP) = 2.40 g protein.kg-1.day-1 for 13 days for each dietary treatment. NBAL was measured and whole body protein synthesis (WBPS) and leucine oxidation were determined from L-[1-13C]leucine turnover. NBAL data were used to determine that the protein intake for zero NBAL for S was 0.69 g.kg-1.day-1 and for SA was 1.41 g.kg-1.day-1. A suggested recommended intake for S was 0.89 g.kg-1.day-1 and for SA was 1.76 g.kg-1.day-1. For SA, the LP diet did not provide adequate protein and resulted in an accommodated state (decreased WBPS vs. MP and HP), and the MP diet resulted in a state of adaptation [increase in WBPS (vs. LP) and no change in leucine oxidation (vs. LP)]. The HP diet did not result in increased WBPS compared with the MP diet, but leucine oxidation did increase significantly, indicating a nutrient overload. For S the LP diet provided adequate protein, and increasing protein intake did not increase WBPS. On the HP diet leucine oxidation increased for S. These results indicated that the MP and HP diets were nutrient overloads for S. There were no effects of varying protein intake on indexes of lean body mass (creatinine excretion, body density) for either group. In summary, protein requirements for athletes performing strength training are greater than for sedentary individuals and are above current Canadian and US recommended daily protein intake requirements for young healthy males.  相似文献   

16.
Abstract

The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets containing no BPM served as controls, i.e. for minks diet M1, for pigs P1; the experimental diets contained increasing levels of BPM to replace fish meal (minks) or soybean meal (pigs), so that up to 17% (P2), 20% (M2), 35% (P3), 40% (M3), 52% (P4), and 60% (M4) of digestible N was BPM derived. Protein turnover rate was measured by means of the end-product method using [15N]glycine as tracer and urinary nitrogen as end-product. In minks, protein flux, synthesis, and breakdown increased significantly with increasing dietary BPM. In pigs, diet had no observed effect on protein turnover rate. The intake of nucleic acid nitrogen (NAN) increased from 0.15 g/kg W0.75 on M1 to 0.26 g/kg W0.75 on M3 and M4 in the mink experiment, and from 0.08 g/kg W0.75 on P1 to 0.33 g/kg W0.75 on P4 in the pig experiment. Increased NAN intake led, in both experiments, to increased allantoin excretion. Analysis of species effects showed that minks excreted 1.72 mmol/kg W0.75 of allantoin, significantly more than the 0.95 mmol/kg W0.75 excreted by pigs. In minks, approximately 96% of the excreted purine base derivatives consisted of allantoin, whereas in pigs approximately 93% did. Thus, increasing the dietary content of BPM increased protein turnover rate in minks but not in pigs, and allantoin excretion increased with increasing dietary BPM although it seemed that mink decomposed purine bases to their end-product more completely than pigs did. Collectively these data show that BPM is a suitable protein source for pigs and mink, and recorded differences between species were to a large extent due to differences in protein retention capacity and muscle mass.  相似文献   

17.
The aim of the experiment on 100 cross-bred barrows was to compare commercial diets for fattening pigs based on either soya bean meal (SBM) imported from non-European countries with diets based on a mixture of locally produced rape seed meal, distillers’ dried grains with solubles and soya beans as main protein sources. In addition, these both types of diets were processed by two different technical feed treatments, i.e. coarse grinding without hydrothermal treatment or fine grinding and pelleting. With only few exceptions, nutrients of the diet without SBM were more digestible (p < 0.05) resulting in a higher metabolisable energy (ME) content. Fine grinding and pelleting increased also the ME content and the nutrient digestibility with the exception of crude fibre. Higher feed intake of animals that fed diets without SBM (p < 0.01) resulted in higher average daily gain (p < 0.01). However feeding this diet, the higher digestibility was not reflected in a decreased feed-to-gain ratio (FGR), but fine grinding and pelleting reduced FGR (p < 0.001). A higher pH value and a lower DM content of caecal chymus were detected in animals that received coarsely ground feed (< 0.05). Animals that fed finely ground and pelleted feed had higher slaughter and relative liver weights and higher blood cholesterol concentrations (p = 0.040). The urea concentrations of blood were lower (p = 0.019) after feeding diets without SBM. In conclusion, SBM imported from non-European countries can be replaced by alternative local protein sources without compromising digestibility or performances of animals. Although fine grinding and thermal treatment particularly seemed to be advantageous for digestibility and performance, the possible risk of development of stomach lesions should be considered.  相似文献   

18.
Pigs might be exposed to lipopolysaccharides (LPS) and deoxynivalenol (DON) at the same time, and both toxins are thought to interactively affect the intestinal barrier, the innate immune system, and the xenobiotics metabolism. Hence, we aimed at examining the single and combined effects of both toxins on nutrient digestibility and DON metabolism. For this purpose, barrows (26?±?4 kg) were fed restrictedly either a control diet (CON) or a diet contaminated with 3.1 mg DON/kg (DON) for 37 days. At day 37 of the experiment, pigs were infused intravenously for 60 min either with 100 μg DON/kg body weight (BW) (CON-DON), 7.5 μg LPS/kg BW (CON-LPS, DON-LPS) or a combination of both substances (CON-DON?+?LPS), or physiological saline (CON-CON, DON-CON). Blood samples were collected frequently until 3.25 h before the pigs were sacrificed for bile, liver, and kidney collection. The apparent digestibility of N-free extractives was significantly increased by 1 % when the DON-contaminated diet was fed. The total DON content in blood was significantly higher in endotoxemic pigs (34.8 ng/mL; CON-DON?+?LPS) when compared to the pigs infused with DON alone (18.8 ng/mL; CON-DON) while bile concentrations were not influenced by LPS. DON residue levels in liver and kidney closely reflected the treatment effects as described for blood. In contrast to DON infusion, the LPS challenge resulted in a significantly lower total DON concentration (13.2 vs. 7.5 ng/mL in groups DON-CON and DON-LPS, respectively) when the pigs were exposed to DON through the diet. The conjugation degree for DON in blood and bile was not influenced by treatments. In conclusion, endotoxemic pigs are characterized by higher DON residue levels in blood, liver, and kidney, probably by a compromised elimination.  相似文献   

19.
Dietary intake of glutamate by postweaning pigs is markedly reduced due to low feed consumption. This study was conducted to determine the safety and efficacy of dietary supplementation with monosodium glutamate (MSG) in postweaning pigs. Piglets were weaned at 21 days of age to a corn and soybean meal-based diet supplemented with 0, 0.5, 1, 2, and 4 % MSG (n = 25/group). MSG was added to the basal diet at the expense of cornstarch. At 42 days of age (21 days after weaning), blood samples (10 mL) were obtained from the jugular vein of 25 pigs/group at 1 and 4 h after feeding for hematological and clinical chemistry tests; thereafter, pigs (n = 6/group) were euthanized to obtain tissues for histopathological examinations. Feed intake was not affected by dietary supplementation with 0–2 % MSG and was 15 % lower in pigs supplemented with 4 % MSG compared with the 0 % MSG group. Compared with the control, dietary supplementation with 1, 2 and 4 % MSG dose-dependently increased plasma concentrations of glutamate, glutamine, and other amino acids (including lysine, methionine, phenylalanine and leucine), daily weight gain, and feed efficiency in postweaning pigs. At day 7 postweaning, dietary supplementation with 1–4 % MSG also increased jejunal villus height, DNA content, and antioxidative capacity. The MSG supplementation dose-dependently reduced the incidence of diarrhea during the first week after weaning. All variables in standard hematology and clinical chemistry tests, as well as gross and microscopic structures, did not differ among the five groups of pigs. These results indicate that dietary supplementation with up to 4 % MSG is safe and improves growth performance in postweaning pigs.  相似文献   

20.
It is well observed that feeding energy-dense diets in dairy cows during the dry period can cause metabolic imbalances after parturition. Especially dairy cows with high body condition score (BCS) and fed an energy-dense diet were prone to develop production diseases due to metabolic disturbances postpartum. An experiment was conducted to determine the effects of an energy-dense diet and nicotinic acid (NA) on production and metabolic variables of primiparous and multiparous cows in late pregnancy and early lactation which were not pre-selected for high BCS. Thirty-six multiparous and 20 primiparous German Holstein cows with equal body conditions were fed with energy-dense (60% concentrate/40% roughage mixture; HC group) or adequate (30% concentrate/70% roughage mixture; LC group) diets prepartum. After parturition, concentrate proportion was dropped to 30% for all HC and LC groups and was increased to 50% within 16 days for LC and within 24 days for HC cows. In addition, half of the cows per group received 24 g NA supplement per day and cow aimed to attenuate the lipid mobilisation postpartum. Feeding energy-dense diets to late-pregnant dairy cows elevated the dry matter (p < 0.001) and energy intake (p < 0.001) as well as the energy balance (p < 0.001) without affecting the BCS (p = 0.265) during this period. However, this did not result in any metabolic deviation postpartum as the effects of prepartum concentrate feeding were not carried over into postpartum period. Multiparous cows responded more profoundly to energy-dense feeding prepartum compared with primiparous cows, and parity-related differences in the transition from late pregnancy to lactation were obvious pre- and postpartum. The supplementation with 24 g NA did not reveal any effect on energy metabolism. This study clearly showed that energy-dense feeding prepartum did not result in metabolic imbalances postpartum in multiparous and primiparous cows not selected for high BCS. A genetic predisposition for an anabolic metabolic status as indicated by high BCS may be crucial for developing production diseases at the onset of lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号