首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative electron microscope study at magnifications ranging from about 80,000 up to 800,000 x was carried out in nine species of insects (Gryllus argentinus, Myogryllus verticalis, undetermined species of Gryllus; Blaptica dubia, Periplaneta americana, Blattella germanica; Laplatacris dispar, Aleua lineata and Omexechae servillei). Particular attention was paid: a) to the elementary components of the s. complexes and b) to the structure of their medial ribbon. - a) In all the species examined the basic element found is a curled filament some 15–20 Å thick. Filaments of this kind integrate: the 100 Å fibrils of the chromosome body, the compacts layers of the s. complexes (lateral arms) and the slender planes of the pairing space. The filaments are similar to those described in metaphase chromosomes and their kinetochores (Wettstein and Sotelo, 1965). A difference in density between the filaments of the lateral arms and those of the medial planes is sometimes noticed. - b) Three structural patterns were found in the pairing space. In crickets, the medial ribbon is composed of three parallel, longitudinal planes of filaments, interconnected and connected with the lateral arms by means of bridges. The latter are constituted by fibrils or by single filaments. In cockroaches only two longitudinal planes were found. The distribution of components in these planes follows a plan similar to the one found in crickets. In the electron-micrographs the medial component of both groups of Insecta appears as composed of three (crickets) or two (cockroaches) lines in the longitudinal frontal views, and ladder-like striated in lateral views. The latter striae correspond to filaments or groups of filaments running in antero-posterior direction. - The pattern of structure of grasshoppers differs completely from those mentioned above. Bridging between the homologues is made of regularly spaced transversal planes of filaments. No longitudinal array was observed.This investigation was supported by United States Public Health Service Research Grant GM 08337 from the Research Grants Branch, Division of Medical Sciences, and partly by Grant RF 61034 from The Rockefeller Foundation.  相似文献   

2.
A simple negative staining procedure has been developed for the demonstration of actin filaments and myosin aggregates in single giant amoeba (Chaos carolinensis) that is applicable to other single cells. Cytoplasm is first isolated in physiological solutions in which contractility and state of association of contractile proteins can be controlled. Cytoplasm isolated in low calcium, low ATP concentration solutions contains actin associated with myosin aggregates sometimes forming light-microscopically visible fibrils. When exogenous ATP is added to these preparations, actin filaments and myosin aggregates are seen separately.  相似文献   

3.
THE ULTRASTRUCTURE OF FLAGELLAR FIBRILS   总被引:30,自引:29,他引:1       下载免费PDF全文
The tips of rat sperm tails were slightly frayed by mechanical agitation, thus exposing the fibrils, which were then studied by electron microscopy after negative staining. Only the fibrils survived this treatment. Each fibril proved to be a cylinder with a hollow core. The walls of the cylinders were made up of 10 longitudinally oriented filaments. The filaments had a markedly beaded appearance, with a repeating period of 88 A. The filament thickness (bead width) was approximately 35 to 40 A. Beads of neighboring filaments were in register with each other so that cross-linking bound the filaments together to complete the wall structure of each fibril. The center-to-center spacing from one filament to the next was 55 to 60 A. The periodicity and the diameters of the filaments make it unlikely that the filaments are related to either actin or myosin. From the way the fibrils kinked, it can be inferred that they possessed considerable mechanical strength. It is consistent with present knowledge that fibrils of the mitotic apparatus may have the same basic structure as the flagellar fibrils. Under some circumstances, pairs of fibrils separated from one another along their length, except at their extreme tips. It was apparent that there was special bridging material to be found there. In other preparations, however, the paired fibrils remained together, indicating a powerful coupling mechanism.  相似文献   

4.
Summary Transmission electron microscopy was used to study the development of the flagellar base and the flagellar necklace during spermatogenesis in a moth (Ephestia kuehniella Z.). Until mid-pachytene, two basal body pairs without flagella occur per cell. The basal bodies, which contain a cartwheel complex, give rise to four flagella in late prophase I. The cartwheel complex appears to be involved in the nucleation of the central pair of axonemal microtubules. In spermatids, there is one basal body; this is attached to a flagellum. At this stage, the nine microtubular triplets of the basal body do not terminate at the same proximal level. The juxtanuclear triplets are shifted distally relative to the triplets distant from the nuclear envelope. Transition fibrils and a flagellar necklace are formed at the onset of axoneme elongation. The flagellar necklace includes Y-shaped elements that connect the flagellar membrane and the axonemal doublets. In spindle-containing spermatocytes, the flagellar necklace is no longer detectable. During spermatid differentiation, the transition fibrils move distally along the axoneme and a prominent middle piece appears. Our observations and those in the literature indicate certain trends in sperm structure. In sperms with a short middle piece, we expect the presence of a flagellar necklace. The distal movement of the transition fibrils or equivalent structures is prevented by the presence of radial linkers between the flagellar membrane and the axonemal doublets. On the other hand, the absence of a flagellar necklace at the initiation of spermiogenesis enables the formation of a long middle piece. Thus, in spermatozoa possessing an extended middle piece, a flagellar necklace may be missing.  相似文献   

5.
The ultrastructure of the flagellar apparatus of the naked, biflagellate green algaSpermatozopsis similis Preisig & Melkonian has been studied in detail using an absolute configuration analysis. The two basal bodies are displaced by 350 nm in the 1/7 o'clock direction and do not overlap proximally. They are interconnected by a principal distal connecting fibre consisting of a bundle of 5–8 nm filaments and possibly two proximal striated connecting fibres. The flagellar root system is cruciate (5-2-5-2 or 4-2-4-2 system) and contains a prominent continuous system I fibre overlying the two opposite two-stranded roots. A system II fibre is absent. Pronounced structural differences have been observed in the flagellar apparatus ultrastructure at two types of flagella orientation: During backward swimming basal bodies are parallel, the distal connecting fibre is extremely contracted; during forward swimming basal bodies assume various angles (from 20° to 180°) and the connecting fibre is about five times longer compared to the contracted state. The function of the connecting fibre as a contractile organelle and the mechanism of its contraction are discussed. On the basis of the flagellar apparatus ultrastructure,Spermatozopsis similis is related toChlamydomonas-type green algae.  相似文献   

6.
《The Journal of cell biology》1990,111(6):2463-2473
Confocal laser scanning microscopy of isolated and antibody-labeled avian gizzard smooth muscle cells has revealed the global organization of the contractile and cytoskeletal elements. The cytoskeleton, marked by antibodies to desmin and filamin is composed of a mainly longitudinal, meandering and branched system of fibrils that contrasts with the plait-like, interdigitating arrangement of linear fibrils of the contractile apparatus, labeled with antibodies to myosin and tropomyosin. Although desmin and filamin were colocalized in the body of the cell, filamin antibodies labeled additionally the vinculin- containing surface plaques. In confocal optical sections the contractile fibrils showed a continuous label for myosin for at least 5 microns along their length: there was no obvious or regular interruption of label as might be expected for registered myosin filaments. The cytoplasmic dense bodies, labeled with antibodies to alpha-actinin exhibited a regular, diagonal arrangement in both extended cells and in cells shortened in solution to one-fifth of their extended length: after the same shortening, the fibrils of the cytoskeleton that showed colocalization with the dense bodies in extended cells became crumpled and disordered. It is concluded that the dense bodies serve as coupling elements between the cytoskeletal and contractile systems. After extraction with Triton X-100, isolated cells bound so firmly to a glass substrate that they were unable to shorten as a whole when exposed to exogenous Mg ATP. Instead, they contracted internally, producing integral of 10 regularly spaced contraction nodes along their length. On the basis of differences of actin distribution two types of nodes could be distinguished: actin-positive nodes, in which actin straddled the node, and actin-negative nodes, characterized by an actin-free center flanked by actin fringes of 4.5 microns minimum length on either side. Myosin was concentrated in the center of the node in both cases. The differences in node morphology could be correlated with different degrees of coupling of the contractile with the cytoskeletal elements, effected by a preparation-dependent variability of proteolysis of the cells. The nodes were shown to be closely related to the supercontracted cell fragments shown in the accompanying paper (Small et al., 1990) and furnished further evidence for long actin filaments in smooth muscle. Further, the segmentation of the contractile elements pointed to a hierarchial organization of the myofilaments governed by as yet undetected elements.  相似文献   

7.
Summary In flagellate green algae two types of fibrous flagellar roots can be distinguished: system I fibres, cross-striated bundles of 2nm filaments (striation periodicity about 30 nm), which are associated with flagellar root microtubules, and system II fibres, contractile bundles of 4–8 nm filaments which are often cross-striated (striation periodicity variable but greater than 80 nm). The major protein of system II fibres is centrin, a Ca2+-modulated phosphoprotein, which is a member of the EF-hand protein family. The major protein of system I fibres (of severalChlamydomonas-type green algae) is a 34 kDa phosphoprotein, named assemblin. Because of the solubility characteristics of system I fibres and the properties of their major protein (paracrystal-formation in vitro, several isoelectric variants, heptad motifs in parts of the amino acid sequence), assemblin is presumably related to the k-m-e-f class of -helical fibrous proteins.Abbreviations NBBC nucleus-basal body connector - SMAC striated microtubule-associated component - k-m-e-f class keratin-myosin-elastin-fibrinogen class - EF-hand protein family Ca2+-binding proteins containing one to several Ca2+-binding motifs consisting of a peculiar helix-loop-helix configuration - PVDF polyvinyhdene difluoride  相似文献   

8.
Summary Mixed cultures of the amoebo-flagellate and the alga on which it feeds were examined by electron microscopy. Both amoeboid and flagellate stags were sectioned and their morphology described, particular attention being paid to the flagellar bases and to the intra-nuclear fibrils. The latter are discussed with relation to nuclear fibrils in other organisms. The amoeba is compared with other amoebae whose fine structure has been examined, and the possible phylogeny of Pseudospora is considered.  相似文献   

9.
In Megalobulimus abbreviatus, the ultrastructural features and the contractile proteins of columellar, pharyngeal and foot retractor muscles were studied. These muscles are formed from muscular fascicles distributed in different planes that are separated by connective tissue rich in collagen fibrils. These cells contain thick and thin filaments, the latter being attached to dense bodies, lysosomes, sarcoplasmic reticulum, caveolae, mitochondria and glycogen granules. Three types of muscle cells were distinguished: T1 cells displayed the largest amount of glycogen and an intermediate number of mitochondria, suggesting the highest anaerobic metabolism; T2 cells had the largest number of mitochondria and less glycogen, which suggests an aerobic metabolism; T3 cells showed intermediate glycogen volumes, suggesting an intermediate anaerobic metabolism. The myofilaments in the pedal muscle contained paramyosin measuring between 40 and 80 nm in diameter. Western Blot muscle analysis showed a 46-kDa band that corresponds to actin and a 220-kDa band that corresponds to myosin filaments. The thick filament used in the electrophoresis showed a protein band of 100 kDa in the muscles, which may correspond to paramyosin.  相似文献   

10.
Affinity-purified antibodies that recognize the 20,000-dalton molecular weight (20 kd) striated flagellar root protein of Tetraselmis striata have been used to identify antigenic homologs in other eucaryotic organisms of diverse evolutionary origins. Among the green algae, Tetraselmis and Chlamydomonas, and their colorless relative, Polytomella, the 20-kd homologs appear associated with basal bodies. This occurs most prominently in the form of flagellar roots of both striated and microtubule subtended types. Among cultured mammalian cells (PtK2 and primary mouse macrophage cell lines), flagellar root protein homologs appear as basal feet, pericentriolar fibrils, and pericentriolar satellites. Mammalian sperm cells also show flagellar root protein homologs associated with their basal bodies. We envisage a functional role for these fibrous calcium-sensitive contractile proteins in altering the orientation of centrioles or basal bodies with their associated MTOCs by responding to topological calcium fluxes.  相似文献   

11.
Summary The ultrastructure of the flagellar apparatus of the marine quadriflagellate green algaTetraselmis subcordiformis is described in detail. Special consideration is given to the functional significance of the contractile rhizoplast and also to a complex structure which anchors the flagellar apparatus to the cell membrane and theca. The flagellar apparatus lies at the base of a deep apical depression. Four basal bodies lie in a zigzag row with their long axes nearly parallel. Outer adjacent pairs of basal bodies are structurally linked by a Z-shaped, ribbon-like structure. A striated fiber (transfiber) connects each outer basal body with the inner basal body of the opposite, mirror image pair. A complex system of four laminated oval discs (rhizanchora), microtubule rootlets and fibrous material anchor the flagellar apparatus and rhizoplasts to the plasma membrane and theca. A 4-2-4-2 arrangement of microtubule rootlets is present. Rhizoplasts, which are contractile organelles, branch into five distinct arms and associate with the near outer basal body and each of the four rhizanchora. Rhizoplast contraction is thought to be linked to flagellar activity and may act to alter the direction of motion of the cell.  相似文献   

12.
13.
Bacterial motility is driven by the rotation of flagellar filaments that supercoil. The supercoiling involves the switching of coiled-coil protofilaments between two different states. In archaea, the flagellar filaments responsible for motility are formed by proteins with distinct homology in their N-terminal portion to bacterial Type IV pilins. The bacterial pilins have a single N-terminal hydrophobic α-helix, not the coiled coil found in flagellin. We have used electron cryo-microscopy to study the adhesion filaments from the archaeon Ignicoccus hospitalis. While I. hospitalis is non-motile, these filaments make transitions between rigid stretches and curved regions and appear morphologically similar to true archaeal flagellar filaments. A resolution of ~ 7.5 Å allows us to unambiguously build a model for the packing of these N-terminal α-helices, and this packing is different from several bacterial Type IV pili whose structure has been analyzed by electron microscopy and modeling. Our results show that the mechanism responsible for the supercoiling of bacterial flagellar filaments cannot apply to archaeal filaments.  相似文献   

14.
Morphogenesis in animal tissues is largely driven by actomyosin networks, through tensions generated by an active contractile process. Although the network components and their properties are known, and networks can be reconstituted in vitro, the requirements for contractility are still poorly understood. Here, we describe a theory that predicts whether an isotropic network will contract, expand, or conserve its dimensions. This analytical theory correctly predicts the behavior of simulated networks, consisting of filaments with varying combinations of connectors, and reveals conditions under which networks of rigid filaments are either contractile or expansile. Our results suggest that pulsatility is an intrinsic behavior of contractile networks if the filaments are not stable but turn over. The theory offers a unifying framework to think about mechanisms of contractions or expansion. It provides the foundation for studying a broad range of processes involving cytoskeletal networks and a basis for designing synthetic networks.  相似文献   

15.
The organization of two types of nontubular mastigonemes associated with the anterior flagellar surface of the phagotrophic biflagellate Peranema trichophorum (Ehrenberg) Stein is described from studies of thin sections, negative-stained and shadow-cast preparations of both intact and isolated, detergent-treated flagella. Long mastigonemes form a unilateral, spiral array of tufts which curve toward the distal end of the flagellum, while two short mastigoneme ribbons form unequal halves of a bilateral array parallel to the flagellar long axis. Each ribbon is composed of individual overlapping fan-shaped tiers of short mastigonemes interlinked by fine fibrils. A model proposed for Peranema mastigonemes is similar to recent models of mastigoneme organization in Euglena.  相似文献   

16.
Shaping and moving a spiroplasma   总被引:3,自引:0,他引:3  
The Mollicutes (Spiroplasma, Mycoplasma and Acholeplasma) are the most minimal cells known to exist, being the smallest and simplest free-living and self-replicating forms of life. Phylogenetically, the Mollicutes are related to gram-positive bacteria and have evolved, by regressive evolution and genome reduction, from Clostridia. The smallest genome in this group (Mycoplasma genitalium - 5.77 x 10(5) bp) is only twice that of a large virus (e.g., Entomopox viruses). The largest Mollicute genome (Spiroplasma LB12 - 2.2 x 10(6) bp) is only about half that of, e.g., Escherichia coli. Structurally, the Mollicutes lack cell walls and flagella, but have internal cytoskeletons and are motile and chemotactic. Only a cholesterol-containing unit membrane envelops the cells. No analogs to the bacterial chemotactic and motility (che, mot, fla) genes, genes for a two-component signal transduction system, genes associated with gliding, or genomic homologs for the eukaryotic cytoskeleton and motor proteins were found in the Mollicutes. The Spiroplasmas are unique amongst the Mollicutes in having a well-defined basic helical cell geometry. In this respect, the Spiroplasma cell can, essentially, be viewed as a helical dynamic membranal tube (diameter approximately 0.2 microm; equivalent to that of one eukaryotic flagellar axoneme or to a bacterial flagellar bundle). A flat cytoskeletal ribbon of parallel fibrils is attached to the inside of the cellular tube. Both tube and cytoskeleton are mutually coiled into a dynamic helix driven by differential length changes of the fibrils, which function as linear motors. The cytoskeletal ribbon follows the shortest (inner) helical line on the inner surface of the cellular tube. Being helical allows for further analytical reduction and consequent structural quantification of Spiroplasma. Of particular importance is the ability to correlate light and electron microscopy data and to calculate the fibril lengths (and corresponding molecular dimensions) in the helical and nonhelical dynamic states. The structural unit of the contractile cytoskeleton is a approximately 50-Angstrom-wide filament comprised of pairs of the 59-kD fib gene product. The monomers are arranged in pairs with opposite polarities allowing for a approximately 100-Angstrom-long axial repeat. The functional unit of the contractile cytoskeletal ribbon is a fibril comprised of an aligned pair of filaments. Neighboring repeats form a tetrameric ring with a lateral repeat of approximately 100 A. The axial length of the rings may shorten by approximately 40%, driving the changes in the fibril lengths and, consequently, helical dynamics. Local length changes result in helical symmetry breaking and nonreciprocating cell movements allowing for net directional displacement. Flexing allows for changes in swimming direction.  相似文献   

17.
The highly conserved nature of the 5′-termini of all archaeal flagellin genes was exploited by polymerase chain reaction (PCR) techniques to amplify the sequence of a portion of a flagellin gene family from the archaeon Methanococcus vannielii. Subsequent inverse PCR experiments generated fragments that permitted the sequencing of a total of three flagellin genes, which, by comparison with flagellin genes that have been sequenced, from other archaea appear to be equivalent to flaB1, flaB2, and flaB3 of M. voltae. Analysis of purified M. vannielii flagellar filaments by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed two major flagellins (Mr= 30 800 and 28 600), whose N-terminal sequences identified them as the products of the flaB1 and flaB2 genes, respectively. The gene product of flaB3 could not be detected in flagellar filaments by SDS-PAGE. The protein sequence data, coupled with the DNA sequences, demonstrated that both FlaB1 and FlaB2 flagellins are translated with a 12-amino acid signal peptide which is absent from the mature protein incorporated into the flagellar filament. These data suggest that archaeal flagellin export differs significantly from that of bacterial flagellins. Received: 27 November 1997 / Accepted: 19 March 1998  相似文献   

18.
Cultured human dermal fibroblasts suspended in a rapidly polymerizing collagen matrix produce a fibroblast-populated collagen lattice. With time, this lattice will undergo a reduction in size referred to as lattice contraction. During this process, two distinct cell populations develop. At the periphery of the lattice, highly oriented sheets of cells, morphologically identifiable as myofibroblasts, show cell-to-cell contacts and thick, actin-rich staining cytoplasmic stress fibers. It is proposed that these cells undergoing cell contraction produce a multicellular contractile unit which reorients the collagen fibrils associated with them. The cells in the central region, referred to as fibroblasts, are randomly oriented, with few cell-to-cell contacts and faintly staining actin cytoplasmic filaments. In contrast it is proposed that cells working as single units use cell locomotion forces to reorient the collagen fibrils associated with them. Using this model, we sought to determine which of these two mechanisms, cell contraction or cell locomotion, is responsible for the force that contracts collagen lattices. Our experiments showed that fibroblasts produce this contractile force, and that the mechanism for lattice contraction appears to be related to cell locomotion. This is in contrast to a myofibroblast; where the mechanism for contraction is based upon cell contractions. Fibroblasts attempting to move within the collagen matrix reorganize the surrounding collagen fibrils; when these collagen fibrils can be organized no further and cell-to-cell contacts develop, which occurs at the periphery of the lattice first, these cells can no longer participate in the dynamic aspects of lattice contraction.  相似文献   

19.
Summary The lamina fusca of the hamster eye contains layers of flattened, slightly overlapping fibroblasts. Thin sections of the overlapping margins reveal punctate, tight-junction-like membrane appositions associated with accumulation of cytoplasmic filaments, 5–7 nm in diameter. Intermediate filaments are present in the surrounding cytoplasm. A diffuse dense substance occurs in adjacent intercellular space. Freeze-fracture replicas show that the membrane appositions are mainly single-stranded tight junctions, each composed of two fibrils (micelles), and each continuous or nearly continuous around the fibroblastic perimeter. Fracturing characteristics of these junctions offer a unique opportunity to gain further insight into tight junctional morphology. When exposed, the fibrils adhere to the P-face, measure 9.2±0.3 nm in diameter, and are accompanied by a narrow band of membrane differing in texture from non-junctional membrane. Characteristically, the junctional fibrils themselves mark the deviation line along which fracture planes pass from one membrane of the junction to the other. This pattern exposes, over long distances, the P-face of one membrane on one side of this line and E-face of the adjacent membrane on the other. Analysis of any single junction over such distances reveals that the juxtaposition of the fibrils may gradually twist or undulate over a range of at least 180° within the two involved membranes. The fracture plane appears preferentially to pass between the two junctional fibrils; association of the cytoskeleton with junctional fibrils may govern this route of fracture. Cytoskeletal attachment appears to be to a single fibril and may alternate from one fibroblast to the next depending on which cytoplasmic leaflet is nearest a given fibril.Parts of this work have been presented at meetings of the Association for Research in Vision and Ophthalmology (Kelly and Hageman 1983) and the American Association of Anatomists (Hageman and Kelly 1984)  相似文献   

20.
1. Structurally the "sensory bristles" in Euplotes patella are typical cilia, but no ciliary rootlets connect their bases. 2. The "neuromotor fibrils" are composed of filaments 21 mµ in diameter. At the point of junction of the filaments with the peripheral ciliary fibrils a granular structure 65 to 90 mµ in diameter is seen which has dense central and peripheral zones separated by a less dense layer. Information on the interconnection of organelles is expanded. 3. A system of subpellicular fibrils is described. The external fibrillar system described by others could not be found. 4. The motorium is shown to be a mass of intertwining rootlet filaments. 5. The micronucleus is shown to have a spongy, dense material in a less dense material, all of which is surrounded by a double-layered membrane. 6. The double-layered macronuclear membrane contains annuli whose outside diameter is 70 mµ; the macronuclear bodies are sometimes closely applied to the membrane. In the macronuclear reorganization bands, the solution plane is a fine network, while the reconstruction plane is devoid of structure at the level of resolution observed. 7. The mitochondria are composed of tubules, only occasionally oriented, usually embedded in a surrounding material of lower density. 8. Microbodies whose diameters are 250 to 350 mµ are frequently observed in close association with mitochondrial surfaces. 9. The food vacuoles, contractile vacuoles, and ciliary vacuoles are bounded by single-layered membranes. In the food vacuoles, the bacteria are surrounded by membranes individually or in small groups. 10. Cytoplasmic rods localized in the oral region, and cytoplasmic granules dispersed at random, are described. No typical ergastoplasm, endoplasmic reticulum, or Golgi material was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号