首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coffee leaf rust, caused by Hemileia vastatrix, is the most devastating disease of coffee. Since limited information is available in the literature on silicon (Si) affecting plant diseases in coffee, this study was designed to investigate foliar application of potassium silicate (PS), a source of soluble (Si), on infection process of coffee leaf rust at the microscopic level. The foliar Si concentration for plants sprayed with water and PS has no significant difference (0.24 and 0.30 dag kg?1, respectively). X‐ray microanalysis indicated that the deposition of Si on the leaves of the plants that were sprayed with PS was greater in comparison to the leaf samples from the plants sprayed with water. Rust severity on leaves of plants sprayed with water or sprayed with PS reached 44% and 32%, respectively, at 36 days after inoculation (dai). Plates of polymerised PS were observed on the leaf surfaces of the plants sprayed with the product, in contrast to its absence on the leaf surfaces of plants sprayed with water. At 36 dai, a greater number of uredia were observed on the leaf surfaces of plants sprayed with water in comparison to the leaf surfaces of plants sprayed with PS. On fractured leaf tissues that were sprayed with PS, less fungal colonisation was observed in comparison to the leaves of plants sprayed with water. In conclusion, the results of this study suggest that the effect of foliar‐applied Si on the control of the coffee leaf rust development may be attributed to the physical role of the polymerised PS, its osmotic effect against urediniospores germination, or both.  相似文献   

2.
Stomatal closure, relative water content (RWC) and vegetative growth were monitored in Ilex paraguariensis plants grown under well-watered conditions with a photosynthetic photon flux density (PPFD) varying from 100% to 1.5%, and sprayed weekly with either distilled water (control) or 1.89 mM abscisic acid (ABA). ABA treatments caused stomatal closure, ranging from 62% to 73%. These treatments also increased RWC in the early evening from 82% to 92% and 88% to 94% in mature and immature leaves, respectively. Such alleviation of the water stress was correlated with increases in leaf area, leaf dry weight (DW), shoot length and shoot DW. On day 35 from the beginning of the experiment, the increases in DW of both leaves and shoots were 1.5-fold at the 1.5% PPFD and 3-fold (for leaves) and 4.5-fold (for shoots) under 100% PPFD. In water-sprayed control plants grown under 1.5% PPFD shoot length also increased significantly, although these shoots contained more ABA (assessed by capillary gas chromatography–mass spectrometry) than those of plants grown under 100% PPFD. These results show that ABA sprayed on to leaves promotes growth in I. paraguariensis plants by alleviating diurnal water stress.  相似文献   

3.
Infection of Rhizobium-nodulated Phaseolus vulgaris by the southern bean mosaic virus (SBMV) markedly decreased the growth and nodulation of plants. Exogenous applications of salicylic acid (SA) at concentrations ≥10 μM further decreased growth and nodulation of virus-infected (V) plants. Only SA concentration of 5 μM in the solution improved the growth, nodulation, chlorophyll concentration and the catabolism of ureide in leaves of V plants. The spray of leaves with 2 mM propyl gallate (+Pg) decreased growth, nodulation as well as the chlorophyll and leaf ureide concentrations in V plants, regardless of the concentration of SA at which plants were grown. Ultrastructural damages in leaf cells caused by SBMV were also enhanced in V+Pg plants. The massive proliferation of virus particles and the presence of virus crystalline arrays within symbiosomes of nodules in V+Pg plants were attributed to proliferation of branched plasmodesmata in leaf vascular-parenchyma cell walls that facilitated virus movement. Virus particles were never observed in leaf and nodule tissues of V plants not sprayed with Pg. Exogenous applications of SA hindered while Pg increased the symbiotic performance of H plants, pointing out the complexity to be addressed in breeding for virus resistance in Rhizobium-nodulated beans.  相似文献   

4.
Leaves of virus-free sugar-beet plants rarely became infected with Alternaria spp. in two field experiments at Cambridge in 1965. Infection with beet yellows virus (BYV) increased susceptibility of plants to Alternaria only slightly but infection with beet mild yellowing virus (BMYV) increased it greatly. There was a close association between the severity of Alternaria symptoms, shown by different breeding lines and varieties of sugar beet, and the losses of sugar yield which they sustained after infection with BYV and BMYV. Many lines and varieties were resistant to Alternaria even when infected with BMYV and their resistance seemed to be inherited as a dominant character. Individual plants of any one line or variety differed greatly in resistance to Alternaria, suggesting that selection should improve the present level of resistance. Spraying the foliage of Alternaria-susceptible varieties with fungicides had little effect on the severity of Alternaria symptoms or on sugar yield. This was probably because the wet summer of 1965 was ideal for the spread of Alternaria and because rain washed the fungicide deposits from the sprayed leaves.  相似文献   

5.
Polyacrylic acid (PA) of molecular weight 1700A, 1700B and 3500 caused resistance to infection with tobacco mosaic virus in tobacco cv. Xanthi-nc, when sprayed on the leaves or watered into the soil. The numbers of lesions produced in the treated plants were between 27 and 97% fewer than in the untreated plants depending on the concentration of PA, its molecular weight and the method of application. Some resistance was caused against potato virus X and potato virus Y but only at concentrations that were harmful to the plants. It appears that PA activates a mechanism responsible for localizing viruses in hypersensitive plants.  相似文献   

6.
The herbicidal effect of volatile oils from leaves of Eucalyptus citriodora against the noxious weed Parthenium hysterophorus was tested. In a laboratory bioassay, seed germination and seedling length, chlorophyll content and respiratory activity of Parthenium decreased with increased concentration of eucalypt oils from 0.2 to 5.0 nL mL‐1. Germination was completely inhibited at 5.0 nL mL‐1 eucalyptus oils. Further, for 4‐week‐old plants of Parthenium sprayed with different concentrations of volatile oils, visible damage increased and chlorophyll content and respiratory activity decreased with increased concentration from 0 to 100 μL mL‐1, the week after spraying. At concentrations up to 50 μL mL‐1, plants showed some recovery over time but plants sprayed with 75 and 100 μL mL‐1 died 2 weeks after treatment. Plants sprayed with 50 μL mL‐1 and higher concentrations of eucalypt oils were desiccated and wilted in appearance. At concentrations of 5–75 μL mL‐1, eucalypt oils caused a rapid electrolyte leakage from the Parthenium plants thereby indicating an effect on membrane integrity. It is concluded that volatile oils from E. citriodora possess weed‐suppressing ability and could be used as a potential bioherbicide for future weed management programmes.  相似文献   

7.
The possibility of improving the recovery of plant photosynthesis after water stress by cytokinin-induced stimulation of stomatal opening or delay of leaf senescence was tested. The 6-benzylaminopurine (BAP) in concentrations 1 and 10 M was applied to the substrate (sand + nutrient solution) or sprayed on primary leaves of 14-d-old Phaseolus vulgaris L. plants sufficiently supplied with water or water-stressed for 4 d. The later ones having relative water content decreased to 69 % were fully rehydrated during the following three days. Parameters of photosynthesis and water relations were measured in primary leaves of 7-, 10-, 14-, and 17-d-old plants. Application of 1 M BAP slightly delayed leaf senescence: in 17-d-old control plants, net photosynthetic rate (PN) and chlorophyll (Chl) content, and when sprayed on leaves also some of Chl a fluorescence kinetic parameters of BAP-treated leaves were slightly higher than those of untreated leaves. Both types of application of 1 M BAP slightly improved recovery of plants during rehydration after water stress in terms of increased gad, gab and PN, i.e., parameters which were markedly decreased by mild water stress. However, contents of Chl a, Chl b and carotenoids and parameters of Chl a fluorescence kinetic were not markedly affected by mild water stress and after rehydration were not stimulated by 1 M BAP. 10 M BAP had mostly negative effects on the parameters measured.  相似文献   

8.
Treatment of different plant materials, seeds of Phaseolus vulgaris, Zea mays and Pinus silvestris and young plants of Phaseolus, with kinetin increased the level of extractable IAA. For seeds this increase was most pronounced in bean seeds, which contained the lowest amount of endogenous IAA and cytokinins, and lower in maize seeds with high endogenous content of IAA and cytokinins. – For young bean plants the kinetin treatment significantly increased the extractable amounts of IAA from all parts of the plant, hypocotyls, cotyledons, epicotyls and primary leaves, when the cut plants were placed for 24 h in kinetin solution. For plants sprayed with kinetin solution only the primary leaves showed a significantly higher level of extractable IAA, which could be explained by the fact that the plants were growing very close together, so that the primary leaves received most of the kinetin during spraying.  相似文献   

9.
Coffee is the most traded commodity in the world, and Brazil is its largest producer. Coffee leaf rust, caused by the biotrophic fungus Hemileia vastatrix, is the most important coffee disease, reducing coffee yield by 35–50%. This study aimed to use the ratio of variable and maximum fluorescence of dark‐adapted tissue (Fv/Fm) as a parameter to differentiate presymptomatic tissue from healthy tissue during disease development in plants sprayed with pyraclostrobin and epoxiconazole after 4 days postinoculation. Visual severity was considered as an indicative of apparent disease and true severity as an indicative of both apparent and non‐apparent disease. There was a significant linear relationship between the areas of true severity and visual severity, and for each additional unit in the visual severity, there was an increase of 1.53 units on the true severity. For the epoxiconazole and pyraclostrobin treatments, coffee leaf rust symptoms decreased according to both visual and Fv/Fm images. Pustules on the leaves sprayed with epoxiconazole were smaller in size than those on the leaves of non‐sprayed plants but bigger than those sprayed with pyraclostrobin. The reduction in Fv/Fm values at the pustule epicentres present on the leaves of plants sprayed with epoxiconazole, and pyraclostrobin was greater than those of the non‐sprayed plants. This finding was expected and reflects the importance of these fungicides in prohibiting the progress of coffee leaf rust. The photosynthetic capacity of Coffea arabica was affected by H. vastatrix infection, and the Fv/Fm parameter was able to show this effect before the visual symptoms were noticed.  相似文献   

10.
Flavones and isoflavones are a major group of phenolic secondary metabolites which occur in leaves of narrow leafed lupine (Lupinus angustifolius) either as free aglycones or in a form of glycosides and malonyl-glycosides. Profiles of phenolic compounds in leaves of seedlings infected with anthracnose causing fungus Colletotrichum lupini were compared to those of healthy plants. A HPLC with diode array UV detector was used as the analytical method and identification of these secondary metabolites was confirmed with a HPLC/MSn instrument. Isomers of several target compounds differing in the glycosilation and/or malonylation pattern were detected in the studied samples. However, the application of standard HPLC with C18 columns resulted in the co-elution of several glyconjugates in single chromatographic peaks whereas for isoflavonoid aglycones complete resolution was achieved. Lupine plants grown in a greenhouse were either sprayed with the C. lupini spore suspension or the suspension was spotted on to wounded leaves. Profiles of the isoflavones were altered in result to infection with both methods. In particular, the concentration of isoflavone free aglycones detected in extracts from diseased plants was substantially increased in all of the studied samples. However, the pattern of these compounds depended on the age of lupine leaves as well as on the method of infection. Synthesis of luteone and 2′-hydroxygenistein was enhanced in the youngest leaves of plants sprayed with spores as well as in wound-infected leaves. Wighteone synthesis was induced mainly in older leaves of plants sprayed with the spore suspension.  相似文献   

11.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most important diseases on soybean. At the moment, ASR is managed mainly with fungicides due to the absence of commercial cultivars with resistance to this disease. This study evaluated the effects of acibenzolar‐Smethyl (ASM), jasmonic acid (JA), potassium silicate (PS) and calcium silicate (CS) on soybean resistance to ASR. The ASM, JA and PS were sprayed to leaves 24 h prior to inoculation with P. pachyrhizi. The CS was amended to the soil. The incubation period (time from the inoculation until symptoms development) was longer for plants growing in soil amended with CS or sprayed with ASM in comparison with plants sprayed with water (control). Plants sprayed with ASM had longer latent period (time from the inoculation until signs appearance) in comparison with the control plants. Plants sprayed with PS showed fewer uredia per cm² of leaf in relation to the control plants. The ASM and PS were the most effective treatments in reducing the ASR symptoms in contrast to the JA and CS treatments. The JA served as an inducer of susceptibility to ASR.  相似文献   

12.
Water deficit is a major environmental constraint on crop productivity and performance and nitric oxide (NO) is an important signaling molecule associated with many biochemical and physiological processes in plants under stressful conditions. This study aims to test the hypothesis that leaf spraying of S‐nitrosoglutathione (GSNO), an NO donor, improves the antioxidant defense in both roots and leaves of sugarcane plants under water deficit, with positive consequences for photosynthesis. In addition, the roles of key photosynthetic enzymes ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) in maintaining CO2 assimilation of GSNO‐sprayed plants under water deficit were evaluated. Sugarcane plants were sprayed with water or GSNO 100 μM and subjected to water deficit, by adding polyethylene glycol (PEG‐8000) to the nutrient solution. Sugarcane plants supplied with GSNO presented increases in the activity of antioxidant enzymes such as superoxide dismutase in leaves and catalase in roots, indicating higher antioxidant capacity under water deficit. Such adjustments induced by GSNO were sufficient to prevent oxidative damage in both organs and were associated with better leaf water status. As a consequence, GSNO spraying alleviated the negative impact of water deficit on stomatal conductance and photosynthetic rates, with plants also showing increases in Rubisco activity under water deficit.  相似文献   

13.
We studied the physiological responses to abscisic acid (ABA) when 2-year-old potted plants of kiwifruit (Actinidia deliciosa) were grown under moisture stress. Leaves treated with 60 μM exogenous ABA through various means had less severe damage when water was limiting, and sprayed plants showed relatively greater drought resistance. This indicates that ABA improves tolerance in kiwifruit, reducing membrane permeability and enhancing the activities of antioxidant enzymes, e.g., peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). Exposure to ABA led to higher levels of antioxidants, such as ABA and glutathione (GSH), while altering the amounts of endogenous hormones—ABA, indole-3-acetic acid (IAA), and Gibberellin (GA)—and organic oxalate, malate, and citrate in the leaves. Although daily applications of ABA were more effective than a single spray event, the effect of treatment, i.e., avoiding tissue damage and increasing plant resistance, was more apparent on Day 4 than on Day 6. No difference in response was apparent between control plants (regular irrigation) and those sprayed with ABA on Day 4 of the drought period.  相似文献   

14.
Young plants of Lotus creticus creticus growing in a hydroponic culture were submitted to 0, 70 and 140 mM NaCl treatments for 28 d and the growth and ecophysiological characteristics of these plants have been studied. The growth of Lotus plants was not affected by salinity when applied for a short period (about 15 d); however, 140 mM NaCl induced a decrease in shoot RGR at the end of the treatment. The root growth was not decreased, even it was stimulated by 140 mM NaCl. The osmotic adjustment of Lotus plants at 70 and 140 mM NaCl maintained constant pressure potential, avoiding the visual wilting. For a similar leaf water potential, cuticular transpiration of salinized plants was lower than in control plants due to the salinity effect on the cuticle. Moreover, the presence of hairy leaves (60 and 160 trichomes per mm2 in young and adult leaves, respectively) allows keeping almost 81 % of sprayed water and absorbing the 9 % of the water retained, decreased the epidermal conductance to water vapour diffusion.  相似文献   

15.
Excised leaves of Nerium oleander, which were treated with phenylmercuric acetate (PMA) 11/2 h before excising, transpired faster than untreated excised leaves. Similarly, PMA-treated oleander plants transpired more than untreated plants in the dark. These effects were due to retarded stomatal closure caused by PMA. Measurements of stomatal apertures on disks of Vicia faba leaves kept in the dark, and of diffusive resistance to water vapor from Phaseolus vulgaris leaves, confirmed that PMA retards stomatal closing as well as stomatal opening. However, day-time reductions in transpiration by PMA greatly exceed night-time increases in water loss. The mechanisms of stomatal movement, as affected by PMA, are discussed. PMA may conceivably decrease the permeability of guard cell membranes to solutes, thereby retarding all stomatal movements that are osmotically induced.  相似文献   

16.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most important foliar diseases affecting soybean production worldwide. This study aimed to investigate the photosynthetic performance (leaf gas exchange, chlorophyll (Chl) a fluorescence images and photosynthetic pigment pools) of soybean plants sprayed with Acibenzolar‐S‐Methyl (ASM) and the fungicide epoxiconazole + pyraclostrobin (Epo+Pyr) and further inoculated with P. pachyrhizi. The ASR symptoms progressed much faster on the leaves of plants from the control treatment (water spray) in comparison with the ASM and Epo+Pyr treatments. In general, the values for the leaf gas exchange parameters net carbon assimilation rate (A), stomatal conductance to water vapour (gs), internal CO2 concentration (Ci) and transpiration rate (E) increased for the infected plants sprayed with ASM or Epo+Pyr in comparison with plants from the control treatment. The values for the initial fluorescence (Fo), maximal fluorescence (Fm), maximal photosystem II quantum efficiency (Fv/Fm), effective photosystem II quantum yield (Y(II)) and quantum yield of regulated energy dissipation (Y(NPQ)) were consistently higher for the ASM and Epo+Pyr treatments in comparison with the control treatment at advanced stages of fungal infection. By contrast, the values for quantum yield of non‐regulated energy dissipation (Y(NO) were significantly lower for the ASM and Epo+Pyr treatments. The concentrations of total Chl a+b and carotenoids significantly increased for infected plants sprayed with ASM and Epo+Pyr in comparison with plants from the control treatment. The results of this study demonstrated that the spray of soybean plants with either ASM or Epo+Pyr contributed to reduce the negative effect of ASR on the photosynthesis of soybean plants.  相似文献   

17.
The effects of yeheb (Cordeauxia edulis Hemsl.) leaf extract on feeding and oviposition by diamondback moth (DBM) (Plutella xylostella L.) and the behavior of DBM parasitoid, Cotesia vestalis (Haliday), were studied. Volatile organic compounds (VOCs) from the headspace of intact and DBM-damaged broccoli plants sprayed with yeheb extracts (YE) were also analyzed. Larval feeding and growth, and oviposition by adult DBM were strongly inhibited by the extract. Cotesia vestalis were attracted to volatile blends from intact or DBM-damaged broccoli plants sprayed with YE over intact plants sprayed with water or methanol. Analyses of VOCs in the headspace of broccoli plants revealed that both intact and DBM-damaged plants sprayed with YE showed remarkable differences in sesquiterpene compounds compared to intact control treatments. These combined negative effects of YE on DBM fitness together with positive effects on the parasitoid show that yeheb is a potential source of compounds for use in integrated pest management to control damage caused by DBM.  相似文献   

18.
Black leaf streak of bananas, caused by Mycosphaerella sp., prevented fruit of export quality forming and bunches maturing. Some infected leaves lived less than 50 days and were seldom retained until harvest. Maneb or benomyl applied in oil/water emulsions gave good control and benomyl was so effective that plants had ten leaves at harvest and some leaves survived for 245 days. Plants sprayed with maneb or benomyl flowered I month early. No benomyl residues were detected in the fruit exported to New Zealand. The control of black leaf streak by sprays containing oil has caused other leaf diseases to become more prevalent and the ensuing complex disease situation is discussed.  相似文献   

19.
In this study, we investigated whether the oviposition behaviour and performance of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on the rose cultivar Rosa chinensis Jacq. (Rosaceae) were affected when the plants were infected by rose powdery mildew, Podosphaera pannosa (Wallr.: Fr.) de Bary (Erysiphales). The bioassays revealed that the moths significantly avoided ovipositing on mildew‐infected rose leaves when compared to healthy leaves. Pupal weights, emergence rates, and fecundity decreased when the caterpillars were fed mildewed rose leaves. Further laboratory bioassays aimed to elucidate the effects of two volatile headspace extracts (separately collected from healthy and mildewed rose plants) on the oviposition behaviour and performance of the moths. The moths clearly preferred to oviposit on healthy rose leaves that were not sprayed with additional volatiles rather than on healthy leaves sprayed with the volatile extracts from mildewed plants. The mean number of eggs laid on the former leaves was more than six times higher than that laid on the latter leaves. Olfactory bioassays demonstrated that ovipositing moths were significantly more attracted to volatiles emitted by healthy rose leaves than to those emitted by mildew‐infected leaves. Similar results were obtained when comparisons were made between the volatile extracts collected from healthy and mildewed rose plants. Thus, volatiles from mildew‐infected roses have a strong inhibitory effect against the moths. These results indicated that rose volatiles play a role in the oviposition behaviour of the moths, and that the volatiles induced by powdery mildew might be used for insect control.  相似文献   

20.
Horticultural mineral oil (HMO) deposits affect postlanding searching behaviour and contact evaluation of oviposition substrates by females of the citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Both unsprayed and sprayed lemon trees were equally capable of arresting randomly moving female moths by eliciting kinetic responses. The presence of HMO deposits did not affect the approach of female moths to flushes (shoots with immature leaves suitable as oviposition sites), and female moths were equally likely to land on sprayed and unsprayed immature flushes provided mature leaves were not sprayed. The presence of HMO on both the mature leaves and the flushes caused shorter residence and search times within trees and also resulted in fewer immature leaves visited. The HMO‐sprayed flushes were also more likely to be rejected for oviposition after contact. Nevertheless, eggs were sometimes deposited on sprayed flushes between residues of the oil droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号