首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The aim of the present experiment was to determine if a niacin supplementation of 6 g/d to lactating dairy cow diets can compensate negative effects of a rumen nitrogen balance (RNB) deficit. A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows were successively assigned to one of three diets consisting of 10 kg maize silage (dry matter [DM] basis) and 7 kg DM concentrate: Diet RNB- (n = 6) with energy and utilisable crude protein at the duodenum (uCP) according to the average requirement of the animals but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); Diet RNB0 (n = 7) with energy, uCP and a RNB (0.08 g N/MJ ME) according to the average requirement of the animals and, finally, Diet NA (n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. Samples of milk were taken on two consecutive days, blood samples were taken on one day pre- and post-feeding and faeces and urine were collected completely over five consecutive days. The negative RNB reduced milk and blood urea content and apparent total tract digestibility of DM, organic matter (OM) and neutral detergent fibre (NDF). Also N excretion with urine, the total N excreted with urine and faeces and the N balance were reduced when the RNB was negative. Supplementation of niacin elevated plasma glucose concentration after feeding and the N balance increased. Supplementing the diet with a negative RNB with niacin led to a more efficient use of dietary N thereby avoiding the negative effects of the negative RNB on the digestibility of DM, OM and NDF.  相似文献   

2.
The aim of the present experiment was to ascertain if a daily niacin supplementation of 6 g/cow to lactating dairy cow diets can compensate for the decrease in rumen microbial fermentation due to a negative rumen nitrogen balance (RNB). A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows was used. The diets consisted of 10 kg dry matter (DM) maize silage and 7 kg DM concentrate and differed as follows: (i) Diet RNB- (n = 6) with energy and utilisable crude protein (CP) at the duodenum (uCP) according to the average requirement of the animals, but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); (ii) Diet RNB0 (n = 7) with energy, uCP, and RNB (0.08 g N/MJ ME) according to the average requirement of the animals; and (iii) Diet NA (nicotinic acid; n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. The negative RNB affected the rumen fermentation pattern and reduced ammonia content in rumen fluid and the daily duodenal flows of microbial CP (MP) and uCP. Niacin supplementation increased the apparent ruminal digestibility of neutral detergent fibre. The efficiency of microbial protein synthesis per unit of rumen degradable CP was higher, whereby the amount of MP reaching the duodenum was unaffected by niacin supplementation. The number of protozoa in rumen fluid was higher in NA treatment. The results indicated a more efficient use of rumen degradable N due to changes in the microbial population in the rumen when niacin was supplemented to diets deficient in RNB for lactating dairy cows.  相似文献   

3.
Under irrigated arid conditions, organic fertiliser rich in slowly decomposable nitrogen (N) and carbon (C) is needed for soil fertility maintenance. Feeding ruminants with condensed tannins will lower ruminal protein degradation, reduce urinary N excretion and might increase the faecal fraction of slowly decomposable N. Supplementation with activated charcoal (AC) might enrich manure with slowly degrading C. Therefore, we investigated the effects of feeding quebracho tannin extract (QTE) and AC on the N balance of goats, the efficiency of microbial protein synthesis in the rumen (EMPS) and the composition of faeces. The feeding trial comprised three periods; in each period, 12 male Boer goats (28 ± 3.9 kg live weight) were assigned to six treatments: a Control diet (per kg diet 500 g grass hay and 500 g concentrate) and to further five treatments the Control diet was supplemented with QTE (20 g and 40 g/kg; diets QTE2 and QTE4, respectively), with AC (15 g and 30 g/kg, diets AC1.5 and AC3.0, respectively) and a mixture of QTE (20 g/kg) plus AC (15 g/kg) (diet QTEAC). In addition to the N balance, EMPS was calculated from daily excretions of purine derivatives, and the composition of faecal N was determined. There was no effect of QTE and AC supplementation on the intake of organic matter (OM), N and fibre, but apparent total tract digestibility of OM was reduced (= 0.035). Feeding QTE induced a shift in N excretion from urine to faeces (p ≤ 0.001) without altering N retention. Total N excretion tended to decrease with QTE treatments (p = 0.053), but EMPS was not different between treatments. Faecal C excretion was higher in QTE and AC treatments (= 0.001) compared with the Control, while the composition of faecal N differed only in concentration of undigested dietary N (p = 0.001). The results demonstrate that QTE can be included into diets of goats up to 40 g/kg, without affecting N utilisation, but simultaneously increasing the excretion of slowly decomposable N and C fractions. Feeding AC up to 30 g/kg of the diet increases slowly degradable faecal C concentration, without negative effects on N metabolism of goats.  相似文献   

4.
The aim of the present experiment was to investigate an experimental brown midrib (Bm) maize hybrid in comparison with a control (Con) non-Bm maize hybrid on ruminal and total tract digestibility, ruminal fermentation, ruminal ingesta kinetics, nitrogen (N) utilisation and microbial efficiency. A total of six ruminally and duodenally cannulated German Holstein cows were used. Animals were fed diets of either 11.5 kg dry matter (DM) of a Con or a Bm maize silage plus 4.1 kg DM of concentrate. Ruminal and total tract digestibility of organic matter, neutral detergent fibre and acid detergent fibre did not differ between hybrids. Short-chain fatty acid concentrations and pH in the rumen were not affected, but ruminal mean retention time was lower for Diet Bm (Con: 45.4 ± 2.39 h; Bm: 40.6 ± 2.39 h; least squares means ± standard error). Cows fed Diet Bm had greater efficiency of N utilisation (Con: 30.1 ± 1.37%; Bm: 33.1 ± 1.37%) and increased flow of microbial crude protein at the duodenum (MCPF) (Con: 7.0 ± 0.37 g/MJ metabolisable energy (ME); Bm: 8.1 ± 0.37 g/MJ ME). Thus, MCPF and utilisable crude protein at the duodenum (uCP) were greater for Diet Bm (MCPF – Con: 1117 ± 52.1 g/d; Bm: 1306 ± 52.1 g/d; uCP – Con: 1594 ± 57.9 g/d; Bm: 1807 ± 57.9 g/d) and ruminal N balance was lower for Diet Bm (Con: 98.7 ± 8.92 g/d; Bm: 65.6 ± 8.92 g/d). The present results show that the Bm maize hybrid might be advantageous for dairy cow nutrition with regard to N utilisation and MCPF. However, further research is necessary to draw more precise conclusions on the potential of Bm maize hybrids in general.  相似文献   

5.
The objective of this study was to investigate the relationship between nitrogen (N) partitioning and isotopic fractionation in lactating goats consuming diets with a constant high concentration of N and increasing levels of water soluble carbohydrate (WSC). Eight lactating goats were offered four different ratios of WSC : N in the diet. A two-period incomplete cross-over design was used, with two goats assigned to each treatment in each period. N balance measurements were conducted, with measurement of feed N intake and total output of N in milk, faeces and urine. Treatment, period and infusion effects were tested using general ANOVA; the relationships between variables were analysed by linear regression. Dietary treatment and period had significant effects on dry matter (DM) intake (g/day). DM digestibility (g/kg DM) and N digestibility (g/kg N) increased as the ratio of WSC : N increased in the diet. No treatment effect was observed on milk urea N concentration (g/l) or urinary excretion of purine derivatives (mM/day). Although dietary treatment and period had significant effects on N intake, the change of N intake was small; no effect was observed for N partitioning among faeces, milk and urine. Milk, plasma and faeces were enriched in 15N compared with feed, whilst urine was depleted in 15N relative to feed. No significant relationship was established between N partitioning and isotopic fractionation. This study failed to confirm the potential to use N isotopic fractionation as an indicator of N partitioning in dairy goats when diets provided N in excess to requirements, most likely because the range of milk N output/N intake and urinary N output/N intake were narrow.  相似文献   

6.
The aim of the experiment was to determine the impact of heat stress on nutrient digestibility and nitrogen balance in sheep fed silages differing in fibre quality. The digestibility trial was conducted at three different ambient temperatures (15°C, 25°C and 35°C for 24 h/d). The tested brown-midrib maize (Bm) silage had a higher nutrient digestibility, except for ether extract (EE) and a higher metabolisable energy (ME) content than the control maize (Con) silage. Nitrogen (N) excretion with faeces was higher but N excretion with urine was lower for sheep fed Bm silage, subsequently N balance did not differ between the two silages. Temperature had no effect on nutrient digestibility, except for crude protein (CP), but N excretion with urine was lower at elevated temperatures. A diet by temperature interaction was found for dry matter (DM) and organic matter (OM) digestibility. When the ambient temperature increased from 15°C to 25°C, the DM and OM digestibility increased in animals fed Con silage, but decreased in animals fed Bm silage. Concomitantly, ME estimated from digestible nutrients was higher for Bm than for Con at 15°C, but no differences were found at 25°C and 35°C. Effects of diet by temperature interaction, furthermore, were observed for EE and CP digestibility. Therefore, forage quality has to be considered when feeding heat-stressed animals.  相似文献   

7.
The objective of the trial was to study the effects of dietary supplementation of gallic acid (GA) on nitrogen (N) balance, N excretion pattern and urinary N constituents in beef cattle. In a 4 × 4 Latin square design, four male 30-month-old Simmental cattle (443 ± 22 kg live weight) received four levels of GA (purity ≥ 98.5%), i.e. 0, 5.3, 10.5, 21.1 g/kg DM, added to a basal ration. Each experimental period lasted 17 d, consisting of 12 d adaptation and 5 d sampling. The results showed that supplementation of GA at 5.3, 10.5 or 21.1 g/kg DM did not affect the N balance but regulated the N excretion pattern by increasing the ratio of faecal N/urinary N and decreasing the ratio of urinary urea N/total urinary N in beef cattle fed at maintenance level.  相似文献   

8.
The aim of this study was to evaluate the effects of dietary Quebracho tannin extract (QTE) on feed intake, apparent total tract digestibility (ATTD), excretion of urinary purine derivatives (PD) and milk composition and yield in dairy cows. Fifty Holstein cows were divided into two groups. To reach a similar performance of both groups, cows were divided according to their milk yield, body weight, days in milk and number of lactations at the start of the experiment averaging 33.2 ± 8.2 kg/d, 637 ± 58 kg, 114 ± 73 d and 2.3 ± 1.6 lactations, respectively. The cows were fed a basal diet as total mixed ration containing on dry matter (DM) basis 34% grass silage, 32% maize silage and 34% concentrate feeds. Three dietary treatments were tested, the control (CON, basal diet without QTE), QTE15 (basal diet with QTE at 15 g/kg DM) and QTE30 (basal diet with QTE at 30 g/kg DM). Two treatments were arranged along six periods each 21 d (13 d adaptation phase and 8 d sampling phase). The ATTD of DM and organic matter were reduced only in Diet QTE30, whereas both QTE treatments reduced ATTD of fibre and nitrogen (N), indicating that QTE impaired rumen fermentation. Nevertheless, feed intake was unaffected by QTE. In Diet CON, urinary N excretion accounted for 29.8% of N intake and decreased in treatments QTE15 and QTE30 to 27.5% and 17.9%, respectively. Daily faecal N excretion increased in treatments CON, QTE15 and QTE30 from 211 to 237 and 273 g/d, respectively, which amounted to 39.0%, 42.4% and 51.7% of the N intake, respectively. Hence, QTE shifted N excretion from urine to faeces, whereas the proportion of ingested N appearing in milk was not affected by QTE (average 30.7% of N intake). Daily PD excretion as indicator for microbial crude protein (CP) flow at the duodenum decreased in treatment QTE30 compared with Diet CON from 413 to 280 mmol/d. The ratios of total PD to creatinine suggest that urinary PD excretion was already lower when feeding Diet QTE15. While there was no effect of Diet QTE15, treatment QTE30 reduced milk yield, milk fat and protein. Both QTE treatments reduced milk urea concentration, which suggest that ruminal degradation of dietary CP was reduced. In summary, adding QTE at dosages of 15 and 30 g/kg DM to diets of lactating dairy cows to improve feed and protein use efficiency is not recommended.  相似文献   

9.
Seven dairy cows fitted with ruminal and duodenal cannulae were used to investigate the influence of the amount of ruminally available N (Ruminal N-Balance, RNB) on the rumen metabolism and to answer the question on the lowest N-amount in the rumen, without negative effects on the fermentation. Animals were fed a ration on the basis of 7.9 kg corn silage and 7.2 kg concentrates related to dry matter, intended to meet the animals mean NEL and protein requirements. RNB amounted to -0.6 g/MJ ME in the basis ration. The other 3 rations were adjusted to RNB-values of -0.3, 0 and + 0.3 g/MJ ME by urea supplements in the concentrates. The increase in RNB resulted in higher NH3-N concentrations in the rumen fluid and in the duodenal digesta and higher urea concentrations in the blood and milk. The significantly highest amount of protein at the duodenum was detected when RNB showed an equilibrium (RNB = 0). The efficiency of microbial protein (MP) synthesis (gMP/kg fermented organic matter) was the same, g MP/d and g MP/MJ ME were significantly lower with RNB = -0.6g/MJ ME as compared to RNB = 0. The group with thelowest RNB showed the highest level of feedprotein degradation as well as the lowest organic matter, NDF and ADF fermentation. An effect on cholesterol, total bilirubin and gammaGT due to different RNB was not detected. The activities of GLDH and AST were highest when the RNB was -0.6 g/MJ ME. From the results, it can be concluded that significantly negative effects on rumen fermentation occur when RNB-values are below -0.3 g/MJ ME. However, a positive RNB did not increase t he degradation and synthesis capacity of the rumen micro-organisms as compared to RNB = 0.  相似文献   

10.
Low-protein diets are increasingly being used in dairy cow nutrition to minimise noxious nitrogen (N) emissions. However, at parturition, the lower milk yield at that time may mask deficiency in dietary utilisable crude protein (uCP; equivalent to metabolisable protein). Under restrictive feeding conditions, farmers would limit the feed allowance to match the lower measured milk yield, thereby exacerbating the deficiency. The consequences for N emission intensity per kg milk yield and methane emissions are unknown. In this study, two diets were fed to nine Holstein cows each from parturition onwards. One diet was complete and the other was calculated as 20% deficient in uCP. Feed allowance was always oriented towards the measured milk yield. In each of the first eight lactation weeks, intake and excretion were measured for 5 d. On the last 2 d of this period, methane emission was measured in respiration chambers. The statistical model included treatment, week and interaction as effects. The real levels of uCP and energy supply across the 8 weeks were 33% and 15% below requirements, respectively, in the Deficient cows. In addition, the Deficient cows consumed 18% less dry matter (caused by substantial refusals in week 1, where energy supply was according to requirements) and produced 25% less milk (26 vs. 34 kg/d). Cows in both groups used dietary N with similar efficiency for milk protein synthesis and excreted similar proportions of the N ingested via urine and faeces. This resulted in both treatments having similar N emission intensities per kg milk N and similar urinary N as a proportion of total excreta N, suggesting a similar potential for gaseous N emissions from the manure per kg of milk. The Deficient cows emitted 22% less methane overall but had similar methane yield and emission intensity to the Controls. In conclusion, a reduction in crude protein intake immediately after parturition does not reduce N emission per unit of milk when associated with uCP deficiency.  相似文献   

11.
Nitrogen (N) excretion from livestock production systems is of significant environmental concern; however, few studies have investigated the effect of dietary CP concentration on N utilisation efficiency at different stages of lactation, and the interaction between dietary CP levels and stages of lactation on N utilisation. Holstein-Friesian dairy cows (12 primiparous and 12 multiparous) used in the present study were selected from a larger group of cows involved in a whole-lactation study designed to examine the effect of dietary CP concentration on milk production and N excretion rates at different stages of lactation. The total diet CP concentrations evaluated were 114 (low CP), 144 (medium CP) and 173 (high CP) g/kg DM, with diets containing (g/kg DM) 550 concentrates, 270 grass silage and 180 maize silage. During early (70–80 days), mid- (150–160 days) and late (230–240 days) lactation, the same 24 animals were transferred from the main cow house to metabolism units for measurements of feed intake, milk production and faeces and urine outputs. Diet had no effect on BW, body condition score, or milk fat, protein or lactose concentration, but DM intake, milk yield and digestibilities of DM, energy and N increased with increasing diet CP concentration. The effect of diet on milk yield was largely due to differences between the low and medium CP diets. Increasing dietary CP concentration significantly increased urine N/N intake and urine N/manure N, and decreased faecal N/N intake, milk N/N intake and manure N/N intake. Although increasing dietary CP level significantly increased urine N/milk yield and manure N/milk yield, differences in these two variables between low and medium CP diets were not significant. There was no significant interaction between CP level and stage of lactation on any N utilisation variable, indicating that the effects of CP concentration on these variables were similar between stages of lactation. These results demonstrated that a decrease in dietary CP concentration from high (173 g/kg DM) to medium level (144 g/kg DM) may be appropriate for Holstein-Friesian dairy cow to maintain milk production efficiency, whilst reducing both urine N and manure N as a proportion of N intake or milk production.  相似文献   

12.
ABSTRACT

Diets excessive in crude protein (CP) are unfavourable in terms of metabolic and environmental load. Dietary phenols, often binding to dietary proteins, may alleviate these problems. In an experiment with 60 lambs (3.2 ± 1.6 months of age; 29.7 ± 5.1 kg body weight), kept in pairs, five diets were tested. A diet with 157 g CP/kg dry matter (DM) served as negative control. Four diets with on average 229 (225–233) g CP/kg DM remained either non-supplemented or were supplemented with 13 g/kg DM of Acacia mearnsii extract, grapeseed extract, or a combination of both (26 g extract/kg DM). The analysed concentrations of total extractable phenols were 7.1, 8.1, 14.3, 16.6 and 25.4 g/kg DM for low (CP?) and high CP (CP+), and high CP with acacia (CP+A), grapeseed (CP+G) and acacia plus grapeseed (CP+AG), respectively. Diets were fed for 10 weeks, and for 6 d faeces and urine were collected and subsequently stored as complete manure for 8 weeks. In blood plasma, phenol concentrations and activities of enzymes indicating liver and kidney stress were analysed. The CP+ diet increased apparent digestibility of N and its removal with the urine, with the expected increase in gaseous N emissions from the manure (13.5 vs 6.5 g/lamb per day during 8 weeks) compared to CP?. However, no clear signs of metabolic stress were detected. Supplementing the extracts did not impair intake, growth performance and digestibility. Only the supplementation with both extracts decreased urinary N proportion of manure N, and the concomitant weak decline in gaseous emission from the manure was not significant. At least part of the phenols of both extracts seem to be bioavailable as their supplementation elevated blood plasma phenol concentrations by 15% to 40% compared to CP+. A combination of both extracts did not result in a further increase. Further studies have to identify the minimally effective dosage for reducing N emissions, which, at the same time, does not cause adverse side effects in performance.  相似文献   

13.
The objective of this study was to evaluate the effects of diet composition on phytate (InsP6) degradation in dairy cows. In Experiment 1, four diets that differed in the amount and source of phosphorus (P) were fed to 24 lactating cows in a 4 × 4 Latin Square design. The control diet (Diet C) contained 4.18 g P/kg dry matter (DM). Diet MP contained additional mineral P (5.11 g P/kg DM), Diet RS contained rapeseed and rapeseed meal as organic P sources (5.26 g P/kg DM) and Diet RSM contained rapeseed meal and rapeseed oil (5.04 g P/kg DM). Total P (tP) and InsP6 excretion in faeces were measured. In Experiment 2, we used a rumen simulation technique (Rusitec) to estimate ruminal disappearance of tP and InsP6 from Diets C, MP and RSM. In Experiment 1, tP concentration in faeces increased with tP intake and was highest for Diets RS and RSM. The source of supplemented P had no influence on tP digestibility, but tP digestibility was reduced for Diets MP, RS and RSM in comparison to that for Diet C. InsP6 disappearance decreased in Diet MP (85.0%) and increased in Diets RS (92.7%) and RSM (94.0%) compared to that in Diet C (90.0%). In Experiment 2, P source influenced ruminal tP disappearance (Diet MP, 78.6%; Diet RSM, 75.3%). InsP6 disappearance for Diet C (98.1%) was higher than that for Diets MP (95.6%) and RSM (94.9%). The results confirmed the high potential of ruminants to degrade InsP6, but differences in diet composition influenced InsP6 disappearance. Further studies of the site of InsP6 degradation are required to understand the relevance of InsP6 degradation for the absorption of P.  相似文献   

14.
Effects of supplementing tree foliage mixtures on voluntary intake, apparent digestibility and N balance was evaluated using Pelibuey sheep fed low quality diets. Five treatments were examined in a 5 × 5 Latin square design, which consisted of a basal diet of grass (Sorghum halepense) hay supplemented with Brosimum alicastrum (B) and Lysiloma latisiliquum (L) at the following rates (g DM/kg diet): B264, L0; B198, L66; B132, L132; B66, L198 and B0, L264. Additionally, an in situ degradability evaluation was completed with two ruminally cannulated cows. Neutral detergent fibre (NDF), acid detergent insoluble N (ADIN), lignin(sa) and total phenols (TP) were higher (P<0.01) in L. latisiliquum versus B. alicastrum. Daily intake (g/kg LW0.75/day) of DM (from 98 to 73) and OM (from 88 to 66) decreased quadratically (P<0.01), whereas CP (from 8.0 to 5.6) and ME (from 7.7 to 5.2, MJ/sheep/day) reduced linearly (P<0.01), as L. latisiliquum increased in the diet. Apparent digestibility of DM (from 0.486 to 0.445), OM (from 0.511 to 0.458) and CP (from 0.417 to 0.198) decreased linearly (P<0.01) and was associated with a low ruminal in situ CP degradability of L. latisiliquum. The decrease in N intake and digestibility induced lower (P<0.01) N retention (from 2.7 to 0.1 g/sheep/day). Although the incremental substitution of B. alicastrum with L. latisiliquum negatively affected intake, rumen degradation, digestibility and N balance, results indicate that this foliage mixture, but with no more than 132 g DM/kg diet of L. latisiliquum, could be used as a supplementation strategy to sheep fed low quality forage without negative effects on voluntary intake.  相似文献   

15.
The objective of this study was to characterise the variation of utilisable crude protein at the duodenum (uCP) of dried distillers’ grains with solubles (DDGS) for ruminants using a modified gas test and to predict the uCP in DDGS based on chemical composition. Thirteen samples originating from wheat, maize, barley or blends of different substrates were studied. The in vitro uCP was estimated using the modified Hohenheim gas test (moHGT). Samples were incubated in rumen fluid for 8 h, 24 h and 48 h followed by ammonia distillation. The obtained values were compared to reference values of uCP (based on the contents of crude protein (CP), in situ undegraded CP and metabolisable energy). The reference and in vitro values of uCP were calculated according to passage rates of 2, 5 and 8%/h (i.e., uCP2, uCP5 and uCP8, respectively). The in vitro uCP8 ranged from 214 to 320 g/kg DM and reference values from 158 to 302 g/kg DM. The in vitro uCP2 was on average lower (by 7 g/kg DM) and in vitro uCP8 was higher (by 56 g/kg DM) than their respective reference values. The in vitro uCP5 and uCP8 were correlated with reference values and the correlations were improved with increasing passage rates. When the differences of uCP content between in vitro and reference values were related to CP fractions, they increased with increasing content of CP fraction A and decreasing content of CP fraction B3 for uCP8. The prediction of uCP values from chemical composition was not reliable. It was concluded that uCP can be predicted on the basis of the moHGT method and CP fractions. The accuracy of prediction improved upon the inclusion of CP fractions and neutral-detergent insoluble nitrogen. The present study revealed a significant variation in the uCP content of DDGS, which should be considered when formulating rations for dairy cows.  相似文献   

16.
The protein nutrition of dairy cows is of great importance because of its direct influence on milk production, reproductive efficiency, and feeding cost. Eight first-lactation Holstein cows were randomly assigned to two contemporary 4 × 4 Latin squares in a 2 × 2 factorial design to evaluate the effects of replacing soybean meal with yeast-derived microbial protein (YMP) as a protein source (0% or 1.5% of dry matter (DM)) and its combination with slow-release urea (SRU; 0% or 0.75% of DM) on DM intake and milk production and composition, as well as blood parameters and nitrogen balance. Each experimental period lasted 28 days, with 21 days of adaptation and 7 days of data collection. The diets were formulated to attend the nutritional recommendations of the National Research Council and consisted of 49% forage (47% corn silage and 2% Tifton hay) and 51% concentrate, with 16.8% CP and 1.6 Mcal net energy for lactation/kg DM. For diets without YMP, the inclusion of SRU decreased DM intake, milk production as well as N intake and balance, but did not affect efficiency of production, milk composition or most of blood parameters. On the contrary, for diets with YMP, DM intake and milk production were increased by inclusion of SRU, while minor effects were observed for milk efficiency and composition, blood parameters as well as N intake, excretion and balance. When diets with SRU were compared, the inclusion of YMP increased DM intake, 4% fat-corrected milk, and N intake and balance (P<0.05), with no differences in milk production (kg/day), milk energy, efficiency of milk production or most of the blood parameters. For diets without SRU, YMP inclusion decreased DM intake, milk production, milk energy, N intake, fecal N and N balance (P<0.05), with no effects on milk efficiency and composition, or most of blood parameters. In conclusion, the use of YMP, SRU or both as partial substitutes of soybean meal in the diet of lactating cows has no negative effects on productivity parameters.  相似文献   

17.
The pancreatic duct-ligated minipig (PL) is an established model of pancreatic exocrine insufficiency (PEI) with a significant decrease of nutrient digestibility. This study aimed to quantify and compare endogenous losses of nitrogen (N) (ileal and faecal) in minipigs receiving an almost N-free diet. Altogether, 12 Göttingen minipigs (7 PL and 5 control animals) fitted with an re-entrant ileo-caecal fistula were used. In Study 1, ileal digesta was collected over a period of 12 h on seven consecutive days, including one 24 h collection, when animals were fed a diet containing 0.49 g N/kg dry matter (DM). In Study 2, faeces were collected for 10 consecutive days. In Group PL, the amount and DM content of ileal digesta were higher (p < 0.05), while N concentration was lower than in the Control. The ileo-caecal N flux [g/kg DM intake] was about 2.5 times higher in Group PL (5.47 ± 1.15) than in the Control (1.91 ± 0.59) (p < 0.05). The amount of faeces did not differ, but faecal N losses were higher in Group PL (p < 0.05). Endogenous faecal N losses [g N/kg DM intake] of the Control group (1.17 ± 0.72) were comparable with earlier studies, while those of Group PL were 2.6 times higher (3.09 ± 1.34). In contrast, urinary excretion of N did not differ between the Control and Group PL. In conclusion, PEI caused markedly increased endogenous N losses. Therefore, the impact of reduced digestibility of nutrients on endogenous N losses might be relevant for apparent protein digestibility rates and should be taken into account.  相似文献   

18.
The objective of the experiments was to study the suitability of using a faecal suspension of sheep for the estimation of the utilizable crude protein (uCP) of feeds for sheep by an in vitro incubation. Twenty-four single feeds and eight feed mixtures were used as incubation substrates. In Experiment 1, the gas production after the in vitro incubation with rumen fluid or with a faecal suspension of a sheep were compared using the Hohenheim gas test. It was found that there were significant linear regression between the 24, 48 and 72 h gas production with rumen fluid and those with faecal suspensions of 35, 50, 100 and 150 g wet faeces of sheep (which were 18.6, 23.5, 52.0 and 70.5 g faeces DM, respectively) per litre McDougall's buffer (P < 0.0001). The highest regression coefficient (r2) was calculated between the gas production after inoculation with a suspension of 100 g wet faeces per litre McDougall's buffer (x, ml x 200 mg (-1) feed DM) for 48 h and the gas production after inoculation with rumen fluid (y, ml x 200 mg (-1) feed DM) for 24 h: y = 0.82 (+/- 0.07)x + 9.87 (+/-3.83), r2 = 0.82, n = 32, P < 0.0001. Based on these results, in Experiment 2 the estimation of utilizable crude protein (uCP) of feeds was compared by using the in vitro incubation technique of Zhao and Lebzien (2000), where feeds were inoculated either with rumen fluid or with a faecal suspension (100 g wet faeces of sheep, i.e. 52 g faeces DM per litre McDougall's buffer). The results indicated that there were no significant differences of the estimated uCP after inoculation with rumen fluid or the faecal suspension (P > 0.05). A significant regression was found between the uCP after incubation for 48 h with 100 g wet faeces (x, g x kg (-1) DM) and the uCP after incubation for 24 h with rumen fluid (y, g x kg(-1) DM): y = 0.95 (+/-0.10)x - 4.90 (+/-26.70), r2 = 0.75, n = 32, Although this regression was significant, the coefficient r2 was not high. Therefore, further research is needed before sheep faeces could replace rumen fluid as an inocula for the estimation of uCP by the in vitro incubation technique.  相似文献   

19.
The objective of this study was to evaluate the effect of supplemented condensed tannins (CT) from the bark of the Black Wattle tree (Acacia mearnsii) on production variables and N use efficiency in high yielding dairy cows. A feeding trial with 96 lactating German Holstein cows was conducted for a total of 169 days, divided into four periods. The animals were allotted to two groups (control (CON) and experimental (EXP) group) according to milk yield in previous lactation, days in milk (98), number of lactations and BW. The trial started and finished with a period (period 1 and 4) where both groups received the same ration (total-mixed ration based on grass and maize silage, ensiled sugar beet pulp, lucerne hay, mineral premix and concentrate, calculated for 37 kg energy-corrected milk). In between, the ration of EXP cows was supplemented with 1% (CT1, period 2) and 3% of dry matter (DM) (CT3, period 3) of a commercial A. mearnsii extract (containing 0.203 g CT/g DM) which was mixed into the concentrate. In period 3, samples of urine and faeces were collected from 10 cows of each group and analyzed to estimate N excretion. Except for a tendency for a reduced milk urea concentration with CT1, there was no difference between groups in period 2 (CON v. CT1; P>0.05). The CT3 significantly reduced (P<0.05) milk protein yield, the apparent N efficiency (kg milk N/k feed N) and milk urea concentration; but total milk yield and energy-corrected milk yield were not affected by treatment. Furthermore, as estimated from 10 cows per group and using urinary K as a marker to estimate the daily amount of urine voided, CT3 caused a minor shift of N compounds from urine to faeces, as urea-N in urine was reduced, whereas the N concentration in faeces increased. As an improvement in productivity was not achieved and N use efficiency was decreased by adding the CT product it can be concluded that under current circumstances the use in high yielding dairy cows is not advantageous.  相似文献   

20.
The aim of this study was to investigate the effects of different energy supplies from roughage and concentrates on performance, health and energy efficiency during early lactation. For this purpose an experiment was conducted containing 64 pluriparous German Holstein cows from 3 weeks prepartum until 16 weeks postpartum. During dry period all cows received an equal dry cow ration. After calving, cows were assigned in a 2 × 2 factorial arrangement to one of four groups, receiving either a moderate (MR, 6.0 MJ NEL) or a high (HR, 6.4 MJ NEL) energy concentration in roughage and furthermore moderate (MC, 150 g/kg energy-corrected milk (ECM)) or high amounts of concentrates (HC, 250 g/kg ECM) on dry matter (DM) basis, which were allocated from an automatic feeding system. Higher allocation of concentrates resulted in an increase of DM intake at expense of roughage intake. HC cows had a higher milk yield than MC cows, whereas ECM was higher in HR cows due to a decrease of milk fat yield in MR groups. Energy balance and body condition score were elevated in HC cows, but no differences occurred in development of subclinical ketosis. Furthermore, energy efficiency variables were lower in HC groups because the greater energy intake was not associated with a considerable elevation of milk yield. Consistency of faeces did not indicate digestive disorders in any of the treatment groups although the faecal manure score was significantly lower in HR groups. Our results underline the importance of a high energy uptake from roughage, which can contribute to an adequate performance and beneficial efficiency, especially at lower amounts of concentrates in ration. Feeding concentrates on an average amount of 9.4 kg/d compared to 6.4 kg/d on DM basis improved the energy balance in our trial, but without consequences for metabolic blood variables and general health of the cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号