首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Four rumen fistulated wethers were used to investigate the effect of glyphosate contaminated feed on rumen fermentation. The rations were based on corn silage, urea and a vitamin-mineral premix, either in the absence or presence of 0.77 g glyphosate per kg DM. Furthermore, rations were fed either with or without aromatic amino acid supplementation. During four periods of 28 days, sheep received each of the four dietary treatments according to a Latin square. After 14 days of adaptation rumen fermentation parameters (pH, ammonia, volatile fatty acids) were measured on day 15 over a five-hour period after the morning feeding. The remaining 13 days served for in sacco degradation studies with grass hay and corn grain. Ammonia (NH3) and pH of rumen fluid were within the normal range for all dietary treatments (NH3: 9.1-32.3 mmol x l(- l), pH: 6.2-6.7). Neither rumen fermentation parameters nor in sacco DM and NDF degradation of incubated feedstuffs were significantly affected by glyphosate, with or without aromatic amino acid supplementation. Kinetic profiles of the in sacco dry matter and NDF degradation of grass hay were almost identical for the dietary treatments.  相似文献   

2.
A study to compare two feeding systems, stall feeding (SF) and grazing plus supplementation (GR) was carried out, based on intake, performance and rumen fermentation characteristics of lambs. While SF animals received ad libitum complete feed blocks (CFB), GR animals were allowed grazing for 8 h on a pasture and supplemented with concentrate mixture at 250 g per head per day. Intake in grazing animals was determined using chromium III oxide as internal marker. Intake of dry matter (DM), crude protein (CP) and organic matter (OM) were higher ( P < 0.01) in SF than in GR animals. Similarly, digestibility of OM, CP and energy were higher ( P < 0.01) in SF animals. Average daily gain in SF animals (101 g) was significantly ( P < 0.01) higher than in GR animals (78 g) but total wool yield was similar for the two groups (856 g, SF; 782 g, GR). The pH of the rumen content, concentration of total volatile fatty acids and total activities of carboxymethyl cellulase, xylanase and esterase in the rumen liquor were similar. The concentrations (mg/dl) of total nitrogen (125, SF; 63, GR) and NH3-nitrogen (42, SF; 31, GR) were higher in SF animals than that of GR animals. A significantly higher activity ( P < 0.05) of microcrystalline cellulase (24.5 v. 7.7 units) and lower activity ( P < 0.05) of protease (309 v. 525 units), was observed in the rumen of SF animals than in GR animals. SF animals could therefore harness more energy through degradation of plant cell walls thus reducing breakdown of plant proteins as gluconeogenic source. The SF system of feeding where CFB was offered to sheep appeared superior to GR in terms of intake, nutrient utilisation and animal performance. Therefore the SF feeding system where CFB are offered to animals can be advocated as an alternative to grazing and supplementation feeding strategy for sheep production, especially where the pastures are highly eroded and need resting for regeneration or curing. The CFB feeding can also be adopted under adverse conditions like drought and famine, a common phenomenon in arid and semiarid conditions.  相似文献   

3.
The aim of the present study was to examine the effects of ergot contaminated feed concentrate at differing levels of feed intake on ruminal fermentation, and on various physiological parameters of dairy cows. Twelve double fistulated (in the rumen and the proximal duodenum) Holstein Friesian cows were fed either a control diet (on a dry matter (DM) base: 60% maize silage, 40% concentrate) or a diet containing ergot alkaloids (concentrate contained 2.25% ergot resulting in an ergot alkaloid concentration of the daily ration between 505 and 620 (μg/kg DM) over a period of four weeks. Daily feed amounts were adjusted to the current performance which resulted in a dry matter intake (DMI) variation between 6.0 and 18.5 kg/day. The resulting ergot alkaloid intake varied between 4.1 and 16.3 (μg/kg body weight when the ergot contaminated concentrate was fed. Concentrations of isovalerate, propionate and ammonia nitrogen in the rumen fluid were significantly influenced by ergot feeding, and the amount of ruminally undegraded protein, as well as the fermentation of neutral detergent fibre, tended to increase with the ergot supplementation at higher levels of feed intake, which might indicate a shift in the microbial population. Other parameters of ruminal fermentation such as ruminai pH, fermented organic matter as a percentage of intake, or the amount of non-ammonia nitrogen measured at the duodenum were not significantly influenced by ergot feeding. The activities of liver enzymes (aspartate aminotransferase, γ-glutamyltransferase, glutamate dehydrogenase, creatine kinase) in the serum were not affected by ergot feeding. The rectal measured body temperature of the cows significantly increased after ergot administration (p=0.019). Thus, body temperature can be regarded as a sensitive parameter to indicate ergot exposure of dairy cows.  相似文献   

4.
5.
A dual-flow continuous culture fermenter system was used to investigate ruminal fermentation in response to increased by-product gypsum application rate of three forages. The treatments included 0, 22, 45, and 90 tonnes/ha by-product gypsum applied to grass plots and 0, 22, and 45 tonnes/ha by-product gypsum applied to corn plots. Forage was harvested to represent grass pasture (GP), grass hay (GH), and corn silage (CS), dried, ground, and fed to fermenters at a rate of 60 g dry matter (DM)/day. Organic matter (OM) and neutral detergent fiber (aNDF) digestibilities, rumen pH, total volatile fatty acid (VFA) production, and N metabolism were not affected by gypsum application rate for all forage types. The GH had greater sulfur content than recommended as the maximum tolerable level by the National Research Council (NRC). The results of this study indicate that ruminal fermentation was not compromised when by-product gypsum was applied to GP, GH, or CS at rates up to 90 tonnes/ha. By-product gypsum application to pastures and crops shows promise as an economical soil amendment to reduce dissolved phosphorus loss in runoff, although potential animal health issues should be further evaluated.  相似文献   

6.
The objective of this study was to evaluate the effects of malic acid (MA) supplementation on rumen fermentation, urinary excretion of purine derivatives (PDs) and whole gastro-intestinal tract feed digestibility in steers. Eight ruminally cannulated Simmental steers (465 ± 13 kg) were used in a replicated 4 × 4 Latin square design. The treatments were: control (without MA), LMA (MA-low), MMA (MA-medium) and HMA (MA-high) with 0.0, 7.8, 15.6 and 23.4 g MA per kg dry matter (DM), respectively. Diets consisted of corn stover and concentrate (60/40, DM basis). DM intake was approximately 9 kg per day, which was 90% of ad libitum intake including 5.4 kg corn stover and 3.6 kg concentrate. Ruminal pH (range of 6.91 to 6.56), ratio of acetate to propionate (range of 3.88 to 3.25), ammonia N (range of 9.03 to 6.42 mg/100 ml) and lactate (range of 91.25 to 76.31 mg/100 ml) decreased linearly as MA supplementation increased, whereas total volatile fatty acid (VFA) concentration (range of 55.68 to 61.49 mM) linearly (P < 0.05) increased with increase in MA supplementation. In situ ruminal neutral detergent fiber (aNDF) degradation of corn stover was improved but the crude protein (CP) degradability of concentrate mix was decreased with increasing the dose of MA. Urinary excretion of PDs was quadratically (P < 0.01) changed with altering MA supplementation (67.88, 72.74, 75.81 and 73.78 mmol/day for control, LMA, MMA and HMA, respectively). Similarly, digestibilities of DM, organic matter (OM), NDF and acid detergent fiber (ADF) in the total tract were also quadratically increased with increasing MA, and no differences in terms of CP and ether extract digestibility were observed. The results indicate that MA supplementation has the potential to improve rumen fermentation and feed digestion in beef cattle. The MA stimulates the digestive microorganisms or enzymes in a quadratic response. In the experimental conditions of this trial, the optimum MA dose was 15.6 g MA per kg DM.  相似文献   

7.
The aim of the present study was to determine the effect of zeolite A on several physiological parameters and on mineral metabolism in the rumino-intestinal-tract of cows. Eight double fistulated (rumen and proximal duodenum) cows were fed maize silage, grass silage and concentrate. Zeolite A was added to the ration over a period of three weeks at 0, 10 and 20 g/kg dry matter (DM). The daily feed amounts were adjusted to the current performance and varied between 3.9 and 15.5 kg/d. Rumen fluid, duodenal chyme and faeces were sampled to characterise the nutrient digestibility. Blood samples were taken to analyse the concentration of inorganic phosphate. Zeolite A supplementation led to a significantly reduced ruminal DM digestibility and fermentation of organic matter. The molar proportion of acetate in the rumen increased, and propionate as well as valerate decreased significantly after zeolite A supplementation. The concentration of the total fatty acids and ruminal pH were not affected. No effect on faecal digestion of DM, organic matter nor on calcium and magnesium digestion was observed. Otherwise the phosphorus (P) concentration in rumen fluid correlated negatively with the mean zeolite A intake (r 2 = 0.75; p = 0.0003). Further, the faecal excretion of P increased significantly for cows with the highest zeolite A dosage (36.9 g P/d) compared to the control group (29.9 g P/d). The lower digestibility of P resulted in a significantly decreased concentration of inorganic P in serum from a basal value of 2.05–1.16 mmol/l six days after starting zeolite A supplementation. The zeolite A treated cows showed a significantly higher Al concentration already in rumen fluid (14.31 and 13.84 mmol/l) compared to the control cows (6.33 mmol/l). The Al flow in the duodenum was also higher for zeolite A treated cows.  相似文献   

8.
The objectives of the trial were to study the effects of dietary crude protein (CP) and tannic acid (TA) on rumen fermentation, microbiota and nutrient digestion in beef cattle. Eight growing beef cattle (live weight 350 ± 25 kg) were allocated in a 2 × 2 crossover design using two levels of dietary CP [111 g/kg dry matter (DM) and 136 g/kg DM] and two levels of TA (0 and 16.9 g/kg DM) as experimental treatments. Each experimental period lasted 19 d, consisting of 14-d adaptation and 5-d sampling. The impacts of dietary CP and TA on ruminal microbiota were analysed using high-throughput sequencing of 16S rRNA gene. Results indicated that no interactions between dietary CP and TA were found on rumen fermentation and nutrient digestibility. Increasing dietary CP level from 111 to 136 g/kg DM increased the ruminal concentrations of ammonia nitrogen (NH3-N) (p < 0.01) and improved the CP digestibility (p < 0.001). Adding TA at 16.9 g/kg DM inhibited rumen fermentation and decreased the digestibility of dietary CP (p < 0.001), DM (p < 0.05) and organic matter (p < 0.01). Increasing the dietary CP level or adding TA did not affect the relative abundances of the major bacteria Firmicutes and Proteobacteria at the phylum level and Prevotella_1 and Christensenellaceae_R-7_group at the genus level, even though adding TA increased the Shannon index of the ruminal bacterial community. TA was partly hydrolysed to pyrogallol, gallic acid and resorcinol in rumen fluid and the inhibitory effects of TA on rumen fermentation and nutrient digestibility could have been resulted from the TA metabolites including pyrogallol, gallic acid and resorcinol as well as the protein-binding effect.  相似文献   

9.
Aims: To investigate, using culture‐independent methods, whether the ruminal bacterial structure, population and fermentation parameters differed between sampling locations and time. Methods and Results: The detectable bacteria and fermentation parameters in the digesta from five locations in the rumen of three cows at three time points were analysed. The PCR‐denaturing gradient gel electrophoresis (PCR‐DGGE) profiles were similar among digesta samples from five locations (95·4%) and three time points (93·4%) within cows; however, a lower similarity was observed for samples collected from different host animals (85·5%). Rumen pH and concentration of volatile fatty acids (VFA) were affected by time points of sampling relative to feeding. Conclusions: The detectable bacterial structure in the rumen is highly conserved among different locations and over time, while the quantity of individual bacterial species may change diurnally in response to the feeding. Significance and impact of the study: This study supplies the fundamental understanding of the microbial ecology in the rumen, which is essential for manipulation of ruminal microflora and subsequent improvement in animal production.  相似文献   

10.
11.
Starchy grain is usually supplemented to diets containing low-quality forage to provide sufficient energy for ruminant animals. Ruminal degradation of grain starch mainly depends on the hydrolysis of the endosperm, which may be variable among grain sources. This study was conducted to investigate the influence of endosperm structure of wheat and corn on in vitro rumen fermentation and nitrogen (N) utilization of rice straw. The 3×4 factorial design included three ratios of concentrate to forage (35:65, 50:50 and 65:35) and four ratios of wheat to corn starch (20:80, 40:60, 60:40 and 80:20). The endosperm structure was detected by scanning electronic microscopy and a confocal laser scanning microscopic. An in vitro gas test was performed to evaluate the rumen fermentation characteristics and N utilization. Starch granules were embedded in the starch–protein matrix in corn, but more granules were separated from the matrix in the wheat endosperm. With the increasing ratio of wheat, rate and extent of gas production, total volatile fatty acids, and ammonia N increased linearly (P<0.01), but microbial protein concentration decreased (quadratic, P<0.01), with the maximum value at a ratio of 40% wheat. The efficiency of N utilization decreased linearly (P<0.01). Rumen fermentation and N utilization were significantly affected by the concentrate-to-forage ratio (P<0.01). Significant interactions between the concentrate-to-forage ratio and the wheat-to-corn ratio were detected in total volatile fatty acids and the efficiency of N utilization (P<0.01). In summary, the starch–protein matrix and starch granules in the wheat and corn endosperm mixture play an important role in the regulation of rumen fermentation and N utilization under low-quality forage.  相似文献   

12.
13.
The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d?1 and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d?1, respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.  相似文献   

14.
The aim of this study was to investigate the effect of different dietary levels of concentrate on feed intake, digestibility, ruminal fermentation and microbial population in steers. Eight Nellore steers fitted with ruminal cannulas were used in a double 4 × 4 Latin square design experiment. The dietary treatments consist of four different proportions of concentrate to roughage: 30:70, 40:60, 60:40 and 80:20% in the dry matter, resulting in Diets 30, 40, 60 and 80, respectively. The roughage was corn silage, and the concentrate was composed of corn, soybean meal and urea. Apparent digestibility of organic matter and crude protein showed a linear association with concentrate proportion (= 0.01), but the increased concentrate levels did not affect the digestibility of fibre. The lowest ruminal pH-values were observed in animals fed with Diet 80, remaining below pH 6.0 from 6 h after feeding, while in the other diets, the ruminal pH was below 6.0 not before 12 h after feeding. After feeding Diet 80, the ammonia concentration in the rumen was significantly the highest. Higher dietary concentrate levels resulted in a linear increase of propionic acid concentrations, a linear reduction of the ratio acetic acid to propionic acid (p < 0.01) and a linear increased synthesis of microbial nitrogen (p < 0.001). The predicted production of methane was lower in diets with greater amounts of concentrate (p = 0.032). The population of methanogens, R. flavefaciens and R. albus decreased with higher concentrate levels, while the population of S. ruminantium increased (p < 0.05). The results indicate that greater amounts of concentrate do not decrease ruminal pH-values as much as expected and inhibit some cellulolytic bacteria without impairing the dry matter intake and fibre digestibility in Nellore steers.  相似文献   

15.
In vitro batch cultures were used to screen four fibrolytic enzyme mixtures at two dosages added to a 60 : 40 silage : concentrate diet containing the C4 tropical grass Andropogon gayanus grass ensiled at two maturities – vegetative stage (VS) and flowering stage (FS). Based on these studies, one enzyme mixture was selected to treat the same diets and evaluate its impact on fermentation using an artificial rumen (Rusitec). In vitro batch cultures were conducted as a completely randomized design with two runs, four replicates per run and 12 treatments in a factorial arrangement (four enzyme mixtures×three doses). Enzyme additives (E1, E2, E3 and E4) were commercial products and contained a range of endoglucanase, exoglucanase and xylanase activities. Enzymes were added to the complete diet 2 h before incubation at 0, 2 and 4 μl/g of dry matter (DM). Gas production (GP) was measured after 3, 6, 12, 24 and 48 h of incubation. Disappearance of DM (DMD), NDF (NDFD) and ADF (ADFD) were determined after 24 and 48 h. For all four enzyme mixtures, a dosage effect (P<0.05) was observed for NDFD and ADFD after 24 h and for DMD, NDFD and ADFD after 48 h of incubation of the VS diet. For the FS diet, a dosage effect was observed for GP and NDFD after 24 h and for GP, DMD, NDFD and ADFD after 48 h of incubation. There was no difference among enzyme mixtures nor was there an enzyme×dose interaction for the studied parameters. Because of the greatest numerical effect on NDF disappearance and the least cost price, enzyme mixture E2 at 4 µl/g of diet DM was selected for the Rusitec experiment. The enzyme did not impact (P>0.05) DM, N, NDF or ADF disappearance after 48 h of incubation nor daily ammonia-N, volatile fatty acids or CH4 production. However, enzyme application increased (P<0.05) microbial N production in feed particle-associated (loosely-associated) and silage feed particle-bound (firmly associated) fractions. With A. gayanus silage diets, degradation may not be limited by microbial colonization, but rather by the ability of fibrolytic enzymes to degrade plant cell walls within this recalcitrant forage.  相似文献   

16.
The present study was to evaluate effect of herbal feed additives on methane and total gas production during the rumen fermentation for environment and animal health concern. Different parts of the five medicinal plants were selected such as leaf and small stems of Ocimum sanctum (Tulsi), roots of Curcuma longa (Haldi), fruits of Emblica officinalis (Amla), leaves of Azadirachta indica (Neem) and leaves and small stem of Clerodendrum phlomidis (Arni) for our study. Addition of different herbal additive combinations did not influence IVDMD and total gas production however methane production (mg/g of substrate DM) was significantly (P<0.05) reduced in Amla: Neem and Neem: Arni combinations. Total nitrogen significantly (P<0.01) increased in the combinations of Tulsi: Haldi and Amla: Neem. TCA–ppt-N is significantly (P<0.01) increased in Tulsi: Haldi, Haldi: Amla, Amla: Neem and Neem: Arni however NH3-N (mg/dl) significantly decreased in all treatments. We conclude that the screening of plant combinations, Amla: Neem and Neem: Arni have potential to decrease methane production and our herbal feed supplements have no side-effects on the ruminant in small amount.  相似文献   

17.
痤疮丙酸杆菌的分离鉴定及其对瘤胃微生物发酵的影响   总被引:1,自引:0,他引:1  
摘要:【目的】奶牛围产期能量代谢的特点是能量负平衡,瘤胃发酵产生的丙酸是奶牛糖异生供能的主要底物,对预防奶牛能量负平衡具有重要的意义。本研究旨在从健康奶牛瘤胃液中分离、筛选出以产丙酸为主的痤疮丙酸杆菌,研究其瘤胃发酵特性。【方法】无菌采取装有瘤胃瘘奶牛的瘤胃液,按照厌氧菌分离步骤,通过丙酸生成菌株的特异性培养基SLB进行筛选,提取分离菌的基因组DNA,克隆其16S rRNA基因,进行序列测定,分离出一株痤疮丙酸杆菌。通过体内外发酵试验研究痤疮丙酸杆菌对瘤胃液pH、挥发性脂肪酸和乳酸的影响。【结果】通过形态学观察、生化反应和序列分析证实所分离的一株产丙酸的杆菌为痤疮丙酸杆菌。该菌株在体外发酵过程中,瘤胃液pH先下降,在12h时降至最低,随后上升;乙酸、丙酸、丁酸等挥发性脂肪酸先升高,于12h时升至最高,随后又降低;乳酸浓度和乙酸/丙酸总体上一直下降;在体内发酵过程中,pH总体上下降;乙酸、丙酸、丁酸等挥发性脂肪酸总体上升。【结论】在国内首次从健康牛瘤胃液中成功分离出一株痤疮丙酸杆菌,为今后研发预防奶牛能量负平衡的微生态制剂奠定基础。  相似文献   

18.
The objectives of the trial were to compare the effects of supplementing rare earth elements (REE) lanthanum (La), cerium (Ce) and praseodymium (Pr) on rumen fermentation, nutrient digestion, methane (CH4) production, nitrogen (N) balance and plasma biochemical parameters in beef cattle. Four Simmental male cattle, aged 12 months, with initial average liveweight of 333 ± 9 kg and fitted with rumen cannulas, were fed with a basal ration composed of concentrate mixture and maize silage. Animals received a basal ration without adding REE (Control) or three treatments, i.e. supplementing LaCl3, CeCl3 or PrCl3 at 204 mg/kg DM to the basal ration, respectively, which were allocated in a 4 × 4 Latin square design. Each experimental period lasted 15 d, consisting of 12 d for pre-treatment and three subsequent days for sampling. Results showed that all tested levels of REE tended to increase neutral detergent fibre digestibility (p = 0.064) and tended to decrease rumen CH4 production (p = 0.056). Supplementing LaCl3 and CeCl3 decreased total N excretion and urinary N excretion, increased N retention (< 0.05), tended to increase total urinary purine derivatives (PD) (= 0.053) and microbial N flow (= 0.095), whereas supplementing PrCl3 did not affect N retention, urinary PD and microbial N flow. No differences were found in the effects of nutrient digestibility, CH4 production and plasma biochemical parameters among LaCl3, CeCl3 and PrCl3. Further trials using graded levels of LaCl3, CeCl3 and PrCl3 in a wide range are needed to obtain more pronounced results for comparing effects of La, Ce and Pr on rumen fermentation and nutrient digestion in beef cattle.  相似文献   

19.
The objective of this study was to investigate the intestinal microbiota of growing kittens fed moderate- or high-protein diets using DNA-based qualitative and quantitative techniques. Kittens were weaned to a high-protein (HP; n = 7) or moderate-protein (MP; n = 10) diet at 8 weeks of age. Fresh faecal samples were collected at 8, 12, and 16 weeks of age. DNA was extracted and quantitative PCR used to quantify Bifidobacterium, Lactobacillus, Clostridium perfringens, and Escherichia coli concentrations. Denaturing gradient gel electrophoresis was performed to create a dendrogram and unrooted trees using Bionumerics 5.0 to identify similarity due to litter, age, or diet. Kittens fed HP had lower (p = 0.02) Bifidobacteria and Lactobacillus counts than MP-fed kittens. E. coli was lower (p = 0.02) in HP-fed kittens and tended to be affected by age (p = 0.09). Kittens were clustered by litter at 8 weeks of age, and then clustered by diet at 12 and 16 weeks of age. Our data suggest that faecal microbiota of growing kittens change after weaning and that dietary protein concentration affects E. coli, Bifidobacterium, and Lactobacillus populations. The relevance of these data in terms of intestinal health and disease remain to be determined and justifies further study.  相似文献   

20.
The effect of the forage source on ruminal fermentation in vitro was investigated for fine (F) and coarse (C) milled diets, using a modified Hohenheim gas production test and a semi-continuous rumen simulation technique (Rusitec). It was hypothesised that the replacement of maize silage by grass silage might lead to associative effects and that interactions related to particle size variation could occur. Five diets with a maize silage to grass silage ratio of 100 : 0, 79 : 21, 52 : 48, 24 : 76 and 0 : 100 differed in their content of CP and carbohydrate fractions, as well as digestible crude nutrients, derived from a digestibility trial with wether sheep. For in vitro investigations, the diets were ground to pass a sieve of either 1 mm (F) or 4 mm (C) perforation. Cumulative gas production was recorded during 93 h of incubation and its capacity decreased with increasing proportion of grass silage in the diet. Across all diets, gas production was delayed in C treatments compared with F treatments. Degradation of crude nutrients and detergent fibre fractions was determined in a Rusitec system. Daily amounts of NH3-N and short-chain fatty acids (SCFA) were measured in the effluent. Degradation of organic matter (OM) and fibre fractions, as well as amounts of NH3-N, increased with stepwise replacement of maize silage by grass silage. Degradability of CP was unaffected by diet composition, as well as total SCFA production. In contrast to the results of the gas production test, degradation of OM and CP was higher in C than in F treatments, accompanied by higher amounts of NH3-N and SCFA. Interactions of silage ratio and particle size were rare. It was concluded that the stepwise replacement of maize silage by grass silage might lead to a linear response of most fermentation characteristics in vitro. This linear effect was also supported by total tract digestibility data. However, further investigations with silages of variable quality seem to be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号