首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment was undertaken to evaluate the effect of dietary vitamin A on the performance and immune competence of broilers under heat stress (HS). A total of 180 birds, at 22 days of age, were randomly assigned to be reared either at 24°C (thermoneutral, TN, 24°C, constant) or 24°C to 38°C (heat stress, HS, cycling) until the age of 42 days. Birds were then supplemented with vitamin A at 750, 1500, 15 000 IU/kg. Each of the 2 × 3 factorially arranged treatments were replicated in six cages, each containing five birds. Humoral immunity was assessed by intravenous injection of 7% sheep red blood cells (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Cell-mediated immunity was assessed by using a Sephadax stimulation method to recruit abdominal exudate cells (AEC) to evaluate macrophage phagocytic ability. Body weight (BW) and feed conversion were significantly affected by dietary vitamin A (P < 0.05). HS significantly reduced BW, feed intake and feed conversion (P < 0.05). Numbers of AEC, percentage of macrophages in AEC, phagocytic macrophages, internalized opsonized and unopsonized SRBC were increased by dietary vitamin A (P < 0.05). Both primary and secondary antibody responses were characterized by increasing titers of antibody to SRBC by dietary vitamin A when birds were exposed to HS (P < 0.05). Lymphoid organ weights, antibody responses, incidence of macrophages in AEC and phagocytic ability of macrophages were all significantly reduced under HS. These results indicated that HS severely reduced performance and immunocompetence of broilers, whereas the immune response of broilers improved by dietary vitamin A supplementation under HS.  相似文献   

2.
A study was conducted using 360 broiler chickens to evaluate the effects of dietary vitamin E (0, 125 and 250 mg/kg), selenium (Se, 0, 0.5 and 1 mg/kg), or their different combinations on immune response and blood biological parameters of broilers raised under either thermoneutral (TN, 23.9 °C constant) or heat stress (HS, 23.9 to 37 °C cycling) conditions. Humoral immunity was assessed by intravenous injection of 7 % sheep red blood cell (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Heterophil to lymphocyte (H/L) ratio also determined as an indicator of stress. Furthermore, at the end of the experiment, birds were bled for determination of some biological parameters. There was a significant reduction in body weight and feed intake, but the feed conversion ratio increased when the birds were exposed to HS (P?<?0.05). Body weight and feed intake were not influenced significantly by dietary vitamin E and Se (P?>?0.05), whereas feed conversion was improved significantly by 125 mg/kg vitamin E (P?<?0.05). The liver and lymphoid organ weights as well as IgM and IgG, antibody titers for primary and secondary antibody responses to SRBC were reduced significantly under HS (P?<?0.05). Heat stress also resulted in a significant increase in H/L ratio (P?<?0.05). Dietary vitamin E resulted in improvement of primary and secondary antibody responses both in TN and HS broilers (P?<?0.05). The HS birds also showed an improved antibody titer in secondary response with high concentration of Se (P?<?0.05). Vitamin E and Se had interactive effects on anti-SRBC titers; however, no consistent differences were found between dietary levels during the study. The H/L ratio decreased by feeding vitamin E at both levels either under HS or TN conditions (P?<?0.05). The serum concentrations of glucose, triglycerides, total cholesterol, and LDL-cholesterol were increased but serum HDL-cholesterol decreased in HS broilers (P?<?0.05).  相似文献   

3.
A study was conducted using 240 female day-old broiler chicks to evaluate the effects of dietary chromium picolinate (CrPic), peppermint essential oil (P.mint), or their combination on growth performance and blood biochemical parameters of female broiler chicks raised under heat stress conditions (HS, 23.9 to 38 °C cycling). Average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) were obtained from 1 to 42 days of age. Furthermore, at the end of the experiment (day 42), birds were bled to determine some blood biochemical parameters and weighed for final body weight (BW). ADFI, ADG, and BW were not influenced significantly by dietary CrPic and P.mint (P?>?0.05). A significant interaction between dietary CrPic and P.mint on FCR (P?=?0.012) was detected. FCR significantly decreased in chicks fed the diet including both CrPic and P.mint compared with the CrPic group. Significant interaction between dietary P.mint and CrPic on serum concentrations of triglycerides, glucose, and albumin were observed (P?<?0.05), but the other measured blood biochemical parameters were not statistically affected by dietary treatments (P?>?0.05). The serum concentrations of glucose, triglycerides were decreased (P?<?0.05) in broilers fed the diet including both CrPic and P.mint. Plasma chromium (Cr) content increased significantly (P?<?0.05) in birds fed the CrPic-included diet compared with the control group (P?<?0.05). From the results of the present experiment it can be concluded that dietary supplementation with combined P.mint and CrPic could have beneficial effects on some blood biochemical parameters of female chicks reared under heat stress conditions.  相似文献   

4.
This study investigated the effects of epigallocatechin gallate (EGCG) on the growth performance and antioxidant capacity of 35-d-old broilers exposed to heat stress. Broilers, 14 d of age, were divided into four groups with six replicates per group (eight chickens/replicate). Thermoneutral group (Group TN) was fed the basal diet and maintained at 28°C for 24 h/d. The heat-stressed groups were housed at 35°C for 12 h/d and 28°C for 12 h/d and fed the basal diet supplemented with EGCG at 0, 300 and 600 mg/kg diet (Groups HS0, HS 300 and HS600, respectively). Compared with Group TN, heat-stressed groups showed significantly reduced gain, feed intake and serum total protein and glucose levels; inhibited serum alkaline phosphatase activities; and increased serum levels of uric acid, cholesterol and triglycerides and the activity of serum creatine kinase, lactate dehydrogenase and aspartate aminotransferase (< 0.05). Compared with Group HS0, Group HS600 exhibited an increased gain and feed intake; and normalised blood parameters and enzyme activities. Compared with Group TN, the expression of antioxidant-related liver proteins was decreased in Group HS0 and increased in Groups HS300 and HS600 (< 0.05). The results suggest that EGCG can improve the growth performance and alleviate the oxidant damage by modulating the antioxidant properties of broilers.  相似文献   

5.
This study evaluated the effects of supplemental dietary chromium (Cr) on the performance, carcass traits, and some serum parameters of broilers under a heat stress (23.9 to 37 °C cycling) condition. A total of 150 1-day-old broiler chicks (Cobb 500) according to a completely randomized design were assigned into five treatment groups. Each treatment consisted of three replicates and each replicate contained ten chicks. Treatments were supplemented with 0 (control), 600, and 1,200 μg kg?1 Cr in the form of Cr chloride (CrCl3) and Cr L-methionine from 1 to 49 days of age. Blood samples were collected from two birds in each replicate to determine serum parameters at 35 and 49 days of age. The body mass, feed intake, and conversion ratio were not influenced by dietary Cr (P?>?0.05). Dietary supplementation of Cr from either CrCl3 or Cr L-methionine caused increased serum concentrations of Cr (P?<?0.05), but had no effect on serum insulin and glucose concentrations at both sampling times (P?>?0.05). Serum triglycerides, very low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were also not significantly affected (P?>?0.05) by dietary treatments, whereas total cholesterol concentration decreased in chicks fed Cr L-methionine compared to the control (P?<?0.05).  相似文献   

6.
Pulmonary arterial hypertension (PAH) syndrome in broilers is associated with hypoxia, which prevails at high altitude. Oxidative stress is the pathogenic mechanism underlying PAH. Because selenium is key element in the structure of antioxidant enzymes, we evaluated pulmonary hypertensive responses in broiler chickens fed with diets supplemented with organic or nano-selenium. One hundred forty-four broilers (starting at 5 days old) were fed with (i) control group: birds received a standard diet; (ii) nano-selenium group: birds were fed with basal diet supplemented with nano-selenium at 0.3 mg/kg; and (iii) organic selenium group: birds received basal diet supplemented with organic selenium at 0.3 mg/kg. We assessed growth performance, carcass characteristics, antioxidant variables, blood parameters, and small intestine morphology. Although Se supplementation did not affect growth performance, carcass traits, and organ weight (P > 0.05), the right to total ventricular weight ratio (RV:TV), malondialdehyde concentration in the liver, and heterophil to lymphocyte ratio were significantly lower in the nano-selenium group relative to the control (P < 0.05). Chickens that received nano-selenium also elicited significantly higher antibody titers after 24 h of an injection of sheep red blood cells (P < 0.05). Nano-selenium supplementation also significantly increased villus height, absorptive surface area, and lamina propria thickness relative to the control (P < 0.05) in different segments of the small intestine. In contrast, organic selenium supplement improved intestinal morphometry only in the jejunum. We conclude that dietary supplementation of 0.30 mg/kg nano-selenium could prevent right ventricular hypertrophy as reflected by reduced RV:TV, reduced levels of lipid peroxidation in the liver, and improved gut function.  相似文献   

7.
This experiment was conducted to evaluate the effects of dietary vitamin E, selenium (Se), and a combination of the two, on the performance, serum metabolites and oxidative stability of skeletal muscle of broilers during heat stress. The broilers raised in either a thermoneutral (23.9°C constant) or heat stress (23.9°C to 37°C cycling) environment were assigned to 6 dietary treatments (0, 0.5, or 1 mg/kg Se; 125 and 250 mg/kg vitamin E; or 0.5 mg/kg Se plus 125 mg/kg vitamin E) from 1 to 49 days of age. At the end of the experiment, blood samples were collected from chicks, the chicks sacrificed, and pectoralis superficialis muscle was used for measurement of malondialdehyde (MDA) concentration and enzyme activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD). The heat-stressed chicks consumed less feed, gained less weight, and had higher feed conversion ratio when compared to thermoneutral chicks (P<0.05). Serum concentrations of iron (Fe) and zinc (Zn) were decreased by heat stress (P<0.05), whereas the serum concentrations of copper (Cu), glucose, and uric acid were significantly increased under heat stress (P<0.05). The chicks that received supplemental of vitamin E exhibited significantly higher serum concentrations of Zn (P<0.05) and significantly lower concentrations of Cu, glucose, and uric acid (P<0.05) when exposed to heat stress. Dietary Se also caused a significant decrease in serum glucose, uric acid, and Cu concentrations of heat-stressed broilers (P<0.05), but had no significant effect on Zn concentration (P>0.05). The GPx activity remained relatively constant (P>0.05), though SOD activity and MDA levels in skeletal muscle were enhanced on exposure to heat stress (P<0.05). The heat-stressed chicks that received the combined supplementary level of vitamin E and Se had the lowest concentration of MDA and the highest activity of SOD in the skeletal muscle (P<0.05). Dietary Se also caused a significant increase in enzyme activity of GPx in the skeletal muscle (P<0.05). These results indicate that the derangement of blood parameters and oxidative stability in broilers under heat stress are improved by supplemental vitamin E and Se.  相似文献   

8.
ABSTRACT

The current experiment was designed to examine effects of dietary supplemental sunflower hulls (SH) and rice hulls (RH) on growth performance, carcass traits, intestinal morphology, lesion score and oocyst shedding in broiler chickens exposed to coccidial challenge. A total of 540 broiler chickens (Ross 308) were assigned to six dietary treatments based on a factorial arrangement (2 × 3) across 1–14, 14–28 and 28-42-d periods. Experimental treatments consisted of broiler chickens without or with coccidial challenge each offered with three different diets: a basal diet or basal diet supplemented with either RH or SH at 40 g/kg diet, respectively. Infection with Eimeria impaired daily weight gain (DWG) and feed conversion ratio (FCR) of broiler chickens during growing period (p < 0.05) while supplementation of SH or RH reduced the adverse effect of coccidiosis so that birds had similar DWG to those fed the basal diet without infection. However, only dietary SH improved the FCR of broilers challenged with coccidiosis. Regardless of coccidial challenge, dietary access to insoluble fibre improved performance of broilers across the growing period (p < 0.05); however, this effect was not observed during the entire rearing period. Relative weights of liver and pancreas were increased in birds subjected to coccidial challenge on d 21 of age (p < 0.05). Moreover, relative weights of the intestinal segments were enhanced (p < 0.05). Furthermore, gizzard weights were higher in birds receiving diets added with fibre (p < 0.05). Infection with coccidiosis decreased villus height and villus height to crypt depth ratio in duodenum of broilers which received the basal diet compared with those fed the same feed without coccidial challenge (p < 0.05). However, supplemental SH could decrease the negative effect of infection on the noted intestinal morphometric attributes. Similarly, a marked reduction was observed for lesion score and faecal oocyst excretion of challenged broilers fed on dietary supplemental fibre (p < 0.05). In conclusion, supplementation of insoluble fibre could ameliorate negative effects of coccidial challenge on DWG of broiler chickens and inclusion of SH in diet of birds exposed to Eimeria infection could be recommended.  相似文献   

9.
An experiment is conducted to investigate the effects of selenium (Se) source and level on growth performance, tissue Se concentrations, antioxidation, and immune functions of heat-stressed broilers from 22 to 42?days of age. A total of 210 22-day-old Arbor Acres commercial male chicks were assigned by body weight to one of seven treatments with six replicates of five birds each in a completely randomized design involving a 3?×?2 factorial arrangement plus one Se-unsupplemented basal diet control (containing 0.027?mg of Se/kg). The three Se sources were sodium selenite (Na2SeO3), Se yeast, and AMMS Se (Se protein), and the two supplemental Se levels were 0.15 or 0.30?mg Se/kg. All birds were reared under heat-stressed condition (33?±?1?°C during 0900?C1700?hours and 27?±?1?°C during 1900?C0700?hours with a relative humidity of 60?C80?%). The results showed that heat-stressed chicks fed Se-supplemented diets had higher (P?<?0.10) average daily feed intake, Se concentrations in liver and breast muscle, liver glutathione peroxidase (GSH-Px) activity, serum antibody titers against H5N1(Re-4 strain), H5N1(Re-5 strain) and lower (P?<?0.01) mortality compared with the control. Chicks fed the diets supplemented with 0.30?mg/kg of Se had higher (P?<?0.05) Se concentrations in liver and breast muscle, liver GSH-Px activity, and serum antibody titer against H5N1 (Re-4 strain) than those fed the diets supplemented with 0.15?mg/kg of Se. Broilers fed the diets supplemented with Se yeast had higher (P?<?0.001) Se concentrations in liver and breast muscle than those fed the diets supplemented with Na2SeO3 or AMMS Se. However, broilers fed the diets supplemented with AMMS Se had higher (P?<?0.05) serum antibody titers against H5N1 (Re-4 strain) and H5N1 (Re-5 strain) than those fed the diets supplemented with Na2SeO3. These results indicated that Se yeast was more effective than Na2SeO3 or AMMS Se in increasing tissue Se retention; however, AMMS Se was more effective than Na2SeO3 or Se yeast in improving immune functions of heat-stressed broilers.  相似文献   

10.
Abstract

The study was conducted to evaluate effects of dietary supplementation with Ligustrum lucidum (LL, 10 g/kg), Schisandra chinensis (SC, 10 g/kg), LL (10 g/kg) + mannan oligosaccharides (MOS, 50 mg/kg), or SC (10 g/kg) + MOS (50 mg/kg) on growth performance and parameters of antioxidative and immunological status of broilers. The results showed that feeding LL, SC, LL + MOS, or SC + MOS had no significant effect on growth performance of broilers relative to the control. However, compared to the control, LL, SC, LL + MOS, or SC + MOS significantly decreased malondialdehyde concentration in serum, thigh, and heart of broilers. In addition, glutathione reductase activity of heart and sera of the birds were significantly elevated by supplementation LL, SC, LL + MOS, or SC + MOS. Furthermore, LL, SC, LL + MOS, or SC + MOS significantly improved antibody titres against Newcastle disease virus and lymphocyte proliferation of broilers (p < 0.05). Whereas, no cooperating effect between LL (or SC) and MOS on antioxidant status and immunity of broilers were found.  相似文献   

11.
The objective of this experiment was to investigate the effects of feed supplementation with equivalent doses of selenium from sodium selenite (SS) or selenized yeast (SY) on Se deposition, selenoenzyme activity and lipid peroxidation in tissues as well as in bacterial and protozoal fractions of rumen contents in sheep. The phagocytic activity of monocytes and neutrophils in whole blood was also assessed after 3 months of dietary treatment. While animals in the control group were fed with unsupplemented basal diet (BD) containing only background Se (0.16 mg/kg DM), the diet of the other two groups (n = 6) consisted of identical BD enriched with 0.4 mg Se/kg DM either from SS or SY. Concentrations of Se in blood and tissues were found to be significantly increased in both supplemented groups. No response in Se deposition was recorded in the musculus longissimus dorsi of sheep given dietary SS. The intake of SY resulted in a significantly higher Se level in the blood, kidney medulla, skeletal muscles, heart, intestinal and ruminal mucosa than in the case of SS supplementation. No differences appeared between tissue Se contents in the liver and kidney cortex due to the source of added Se. Regardless of source, Se supplementation to feeds significantly increased the glutathione peroxidase (GPx) activity in blood and tissues except the kidney medulla and jejunal mucosa. Supplementation with SY resulted in significantly higher activity of thioredoxin reductase in the liver and ileal mucosa, and also reduced malondialdehyde content in the liver and duodenal mucosa. Dietary Se intake increased Se concentrations in the total rumen contents and bacterial and protozoal fractions. The accumulation of Se in rumen microbiota was associated with increased GPx activity. Phagocytic cell activity was enhanced by Se supplementation. Our results indicate that Se from both sources has beneficial effects on antioxidant status in sheep and can be utilized by rumen microflora.  相似文献   

12.
In order to investigate the effects of dietary ginger extract (GE) enriched in gingerols on broilers under heat stress (HS) from 21 to 42 days of age, a total of 144 Ross 308 male broilers were randomly allocated to three groups with six replicates of eight broilers per replicate. Broilers in the control group were raised at 22 °C and fed a basal diet, and broilers in the other two groups were raised under cyclic HS (34 °C from 9:00 to 17:00 and at 22 °C for the rest of the time) and fed the basal diet with or without 1000 mg/kg GE. Supplementation of GE improved (P < 0.05) final body weight, average daily gain and feed conversion ratio of broilers under HS, and tended (P < 0.1) to increase breast muscle yield. The alterations of serum total protein, albumin, total cholesterol levels and aspartate aminotransferase activity under HS were reversed (P < 0.05) by GE, which also decreased (P < 0.05) serum triglyceride level and alanine aminotransferase activity. The decreased redness (a* value) and increased drip loss of breast muscle induced by HS were restored (P < 0.05) by GE. Moreover, GE supplementation increased (P < 0.05) total antioxidant capacity and decreased (P < 0.05) malondialdehyde content in liver and breast muscle, and increased (P < 0.05) glutathione peroxidase activity in serum and breast muscle. In conclusion, dietary GE supplementation restored growth performance, serum metabolites and meat quality of broilers under HS possibly by improving antioxidant activity.  相似文献   

13.
Broilers in four groups were fed a basal diet supplemented with 60 mg/kg zinc oxide (60-ZnO; control), or 20, 60, or 100 mg/kg ZnO nanoparticles (20-, 60-, and 100-nano-ZnO, respectively). Compared with the controls, after 14 days, birds in the 20- and 60-nano-ZnO groups had significantly greater weight gains and better feed conversion ratios. However, the body weight of birds in the 100-nano-ZnO group was dramatically reduced after 28 days. Relative to the control group, the total antioxidant capability (T-AOC) in serum and liver tissue was significantly higher in the 20-nano-ZnO group at all time points and also significantly higher in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues on days 21 and 28. Compared with the controls, the activity of copper-zinc superoxide dismutase (Cu-Zn-SOD) was significantly greater in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues after 21 days. Catalase activity in serum samples was significantly higher in the 20- and 60-nano-ZnO groups relative to the control and 100-nano-ZnO birds, but catalase activity in liver tissue was not affected by different nano-ZnO levels. Malondialdehyde content in serum and liver tissues was significantly reduced in the 20-, 60-, and 100-nano-ZnO groups compared with that in the control group at all time points except day 42. Taken together, our data indicate that appropriate concentration of dietary ZnO nanoparticles improves growth performance and antioxidative capabilities in broilers, and 20 mg/kg nano-ZnO is the optimal concentration.  相似文献   

14.
BackgroundHigher environmental temperature is a major abiotic stress factor for animals and human beings. The selenium (Se) is an important trace mineral having diverse health promoting effects under stress conditions. However, studies on dietary requirement of selenium under prolonged heat stress condition are lacking. Present study discern the effect of higher dietary Se levels on antioxidant, cytokine, haemato-biochemical profile, and immune response, and the selenoproteins mRNA expression in rats under prolonged heat stress (HS) condition.MethodsWeaned Wistar rats (4 wk age; 67.6 ± 1.53 g BW; n = 72) housed under thermoneutral (TN) or HS conditions and fed with purified diets containing three graded Se levels were divided in six experimental groups. The groups were 1) TN control with 138 ppb Se (TN_CON), 2) HS control with 138 ppb Se (HS_CON), 3) TN with higher Se @ 291 ppb (TN_Se1), 4) HS with higher Se @ 291 ppb (HS_Se1) 5) TN with higher Se @ 460 ppb (TN_Se2), 6) HS with higher Se @ 460 ppb (HS_Se2). Rats in all the six groups were maintained in TN environmental conditions (57.3 ± 0.22 temperature humidity index; THI) for initial 28 days period. Subsequently, rats of HS groups were exposed to 77.0 ± 0.11 THI for 6 h/d in a psychrometric chamber for last fourteen days.ResultsHigher dietary Se (291 and 460 ppb) significantly improved the blood hemoglobin concentration and reduced serum alanine aminotransferase activity of rats under HS conditions. The serum triiodothyronine and insulin levels were significantly higher in high dietary Se groups irrespective of the environmental conditions. Similarly, the serum reduced glutathione levels, and catalase and superoxide dismutase enzyme activity were increased and malondialdehyde levels were reduced in high dietary Se groups irrespective of stress conditions. The glutathione peroxidase (GPx) activity was significantly higher in 460 ppb dietary Se groups as compared to other groups. The serum pro-inflammatory cytokine interleukin (IL)− 1 was declined, whereas the anti-inflammatory cytokine IL-10 level was increased in high dietary Se fed rats under both HS and TN conditions with 460 ppb dietary Se groups showing pronounced effects. Further, there was heat stress- and dietary Se level dependent- up regulation in hepatic GPx and iodothyronine deiodinase-II mRNA expression and similar pattern was noticed in hepatic thioredoxin reductase mRNA expression. The selenoprotein-P mRNA expression was up regulated in 460 ppb Se fed HS group as compared to CON and Se1_C groups. High dietary Se improved the humoral immune response 7d after antigen inoculation under HS conditions whereas cell-mediated immune response was augmented in rats fed higher Se under TN condition.ConclusionIt is concluded that under prolonged heat stress conditions the dietary requirement of Se may be increased to 460 ppb for improving the antioxidant status and humoral immune response, cytokine levels, modulating the thyroid and insulin hormone, and the selenoproteins mRNA expression of rats.  相似文献   

15.
Activity of supplemental enzymes in a barley‐soybean‐maize based diet at 60, 75 and 90°C pelleting temperatures was studied using feed viscosity, in‐vitro enzyme activity and broiler performance data.

High pelleting temperatures increased feed viscosity but supplemented enzymes reduced the viscosity at all three temperatures levels by 11, 14 and 17%, respectively. Water intake and losses in excreta of birds were found to be affected by feed viscosity. Activity of cellulase enzyme, measured using the radial diffusion method, was unaffected at 60 and 75°C, but reduced by 73% in feed processed at 90°C. Enzymes increased the weight gain of broilers by 11.1% at 90°C, but no effect could be seen at low pelleting temperatures possibly due to high dietary protein and energy contents. Feed intake was unaffected by enzymes. Birds consumed 6% more feed and grew 9% faster when the pelleting temperature was increased from 60 to 75°C. Reduced feed intake and daily weight gain observed at 90° C could be fully compensated by the enzyme supplementation. High pelleting temperature reduced energy metabolizability (3.2%) and nitrogen utilization (4%) but enzyme almost compensated them (by 3.3% and 2.6%, respectively). No interaction could be detected between the pelleting temperatures and enzymes.

It is concluded that pelleting temperatures as high as 90°C drastically reduce cellulase activity, energy and nitrogen utilization thus lowering broiler performance. Either the remaining activity of cellulase or other thermostable enzymes can prevent the losses.  相似文献   

16.
The present study was conducted to investigate the effects of four dietary fat types and two environmental temperatures on the hepatic mitochondrial energetic in male broilers exposed to heat stress. The birds were kept in two separate rooms at 24 °C or 36 °C from 32 to 42 d of age with four experimental groups in each room. The birds fed on the diets supplemented containing rich sources of long-chain saturated fatty acids (beef tallow), middle-length-chain saturated FA (coconut oil), monounsaturated FA (olive oil), or polyunsaturated FA (soybean oil) for ten days. At 36 °C, the highest body weight and lowest feed conversion ratio were recorded in the birds fed on the diets supplemented with coconut oil or beef tallow. Temperature and fat type significantly affected the activities of the mitochondrial electron transport chain complexes (P < 0.01). There was a significant interaction between the temperature and fat type (P < 0.01). Generally, electron transport chain complexes I–V enzymatic activities were decreased at 36 °C. The coconut oil-fed birds showed the highest complex I activity at both temperatures. The beef tallow-fed broilers showed the lowest complex II activity at 24 °C. In birds exposed to 36 °C, complex II activity was higher for birds fed saturated coconut oil or beef tallow than those feeding the unsaturated olive oil or soybean oil-supplemented diets. At 24 °C, the highest and lowest complex III activities were recorded for the coconut oil- and beef tallow-supplemented diets, respectively. At 36 °C, the activity of complex III was coconut oil > beef tallow > olive oil > soybean oil. At 24 °C, complex IV activity was highest in coconut oil- or soybean oil-fed broilers; and at 36 °C, complex IV showed the lowest activity in soybean oil-fed birds. The highest complex IV activity was observed in coconut oil-fed chickens followed by olive oil-fed and beef tallow-fed birds, respectively. At 24 or 36 °C, the highest and lowest complex V activity was observed in coconut oil-fed and soybean oil-fed chickens, respectively. ATP concentration and mitochondrial membrane potential were in the order of coconut oil > beef tallow > olive oil > soybean oil at both temperatures. Temperature and fat type significantly affected the avANT mRNA concentration. Exposure of broilers to 36 °C generally decreased the mRNA expression of avANT, with beef tallow- or coconut oil-supplemented birds showing a lower avANT mRNA expression than those receiving olive oil- or soybean oil-supplemented diets. These findings provide further information on the use of fat sources in the diet of heat stressed-broilers.  相似文献   

17.
Despite increasing evidence indicating the essential involvement of selenium (Se) on growth performance, antioxidant capacity, and meat quality of commercial broilers, the effects of different Se sources on local Chinese Subei chickens is unclear. A total of 360 50-day-old male chickens were individually weighed and randomly allocated to four treatment groups. Chickens in each of the four groups were fed diets supplemented with 0.3 mg Se/kg as sodium Se (SS), Se-enriched yeast (SY), selenomethionine (Met-Se), or nano red element Se (Nano-Se) for 40 days. At the end of the experiment, one bird of approximately average weight from each cage was selected and slaughtered, and blood and breast muscles samples were collected. The results showed that there was no significant difference in feed intake, body weight gain, or feed to gain ratio among treatments (P > 0.05). Dietary SY, Met-Se, and Nano-Se supplementation increased the activity of glutathione peroxidase in serum and breast muscles and decreased the concentration of malondialdehyde in serum and carbonyl in breast muscles compared with the SS group (P < 0.05). Moreover, SY, Met-Se, and Nano-Se supplementation increased pH45min, total protein solubility, and myofibrillar protein solubility, as well as decreased the shear force value compared with the SS group (P < 0.05). In addition, birds in the SY and Met-Se groups exhibited lower cooking loss compared with the SS group (P < 0.05). In conclusion, organic Se and Nano-Se supplementation resulted in an improvement of antioxidant capacity and meat quality in local Chinese Subei chickens relative to inorganic Se.  相似文献   

18.
Selenium (Se) is an important dietary micronutrient with antioxidative roles. Cadmium (Cd), a ubiquitous environmental pollutant, is known to cause brain lesion in rats and humans. However, little is reported about the deleterious effects of subchronic Cd exposure on the brain of poultry and the protective roles on the brain by Se against Cd. The aim of this study was to investigate the protective effects of Se on Cd-induced brain damage in chickens. One hundred twenty 100-day-old chickens were randomly assigned to four groups and were fed a basal diet, or Se (as 10 mg Na2SeO3/kg dry weight of feed), Cd (as 150 mg CdCl2/kg dry weight of feed), or Cd?+?Se in their basic diets for 60 days. Then, concentrations of Cd and Se, production of nitric oxide (NO), messenger RNA (mRNA) level and activity of inducible NO synthase (iNOS), level of oxidative stress, and histological and ultrastructural changes of the cerebrum and cerebellum were examined. The results showed that Cd exposure significantly increased Cd accumulation, NO production, iNOS activities, iNOS mRNA level, and MDA content in the cerebrum and cerebellum. Cd treatment obviously decreased Se content and antioxidase activities and caused histopathological changes in the cerebrum and cerebellum. Se supplementation during dietary Cd obviously reduced Cd accumulation, NO production, mRNA level and activity of iNOS, oxidative stress, and histopathological damage in the cerebrum and cerebellum of chickens. It indicated that Se ameliorates Cd-induced brain damage in chickens by regulating iNOS-NO system changes, and oxidative stress induced by Cd and Se can serve as a potential therapeutic for Cd-induced brain lesion of chickens.  相似文献   

19.
The aim of the study was to evaluate the effects of low to moderate oral exposure to the Fusarium toxin deoxynivalenol (DON; derived from culture material) on performance, water intake, and carcass parameters of broilers during early and late developmental phases. A total of 160 Ross 308 broilers were randomly allocated to four different feeding groups (n = 40/group) including 0 (control), 2.5, 5, and 10 mg DON/kg wheat-soybean meal-based feed. Three consecutive replicates of the experiment were performed. Half of the broilers were slaughtered in week 3 of the trial whereas the other half were slaughtered in week 5. Dry matter intake (DMI) and water intake (WI) were recorded on a daily basis and the body weight (BW) and BW gain (BWG) were determined weekly. The following carcass traits were recorded and calculated in absolute and relative data: dressed carcass weight, breast muscle weight, leg weight, and liver weight. Data showed that BW (P < 0.001), BWG (P = 0.005), and DMI (P < 0.001) were reduced by DON-feeding during the entire feeding period. The ratio of DMI to body weight gain (DMI/BWG) was not affected by the treatment. However, the ratio of water to DMI (WI/DMI) increased in DON-treated birds (P = 0.021). Contrast analysis showed that DON tendentially reduced slaughter weight (P = 0.082) and decreased leg yield (P = 0.037) in DON-fed chickens in week 5 of the experiment. Liver organ weight decreased in the 3-week-old DON-fed broilers compared to that in the control-fed birds (P = 0.037). In conclusion, the study suggests that DMI and BW were negatively affected under the experimental conditions at DON levels lower than the current guidance value in the European Union of 5 mg/kg feed. The study also indicates that broilers fed on low to moderate level DON-contaminated diets showed increased WI/DMI ratio which might have negative influence on wet litter syndrome.  相似文献   

20.
Abstract

Effects of dietary L-carnitine and coenzyme Q10 (CoQ10) at different supplemental ages on performance and some immune response were investigated in ascites-susceptible broilers. A 3 × 2 × 2 factorial design was used consisting of L-carnitine supplementation (0, 75, and 100 mg/kg), CoQ10 supplementation (0 and 40 mg/kg) and different supplemental ages (from day 1 on and from day 10 on). A total of 480 one-day-old Arbor Acre male broiler chicks were randomly allocated to 12 groups, every group had five replicates, each with eight birds. The birds were fed a corn-soybean based diet for six weeks. From day 10 – 21, all the birds were exposed to a low ambient temperature (12 – 15°C) to increase the susceptibility to ascites. No significant effects were observed on growth performance by L-carnitine, CoQ10 supplementation, and different supplemental ages. Packed cell volume was significantly decreased by L-carnitine supplementation alone, and ascites heart index and ascites mortality were decreased by L-carnitine, CoQ10 supplementation alone, and L-carnitine + CoQ10 supplementation together (p < 0.05). Heart index of broilers was significantly improved by L-carnitine, CoQ10 supplementation alone during 0 – 3 week. Serum IgG content was improved by L-carnitine supplementation alone (p < 0.05), but lysozyme activity was increased by L-carnitine + CoQ10 supplementation together (p < 0.05). A significant L-carnitine by supplemental age interaction was observed in lysozyme activity. L-carnitine supplementation alone had no effects on the peripheral blood lymphocyte (PBL) proliferation in response to concanavalin A (ConA) and lipopolysaccharide, but supplemental CoQ10 alone and L-carnitine + CoQ10 together decreased the PBL proliferation in response to ConA (p < 0.05). The present study suggested that L-carnitine + CoQ10 supplementation together had positive effects on some immune response of ascites-susceptible broilers, which might benefit for the reduction of broilers' susceptibility to ascites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号