首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holstein cows were fed total mixed rations (TMR) supplemented with protected palm fat (PPF), whole sunflower seed (WSS) or extruded linseed (ELS) for 100 days. Percentage of dietary crude fat was 5.3, 5.1 and 5.1, respectively. Diet had no (p > 0.05) effect on feed intake, milk yield or milk protein content. Percentage of milk fat and yield of fat--corrected milk were significantly increased when diets were supplemented with WSS and ELS. Feeding PPF resulted in the lowest (p < 0.05) ruminal concentration of volatile fatty acids. No significant dietary effect on plasma characteristics was observed. Concentration of polyunsaturated fatty acids (PUFA) was higher (p < 0.05), and PUFA n-6/n-3 ratio lower (p < 0.05), in the milk fat from cows fed ELS compared to WSS. Supplementation of TMR with oilseeds compared to PPF increased the content of CLA in milk fat (p < 0.005) and decreased its atherogenicity, primarily due to a significant reduction of palmitic acid concentration. Both oilseeds significantly improved the spreadability index of manufactured butter. ELS, but not WSS, increased the susceptibility of milk fat to oxidation (p < 0.05). It can be concluded that feeding of oilseeds to dairy cows improved nutritional quality of milk fat, with supplementation with ELS producing an even more desirable milk fatty acid profile than WSS supplementation.  相似文献   

2.
The aim was to determine the effect of substituting pumpkin seed cake (PSC) or extruded linseed (ELS) for soya bean meal in goats’ diets on milk yield, milk composition and fatty acids profile of milk fat. In total, 28 dairy goats were divided into three groups. They were fed with concentrate mixtures containing soya bean meal (Control; n=9), ELS (n=10) or PSC (n=9) as main protein sources in the trial lasting 75 days. Addition of ELS or PSC did not influence milk yield and milk gross composition in contrast to fatty acid profile compared with Control. Supplementation of ELS resulted in greater branched-chain fatty acids (BCFA) and total n-3 fatty acids compared with Control and PSC (P<0.05). Total n-3 fatty acids were accompanied by increased α-linolenic acid (ALA, C18:3n-3; 0.56 g/100 g fatty acids) and EPA (C20:5n-3; 0.12 g/100 g fatty acids) proportions in milk of the ELS group. In contrast, ELS and PSC resulted in lower linoleic acid (LA, C18:2n-6; 2.10 and 2.28 g/100 g fatty acids, respectively) proportions compared with Control (2.80 g/100 g fatty acids; P<0.05). Abovementioned resulted in lower LA/ALA ratio (3.81 v. 7.44 or 6.92, respectively; P<0.05) with supplementation of ELS compared with Control or PSC. The PSC diet decreased total n-6 fatty acids compared with the Control (2.96 v. 3.54 g/100 g fatty acids, P<0.05). Oleic acid (c9-C18:1), CLA (c9,t11-18:2) and t10-,t11-C18:1 did not differ between treatments (P⩾0.08), although stearic acid (C18:0) increased in ELS diets compared with Control (12.7 v. 10.2 g/100 g fatty acids, P<0.05). Partially substituted soya bean meal with ELS in hay-based diets may increase beneficial n-3 fatty acids and BCFA accompanied by lowering LA/ALA ratio and increased C18:0. Pumpkin seed cake completely substituted soya bean meal in the diet of dairy goats without any decrease in milk production or sharp changes in fatty acid profile that may have a commercial or a human health relevancy.  相似文献   

3.
Supplementing dairy cow diets with oilseed preparations has been shown to replace milk saturated fatty acids (SFA) with mono- and/or polyunsaturated fatty acids (MUFA, PUFA), which may reduce risk factors associated with cardio-metabolic diseases in humans consuming milk and dairy products. Previous studies demonstrating this are largely detailed, highly controlled experiments involving small numbers of animals, but in order to transfer this feeding strategy to commercial situations further studies are required involving whole herds varying in management practices. In experiment 1, three oilseed supplements (extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) and milled rapeseed (MR)) were included in grass silage-based diets formulated to provide cows with ~350 g oil/day, and compared with a negative control (Control) diet containing no supplemental fat, and a positive control diet containing 350 g/cow per day oil as calcium salt of palm oil distillate (CPO). Diets were fed for 28-day periods in a 5×4 Latin Square design, and milk production, composition and fatty acid (FA) profile were analysed at the end of each period. Compared with Control, all lipid supplemented diets decreased milk fat SFA concentration by an average of 3.5 g/100 g FA, by replacement with both cis- and trans-MUFA/PUFA. Compared with CPO, only CPLO and MR resulted in lower milk SFA concentrations. In experiment 2, 24 commercial dairy farms (average herd size±SEM 191±19.3) from the south west of the United Kingdom were recruited and for a 1 month period asked to supplement their herd diets with either CPO, EL, CPLO or MR at the same inclusion level as the first study. Bulk tank milk was analysed weekly to determine FA concentration by Fourier Transform mid-IR spectroscopy prediction. After 4 weeks, EL, CPLO and MR all decreased herd milk SFA and increased MUFA to a similar extent (average −3.4 and +2.4 g/100 g FA, respectively) when compared with CPO. Differing responses observed between experiments 1 and 2 may be due in part to variations in farm management conditions (including basal diet) in experiment 2. This study demonstrates the importance of applying experimental research into commercial practice where variations in background conditions can augment different effects to those obtained under controlled conditions.  相似文献   

4.
It is known that supplementing dairy cow diets with full-fat oilseeds can be used as a strategy to mitigate methane emissions, through their action on rumen fermentation. However, direct comparisons of the effect of different oil sources are very few, as are studies implementing supplementation levels that reflect what is commonly fed on commercial farms. The objective was to investigate the effect of feeding different forms of supplemental plant oils on both methane emissions and milk fatty acid (FA) profile. Four multiparous, Holstein-Friesian cows in mid-lactation were randomly allocated to one of four treatment diets in a 4×4 Latin square design with 28-day periods. Diets were fed as a total mixed ration with a 50 : 50 forage : concentrate ratio (dry matter (DM) basis) with the forage consisting of 75 : 25 maize silage : grass silage (DM). Dietary treatments were a control diet containing no supplemental fat, and three treatment diets containing extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) or milled rapeseed (MR) formulated to provide each cow with an estimated 500 g additional oil/day (22 g oil/kg diet DM). Dry matter intake (DMI), milk yield, milk composition and methane production were measured at the end of each experimental period when cows were housed in respiration chambers for 4 days. There was no effect of treatment diet on DMI or milk protein or lactose concentration, but oilseed-based supplements increased milk yield compared with the control diet and milk fat concentration relative to control was reduced by 4 g/kg by supplemental EL. Feeding CPLO reduced methane production, and both linseed-based supplements decreased methane yield (by 1.8 l/kg DMI) and intensity (by 2.7 l/kg milk yield) compared with the control diet, but feeding MR had no effect on methane emission. All the fat supplements decreased milk total saturated fatty acid (SFA) concentration compared with the control, and SFA were replaced with mainly cis-9 18:1 but also trans FA (and in the case of EL and CPLO there were increases in polyunsaturated FA concentration). Supplementing dairy cow diets with these oilseed-based preparations affected milk FA profile and increased milk yield. However, only the linseed-based supplements reduced methane production, yield or intensity, whereas feeding MR had no effect.  相似文献   

5.
This experiment studied the effect of a modest difference in diet structure value (SV) on milk conjugated linoleic acid (CLA) contents of cows fed diets supplemented with extruded linseed, in situations where the diets provided enough SV and therefore did not induce milk fat depression. Six lactating Holstein cows were used in a crossover design with two treatments ('SV 1.50' and 'SV 1.73') and two periods of 21 days. The 'SV 1.50' diet contained 59% maize silage, 13% soya bean meal, 13% sugar beet pulp and 14% Nutex Compact (containing 56% extruded linseed) (dry matter (DM) basis) and was offered as a restricted total mixed ration. For the 'SV 1.73' diet, 8% wheat straw (DM basis) was added to the 'SV 1.50' diet as an additional structure source. The two diets had a forage-to-concentrate ratio of 59 : 41 and 62 : 38. The inclusion of straw in the diet resulted in an additional intake of NDF (+1110 g/day), which accounted for 90% of the additional intake of OM, whereas additional intakes of the other nutrients were minor. Milk yield and composition did not differ among treatments. The inclusion of straw in the diet did not affect the milk levels of t10-18:1, 18:2n-6, c9-16:1, c9-18:1, c11-18:1, 6:0, 8:0, 20:4 and 20:5. It decreased the milk levels of c9,t11-CLA (2.13% v. 3.03% of fatty acids (FA) reported, P < 0.001), t11-18:1 (4.99% v. 7.10% of FA reported, P < 0.001), 18:3n-3, t9-16:1 and t9-18:1, while it increased the milk levels of 6:0-14:0 (20.90% v. 19.69% of FA reported, P < 0.01), 16:0 (26.55% v. 25.25% of FA reported, P < 0.01), 18:0 (13.54% v. 12.59% of FA reported, P < 0.001), 17:0, 20:0 and 22:5. Regarding the ratio between FA, the inclusion of straw increased the 18:0/total C18 FA ratio (37.74% v. 32.07%, P < 0.001), whereas it decreased the total trans-C18 FA/total C18 FA ratio (15.46% v. 20.34%, P < 0.001), the t11-18:1/total C18 FA ratio (13.70% v. 17.95%, P < 0.01) and the c9,t11-CLA/total C18 FA ratio (5.82% v. 7.64%, P < 0.001). We conclude from this experiment that even a modest increase in SV to a diet supplemented with extruded linseed, yet already providing enough SV, alters the rumen lipid metabolism and, hence, CLA levels in milk fat.  相似文献   

6.
This study assessed the effects of dietary supplementation with extruded linseed on milk yield and composition, milk fatty acid (FA) profile and renal and hepatic metabolism of grazing goats in mid-lactation. Forty Saanen goats were divided into two isoproductive groups: one group was fed the control diet (CON) composed of hay and pelleted concentrate and the other group was supplemented with additional 180 g/day of extruded linseed (LIN; dry matter basis), which supplied 70 g/day of fat per head for 9 weeks. Animals grazed on pasture for ∼3 h/day after the first of the 2 daily milkings. Milk samples were collected weekly and analyzed for fat, protein, lactose, milk urea nitrogen (MUN) and somatic cell count. Blood samples were collected every 2 weeks and analyzed for total bilirubin, creatinine, aspartate transaminase (AST), alanine transaminase (ALT), gamma glutamyl transpeptidase, alkaline phosphatase, total protein and urea nitrogen. Milk yield was higher in the LIN than in the CON group (2369 v. 2052 g/day). LIN group had higher milk fat (37.7 v. 33.4 g/kg) and protein (30.7 v. 29.1 g/kg) concentration and lower MUN (35.0 v. 43.3 mg/dl) than CON group. Goats fed LIN had greater proportions of 18:1 trans11, 18:2 cis9trans11 and total polyunsatured fatty acids n-3 in milk fat, because of higher 18:3n-3 and 20:5n-3 FA, and lower proportions of short- and medium-chain FAs than goats fed CON. All kidney and liver function biomarkers in serum did not differ between dietary groups, except for AST and ALT, which tended to differ. Extruded linseed supplementation to grazing mid-lactating goats for 2 months can enhance the milk performance and nutritional profile of milk lipids, without altering the general hepatic and renal metabolism.  相似文献   

7.
Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet-genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet.  相似文献   

8.
Based on the potential benefits for long-term human health, there is interest in developing sustainable nutritional strategies for lowering medium-chain saturated fatty acids (FA) and increasing specific unsaturated FA in ruminant milk. Dietary supplements of extruded linseeds (EL), fish oil (FO) or a mixture of EL and FO increase cis-9,trans-11 CLA and long-chain n-3 polyunsaturated FA in bovine milk. Supplements of FO cause milk fat depression in lactating cows, but information for dairy goats is limited. A total of 14 Alpine goats were used in a replicated 3×3 Latin square with 28-days experimental periods to examine the effects of EL alone or in combination with FO on animal performance, milk fat synthesis and milk FA composition. Treatments comprised diets based on natural grassland hay supplemented with no additional oil (control), 530 of EL or 340 g/day of EL and 39 g/day of FO (ELFO). Compared with the control, ELFO tended (P=0.08) to lower milk fat yield, whereas EL increased (P<0.01) milk fat content and yield (15% and 10%, respectively). Relative to EL, ELFO decreased (P<0.01) milk fat content and yield (19% and 17%, respectively). Relative to the control and ELFO, EL decreased (P<0.05) milk 10:0 to 16:0 and odd- and branched-chain FA content and increased 18:0, cis-18:1, trans-13 18:1 (and their corresponding ∆-9 (desaturase products), trans-12,cis-14 CLA, cis-13,trans-15 CLA, cis-12,trans-14 CLA and trans-11,cis-13 CLA and 18:3n-3 concentrations. ELFO was more effective for enriching (P<0.05) milk cis-9, trans-11 CLA and trans-11 18:1 concentrations (up to 5.4- and 7.1-fold compared with the control) than EL (up to 1.7- and 2.5-fold increases). Furthermore, ELFO resulted in a substantial increase in milk trans-10 18:1 concentration (5.4% total FA), with considerable variation between individual animals. Relative to the control and EL, milk fat responses to ELFO were characterized by increases (P<0.05) in milk trans-16:1 (Δ9 to 11), trans-18:1 (Δ6 to 11), trans-18:2, CLA (cis-9,trans-11, trans-9,cis-11, trans-8,trans-10 and trans-7,trans-9) and 20- and 22-carbon FA concentrations. Overall, EL resulted in a relatively high cis-9 18:1 concentration and an increase in the 18:3n-3/18:2n-6 ratio, whereas combining EL and FO resulted in substantial increases in trans-FA, marginal enrichment in 20:5n-3 and 22:6n-3 and lower 16:0 concentration changes associated with a decrease in milk fat content. In conclusion, data provide further evidence of differential mammary lipogenic responses to diet in the goat compared with the cow and sheep.  相似文献   

9.
The aim of the study was to examine the effect of a linseed diet on meat quality and on lipogenesis in rabbits. Twelve rabbits were fed a control or a linseed diet. There was no diet effect on growth, food consumption, carcass characteristics and meat ultimate pH and colour. Feeding the linseed diet increased the n-3 polyunsaturated fatty acids (PUFA) levels in perirenal and interscapular fats, in the Longissimus dorsi muscle and in the liver. The linseed diet produced lower linoleic acid/α-linolenic acid ratios in adipose tissues and in the Longissimus dorsi muscle, but not in the liver. Diet did not affect lipogenic enzyme activities in the Longissimus dorsi muscle, whereas the linseed diet decreased the lipogenic potential in perirenal and interscapular fats, and in the liver. Feeding rabbits with a high n-3 PUFA diet led to a decrease in the oxidative stability of perirenal fat and the Longissimus dorsi muscle, and to an inhibition of stearoyl-CoA-desaturase activity in liver and in adipose tissues, but not in muscle.  相似文献   

10.
Thirty lactating dairy cows were used in a 3 × 3 Latin-square design to investigate the effects of a raw or extruded blend of linseed and wheat bran (70:30) on plasma and milk fatty-acids (FA). Linseed diets, containing 16.6% linseed blend on a dry-matter basis, decreased milk yield and protein percentage. They decreased the proportions of FA with less than 18 carbons in plasma and milk and resulted in cis-9, cis-12, cis-15 18:3 proportions that were more than three and four times higher in plasma and milk, respectively, whereas cis-9, cis-12 18:2 proportions were decreased by 10-15%. The cis-9, trans-11, cis-15 18:3 isomer of conjugated linolenic acid was not detected in the milk of control cows, but was over 0.15% of total FA in the milk fat of linseed-supplemented cows. Similarly, linseed increased plasma and milk proportions of all biohydrogenation (BH) intermediates in plasma and milk, including the main isomer of conjugated linoleic acid cis-9, trans-11 18:2, except trans-4 18:1 and cis-11, trans-15 18:2 in plasma lipids. In milk fat, compared with raw linseed, extruded linseed further reduced 6:0-16:0 even-chain FA, did not significantly affect the proportions of 18:0, cis-9 18:1 and cis-9, cis-12 18:2, tended to increase cis-9, cis-12, cis-15 18:3, and resulted in an additional increase in the proportions of most BH intermediates. It was concluded that linseed addition can improve the proportion of conjugated linoleic and linolenic acids, and that extrusion further increases the proportions of intermediates of ruminal BH in milk fat.  相似文献   

11.
The aim of this work was to investigate the variations of milk fatty acid (FA) composition because of changing paddocks in two different rotational grazing systems. A total of nine Holstein and nine Montbéliarde cows were divided into two equivalent groups according to milk yield, fat and protein contents and calving date, and were allocated to the following two grazing systems: a long duration (LD; 17 days) of paddock utilisation on a heterogeneous pasture and a medium duration (MD) of paddock utilisation (7 to 10 days) on a more intensively managed pasture. The MD cows were supplemented with 4 kg of concentrate/cow per day. Grazing selection was characterised through direct observations and simulated bites, collected at the beginning and at the end of the utilisation of two subsequent MD paddocks, and at the same dates for the LD system. Individual milks were sampled the first 3 days and the last 2 days of grazing on each MD paddock, and simultaneously also for the LD system. Changes in milk FA composition at the beginning of each paddock utilisation were highly affected by the herbage characteristics. Abrupt changes in MD milk FA composition were observed 1 day after the cows were moved to a new paddock. The MD cows grazed by layers from the bottom layers of the previous paddock to the top layers of the subsequent new paddock, resulting in bites with high organic matter digestibility (OMD) value and CP content and a low fibre content at the beginning of each paddock utilisation. These changes could induce significant day-to-day variations of the milk FA composition. The milk fat proportions of 16:0, saturated FA and branched-chain FA decreased, whereas proportions of de novo-synthesised FA, 18:0, c9-18:1 and 18:2n-6 increased at paddock change. During LD plot utilisation, the heterogeneity of the vegetation allowed the cows to select vegetative patches with higher proportion of leaves, CP content, OMD value and the lowest fibre content. These small changes in CP, NDF and ADF contents of LD herbage and in OMD values, from the beginning to the end of the experiment, could minimally modify the ruminal ecosystem, production of precursors of de novo-synthesised FA and ruminal biohydrogenation, and could induce only small day-to-day variations in the milk FA composition.  相似文献   

12.
Abstract

The objective of the study was to investigate the influence of two roughage-to-concentrate ratios, with or without linseed oil supplementation, on the flow of fatty acids in the intestinal chyme and the secretion in milk fat in late lactating cows. Seven late lactating cows fitted with cannulae in the dorsal rumen and simple T-shaped cannulae in the proximal duodenum were randomly assigned to four experimental periods applying an incomplete replicated 2×2 Latin square design. The rations consisted of meadow hay and a concentrate mixture given in a ratio of 70 : 30 or 30 : 70 on dry matter basis. The basal rations were fed without or with 200 g linseed oil daily. After three weeks of adaptation, samples from the duodenal chyme were taken to study the flow of fatty acids. Additionally, milk samples were analysed for their milk fat composition. Decreasing roughage/concentrate ratio and linseed oil supplementation significantly increased the flow of monounsaturated fatty acids (MUFA), trans-fatty acids (tFA) and conjugated linoleic acids (CLA) in the duodenum. Furthermore, linseed oil increased the flow of saturated fatty acids (SFA) in the duodenum. Higher concentrate portion (H 30) and linseed oil supplementation significantly decreased the milk fat content. SFA were lower (p < 0.05) and MUFA were higher (p < 0.05) in milk fat after linseed oil supplementation; H 30 resulted in more polyunsaturated fatty acids (PUFA, p < 0.05) in the milk. Linseed oil supplementation significantly increased tFA and CLA in milk fat. The higher CLA content in milk fat as compared to that in the digesta suggests that a substantial endogenous synthesis of CLA in the mammary gland tissue through Δ9-desaturase took place. Between 21% and 48% of duodenal t11-C18:1 were converted into c9, t11-CLA in milk fat.  相似文献   

13.
Milk fatty acid (MFA) have already been used to model methane (CH4) emissions from dairy cows. However, the data sets used to develop these models covered limited variation in dietary conditions, reducing the robustness of the predictions. In this study, a data set containing 140 observations from nine experiments (41 Holstein cows) was used to develop models predicting CH4 expressed as g/day, g/kg dry matter intake (DMI) and g/kg milk. The data set was divided into a training (n=112) and a test data set (n=28) for model development and validation, respectively. A generalized linear mixed model was fitted to the data using the marginal R2(m) and the Akaike information criterion to evaluate the models. The coefficient of determination of validation (R2(v)) for different models developed ranged between 0.18 and 0.41. Form the intake-related parameters, only inclusion of total DMI improved the prediction (R2(v)=0.58). In addition, in an attempt to further explore the relationships between MFA and CH4 emissions, the data set was split into three categories according to CH4 emissions: LOW (lowest 25% CH4 emissions); HIGH (highest 25% CH4 emissions); and MEDIUM (50% remaining observations). An ANOVA revealed that concentrations of several MFA differed for observations in HIGH compared with observations in LOW. Furthermore, the Gini coefficient was used to describe the MFA distribution for groups of MFA in each CH4 emission category. The relative distribution of the MFA, particularly of the odd- and branched-chain fatty acids and mono-unsaturated fatty acids of observations in category HIGH differed from those in the other categories. Finally, in an attempt to validate the potential of MFA to identify cases of high or low emissions, the observations were re-classified into HIGH, MEDIUM and LOW according to the proportion of each individual MFA. The proportion of observations correctly classified were recorded. This was done for each individual MFA and for the calculated Gini coefficients, finding that a maximum of 67% of observations were correctly classified as HIGH CH4 (trans-12 C18:1) and a maximum of 58% of observations correctly classified as LOW CH4 (cis-9 C17:1). Gini coefficients did not improve this classification. These results suggest that MFA are not yet reliable predictors of specific amounts of CH4 emitted by a cow, while holding a modest potential to differentiate cases of high or low emissions.  相似文献   

14.
Two experiments were conducted to evaluate the effects of Bacillus subtilis natto, which was initially isolated from fermented soybeans on milk production, rumen fermentation and ruminal microbiome in dairy cows. In Experiment 1, 36 early lactation Chinese Holstein dairy cows (56 ± 23 days in milk) were randomly assigned to three groups: Control, cows were fed total mixed ration (TMR); BSNLOW, TMR plus 0.5 × 1011 colony-forming units (cfu) of B. subtilis natto/cow per day; and BSNHIGH, TMR plus 1.0 × 1011 cfu of B. subtilis natto/cow per day. During the 70-day treatment period, daily milk production and daily milk composition were determined in individual cows. The results showed that supplementing dairy cows with 0.5 × 1011 and 1.0 × 1011 cfu of B. subtilis natto linearly increased (P < 0.01) milk production (25.2 and 26.4 kg/day v. 23.0 kg/day), 4% fat-corrected milk (27.3 and 28.1 kg/day v. 24.2 kg/day), energy-corrected milk (27.3 and 28.2 kg/day v. 24.2 kg/day), as well as milk fat (1.01 and 1.03 kg/day v. 0.88 kg/day), protein (0.77 and 0.82 kg/day v. 0.69 kg/day) and lactose yield (1.16 and 1.22 kg/day v. 1.06 kg/day) but decreased milk somatic cell counts (SCC) by 3.4% to 5.5% (P < 0.01) in BSNLOW and BSNHIGH treatments compared with Control. In Experiment 2, four rumen-cannulated dairy cows were fed the basal diet from 1 to 7 days (pre-trial period) and rumen samples were collected on days 6 and 7; the same cows then were fed 1.0 × 1011 cfu/day B. subtilis natto from days 8 to 21 (trial period) and rumen samples were collected on days 20 and 21. B. subtilis natto was discontinued from days 22 to 28 (post-trial period) and rumen samples were collected on days 27 and 28. Compared with the pre- and post-periods, ruminal pH decreased by 2.7% to 3.0% during the trial period (P < 0.01), whereas ammonia nitrogen (NH3-N), total volatile fatty acids and molar proportion of propionate (P < 0.01) and valerate (P < 0.05) increased. Molar proportion of acetate decreased and the acetate to propionate ratio was lower (P < 0.01) during the trial period. However, no differences for 24-h in sacco dry matter digestibility were detected among different periods (treatments) though NDF digestibility was reduced in the trial and post-trial periods (P < 0.01). Compared with pre-trial period, total ruminal bacteria, proteolytic and amylolytic bacteria in rumen enumerated by culture methods increased by 15.0%, 16.2% and 11.7%, respectively (P < 0.01) but protozoa decreased to 5.35 log10 cfu/ml (P < 0.01) during the trial period. These results demonstrate that B. subtilis natto improves milk production and milk components yield, decreases SCC and promotes the growth of total ruminal bacteria, proteolytic and amylolytic bacteria, which indicate that B. subtilis natto has potential to be applied as a probiotic for dairy cows.  相似文献   

15.
Optimizing milk production efficiency implies diets allowing low methane (CH4) emissions and high dairy performance. We hypothesize that nature of energy (starch v. lipids) and lipid supplement types (monounsaturated fatty acid (MUFA) v. polyunsaturated fatty acid (PUFA) mitigate CH4 emissions and can induce low milk fat content via different pathways. The main objective of this experiment was to study the effects of starch-rich or lipid-supplemented diets that induce milk fat depression (MFD) on rumen biohydrogenation (RBH) of unsaturated fatty acids (FA) and enteric CH4 emissions in dairy cows. Four multiparous lactating Holstein cows (days in milk=61±11 days) were used in a 4×4 Latin square design with four periods of 28 days. Four dietary treatments, three of which are likely to induce MFD, were based (dry matter basis) on 56% maize silage, 4% hay and 40% concentrates rich in: (1) saturated fatty acid (SFA) from Ca salts of palm oil (PALM); (2) starch from maize grain and wheat (MFD-Starch); (3) MUFA (cis-9 C18:1) from extruded rapeseeds (MFD-RS); and (4) PUFA (C18:2n-6) from extruded sunflower seeds (MFD-SF). Intake and milk production were measured daily. Milk composition and FA profile, CH4 emissions and total-tract digestibility were measured simultaneously when animals were in open-circuit respiration chambers. Fermentation parameters were analysed from rumen fluid samples taken before feeding. Dry matter intake, milk production, fat and protein contents, and CH4 emissions were similar among the four diets. We observed a higher milk SFA concentration with PALM and MFD-Starch, and lower milk MUFA and trans-10 C18:1 concentrations in comparison to MFD-RS and MFD-SF diets, while trans-11 C18:1 remained unchanged among diets. Milk total trans FA concentration was greater for MFD-SF than for PALM and MFD-Starch, with the value for MFD-RS being intermediate. Milk C18:3n-3 content was higher for MFD-RS than MFD-SF. The MFD seems more severe with MFD-SF and MFD-RS than PALM and MFD-Starch diets, because of a decrease in milk SFA concentration and a stronger shift from trans-11 C18:1 to trans-10 C18:1 in milk. The MFD-SF diet increased milk trans FA (+60%), trans-10 C18:1 (+31%), trans-10,cis-12 CLA (+27%) and PUFA (+36%) concentrations more than MFD-RS, which explains the numerically lowest milk fat yield and indicates that RBH pathways of PUFA differ between these two diets. Maize silage-based diets rich in starch or different unsaturated FA induced MFD with changes in milk FA profiles, but did not modify CH4 emissions.  相似文献   

16.
A previous study showed the additive methane (CH4)-mitigating effect of nitrate and linseed fed to non-lactating cows. Before practical application, the use of this new strategy in dairy cows requires further investigation in terms of persistency of methanogenesis reduction and absence of residuals in milk products. The objective of this experiment was to study the long-term effect of linseed plus nitrate on enteric CH4 emission and performance in dairy cows. We also assessed the effect of this feeding strategy on the presence of nitrate residuals in milk products, total tract digestibility, nitrogen (N) balance and rumen fermentation. A total of 16 lactating Holstein cows were allocated to two groups in a randomised design conducted in parallel for 17 weeks. Diets were on a dry matter (DM) basis: (1) control (54% maize silage, 6% hay and 40% concentrate; CON) or (2) control plus 3.5% added fat from linseed and 1.8% nitrate (LIN+NIT). Diets were equivalent in terms of CP (16%), starch (28%) and NDF (33%), and were offered twice daily. Cows were fed ad libitum, except during weeks 5, 16 and 17 in which feed was restricted to 95% of dry matter intake (DMI) to ensure complete consumption of meals during measurement periods. Milk production and DMI were measured weekly. Nitrate and nitrite concentrations in milk and milk products were determined monthly. Daily CH4 emission was quantified in open circuit respiration chambers (weeks 5 and 16). Total tract apparent digestibility, N balance and rumen fermentation parameters were determined in week 17. Daily DMI tended to be lower with LIN+NIT from week 4 to 16 (−5.1 kg/day on average). The LIN+NIT diet decreased milk production during 6 non-consecutive weeks (−2.5 kg/day on average). Nitrate or nitrite residuals were not detected in milk and associated products. The LIN+NIT diet reduced CH4 emission to a similar extent at the beginning and end of the trial (−47%, g/day; −30%, g/kg DMI; −33%, g/kg fat- and protein-corrected milk, on average). Diets did not affect N efficiency and nutrients digestibility. In the rumen, LIN+NIT did not affect protozoa number but reduced total volatile fatty acid (−12%) and propionate (−31%) concentrations. We concluded that linseed plus nitrate may have a long-term CH4-mitigating effect in dairy cows and that consuming milk products from cows fed nitrate may be safe in terms of nitrate and nitrite residuals. Further work is required to optimise the doses of linseed plus nitrate to avoid reduced cows performance.  相似文献   

17.
Inclusion of rapeseed feeds in dairy cow diets has the potential to reduce milk fat saturated fatty acid (SFA) and increase cis-monounsaturated fatty acid (cis-MUFA) content, but effectiveness may depend on the form in which the rapeseed is presented. Four mid-lactation Holstein dairy cows were allocated to four maize silage-based dietary treatments according to a 4 × 4 Latin Square design, with 28-day experimental periods. Treatments consisted of a control diet (C) containing 49 g/kg dry matter (DM) of calcium salts of palm oil distillate (CPO), or 49 g/kg DM of oil supplied as whole rapeseeds (WR), rapeseeds milled with wheat (MR) or rapeseed oil (RO). Replacing CPO with rapeseed feeds had no effect (P > 0.05) on milk fat and protein content, while milk yields were higher (P < 0.05) for RO and MR compared with WR (37.1, 38.1 and 34.3 kg/day, respectively). Substituting CPO with RO or MR reduced (P < 0.05) milk fat total SFA content (69.6, 55.6, 71.7 and 61.5 g/100 g fatty acids for C, RO, WR and MR, respectively) and enhanced (P < 0.05) milk cis-9 18:1 MUFA concentrations (corresponding values 18.6, 24.3, 17.0 and 23.0 g/100 g fatty acids) compared with C and WR. Treatments RO and MR also increased (P < 0.05) milk trans-MUFA content (4.4, 6.8, 10.5 g/100 g fatty acids, C, MR and RO, respectively). A lack of significant changes in milk fat composition when replacing CPO with WR suggests limited bioavailability of fatty acids in intact rapeseeds. In conclusion, replacing a commercial palm oil-based fat supplement in the diet with milled rapeseeds or rapeseed oil represented an effective strategy to alter milk fatty acid composition with the potential to improve human health. Inclusion of processed rapeseeds offered a good compromise for reducing milk SFA and increasing cis-MUFA, whilst minimising milk trans-MUFA and negative effects on animal performance.  相似文献   

18.
Branched-chain volatile fatty acids (BCVFA) supplements could promote lactation performance and milk quality by improving ruminal fermentation and milk fatty acid synthesis. This study was conducted to evaluate the effects of BCVFA supplementation on milk performance, ruminal fermentation, nutrient digestibility and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows. A total of 36 multiparous Chinese Holstein cows averaging 606±4.7 kg of BW, 65±5.2 day in milk (DIM) with daily milk production of 30.6±0.72 kg were assigned to one of four groups blocked by lactation number, milk yield and DIM. The treatments were control, low-BCVFA (LBCVFA), medium-BCVFA (MBCVFA) and high-BCVFA (HBCVFA) with 0, 30, 60 and 90 g BCVFA per cow per day, respectively. Experimental periods were 105 days with 15 days of adaptation and 90 days of data collection. Dry matter (DM) intake tended to increase, but BW changes were similar among treatments. Yields of actual milk, 4% fat corrected milk, milk fat and true protein linearly increased, but feed conversion ratio (FCR) linearly decreased with increasing BCVFA supplementation. Milk fat content linearly increased, but true protein content tended to increase. Contents of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0 and C15:0 fatty acids in milk fat linearly increased, whereas other fatty acids were not affected with increasing BCVFA supplementation. Ruminal pH, ammonia N concentration and propionate molar proportion linearly decreased, but total VFA production and molar proportions of acetate and butyrate linearly increased with increasing BCVFA supplementation. Consequently, acetate to propionate ratios linearly increased. Digestibilities of DM, organic matter, CP, NDF and ADF also linearly increased. In addition, mRNA expressions of peroxisome proliferator-activated receptor γ, sterol regulatory element-binding factor 1 and fatty acid-binding protein 3 linearly increased, mRNA expressions of acetyl-coenzyme A carboxylase-α, fatty acid synthase and stearoyl-CoA desaturase quadratically increased. However, lipoprotein lipase mRNA expression was not affected by treatments. The results indicated that lactation performance and milk fat synthesis increased with BCVFA supplementation by improving ruminal fermentation, nutrient digestibility and mRNA expressions of genes related to milk fat synthesis.  相似文献   

19.
The objective of this study was to investigate effects of oil supplements on the composition of fatty acids (FA), especially of trans11-C18:1 (vaccenic acid, TVA) and cis9, trans11-C18:2 conjugated linoleic acid (c9,t11-CLA), in bacterial (BF) and protozoal (PF) fractions of rumen fluid of sheep that was fractionated centrifugation. Four sheep were fed a diet consisting of meadow hay (960 g dry matter (DM)/day) and of barley grain (240 g DM/day), with sunflower oil (SO), rapeseed oil (RO) or linseed oil (LO) as supplements (60 g/day) in a Latin square design. The oils were used as they are rich in linoleic acid (SO, 533 g/kg of FA), oleic acid (RO, 605 g/kg of FA) and α-linolenic acid (LO, 504 g/kg of FA). Compared to the control (i.e., without oils), oil supplements influenced the concentration of unsaturated (UFA) and saturated fatty acids (SFA). In both BF and PF, the main fatty acids were palmitic and stearic, but PF contained a higher proportion of TVA and c9,t11-CLA than BF. In PF, TVA concentrations, ranked by oil supplement, were SO > RO > LO > Control (174, 150, 118, 74 g/kg of FA, respectively) and the c9,t11-CLA concentrations were RO > SO > LO > Control (59, 51, 27 and 15 g/kg of FA, respectively). Concentrations of c9,t11-CLA in PF were two to three times higher than in BF with all the oil supplements versus the control. Oil treatments impacted the c9,t11-CLA concentration in the fractions, especially SO and RO. The protozoal fraction contained a higher proportion of TVA and c9,t11-CLA than did the bacterial fraction, and dietary addition of SO, RO and LO resulted in a higher incorporation of TVA into both bacterial and protozoal microbial fractions, which probably positively affected TVA flow from the rumen.  相似文献   

20.
The aim of this experiment was to, under typical Swedish production conditions, evaluate the effects of grass silages subjected to different N-fertilisation regimes fed to dairy cows on the fatty acid (FA) composition of their milk, and to compare the grass silages in this respect to red clover-dominated silage. Grass silages made from first year Phleum pratense L. leys subjected to three N-fertilisation regimes (30, 90 and 120 kg N/ha, designated G-30, G-90 and G-120, respectively) and a mixed red clover–grass silage (Trifolium pratense L. and P. pratense L.; 60/40 on dry matter (DM) basis, designated RC–G) were produced. The experiment was conducted as a change-over design, including 24 primiparous and multiparous dairy cows of the Swedish Red breed, each of which was allocated to three of the four diets. The cows were offered 11 kg DM of silage and 7 kg concentrates. The silages had similar DM and energy concentrations. The CP concentration increased with increase in N-fertilisation level. There was a linear increase in DM intake of the different silages with increased N fertilisation. There were also differences in concentrations of both individual and total FAs amongst silages. The daily milk production (kg/day) did not significantly differ between treatments, but G-30 silage resulted in higher concentrations of 18:2n-6 in the milk compared with the other two grass silages. The highest concentrations of 18:3n-3 and cis-9, trans-11 18:2 were found in milk from cows offered the RC–G silage. The G-30 diet resulted in higher concentration of 18:2n-6 and the same concentration of 18:3n-3 in the milk as the other grass silages, despite lower intake levels of these FAs. The apparent recoveries of 18:3n-3 from feed to milk were 5.74%, 4.27%, 4.10% and 5.31% for G-30, G-90, G-120 and RC–G, respectively. A higher recovery when red clover is included in the diet confirms previous reports. The higher apparent recovery of 18:3n-3 on the G-30 treatment may be related to the lower silage DM intake, which led to a higher relative proportion of ingested FAs originating from concentrates compared with the G-90 and G-120 diets. With the rates and types of concentrates used in this study, the achieved differences in FA composition among the silages were not enough to influence the concentrations of unsaturated FAs in milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号