首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary. High fructose feeding induces moderate increases in blood pressure of normal rats, associated with hyperinsulinemia, insulin resistance and impaired glucose tolerance. Increased vascular resistance, and sodium retention have been proposed to contribute to the blood pressure elevation in this model. Taurine, a sulphur-containing amino acid has been reported to have antihypertensive and antinatriuretic actions. In addition, taurine is shown to increase the excretion of nitrite and kinin availability and hence would be expected to improve the vascular tone. In the present study, the involvement of kinins in the blood pressure lowering effect of taurine was investigated by coadministration of Hoe 140, a kinin B2 receptor antagonist along with taurine. The effects of taurine on plasma and urinary concentrations of sodium and tissue kallikrein activity were studied in high fructose-fed rats. Fructose-fed rats had elevated blood pressure and decreased levels of sodium in urine. Treatment with 2% taurine in drinking water prevented the blood pressure elevation and coadministration of Hoe 140 abolished this effect of taurine in high fructose-fed rats. The findings confirm the antinatriuretic action of taurine and also suggest a role for the kinins in the mechanism of taurine action in diet-induced hypertension.  相似文献   

2.
The present work investigates the involvement of kinins in the effects of taurine in fructose-fed hypertensive rats. The effects of taurine on blood pressure, plasma glucose, insulin, and the insulin sensitivity index were determined. Angiotensin-converting enzyme (ACE) activity and nitrite content in plasma, plasma and tissue kallikrein activity, and taurine content were also investigated. The blood pressure changes in response to the coadministration of inhibitors of the synthesis of nitric oxide (NO), prostaglandins (PGs), or a kinin receptor blocker along with taurine was also evaluated. Fructose-fed rats had higher blood pressure and elevated plasma levels of glucose and insulin. Kallikrein activity, taurine, and nitrite contents were significantly lower in fructose-fed rats as compared with controls. The increases in systolic blood pressure, hyperglycemia, and hyperinsulinemia were controlled by taurine administration in fructose-fed rats. ACE activity was lower, while nitrite and taurine content and kallikrein activity were higher, in taurine-supplemented rats as compared with fructose-fed rats. A significant increase in blood pressure was observed in rats cotreated with the inhibitors Hoe 140 (a kinin receptor blocker), L-NAME (a NO synthase inhibitor), or indomethacin (a PG synthesis inhibitor) with taurine for 1 week as compared with taurine-treated fructose-fed rats. This suggests that the antihypertensive effect of taurine in fructose-fed rats was blocked by the inhibitors. Augmented kallikrein activity and, hence, increased kinin availability may be implicated in the effects of taurine in fructose-fed hypertensive rats.  相似文献   

3.
Summary. Taurine, a potent antioxidant has been reported to show an antidiabetic effect in streptozotocin-induced diabetes mellitus in which the development of hyperglycemia results from the damage to β cells of pancreas by reactive oxygen species. In addition, taurine also increases the excretion of nitrite and enhances the formation of kinins and would be expected to improve insulin resistance. The effect of taurine on insulin sensitivity was examined in the high fructose-fed rats, an animal model of insulin resistance. Male Wistar rats of body weight 170–190 g were divided into 4 groups: a control group and taurine-supplemented control group, taurine supplemented and unsupplemented fructose-fed group. An intravenous glucose tolerance test (IVGTT) and a steady state plasma glucose level (SSPG) were performed before the sacrifice. The fructose-fed rats displayed hyperglycemia and insulin resistance and they had a greater accumulation of glycogen than did control rats. Hyperglycemia and insulin resistance were significantly lower in the taurine supplemented fructose-fed group than in the unsupplemented fructose-fed group. Urinary kallikrein activity was higher in taurine-treated animals than in the rats fed only fructose. The activity of membrane bound ATPases were significantly lower in fructose-fed rats than in the control rats and were significantly higher in the taurine supplemented group than in the fructose-fed group. Taurine effectively improves glucose metabolism in fructose-fed rats presumably via improved insulin action and glucose tolerance. Received January 5, 2001 Accepted August 21, 2001  相似文献   

4.
The objective of this study was to determine whether the effects of a fructose diet, which causes hyperinsulinemia, insulin resistance, and hypertension in male rats, are dependent on sex. Blood pressure was measured via the tail-cuff method, and oral glucose tolerance tests were performed to assess insulin sensitivity. Blood pressure in female rats did not differ between fructose-fed and control rats at any time point (126 +/- 5 and 125 +/- 3 mmHg at week 9 for fructose-fed and control rats, respectively) nor was there a difference in any metabolic parameter measured. Furthermore, the vascular insulin resistance that is present in male fructose-fed rats was not observed. After ovariectomy, fructose caused a significant change in systolic blood pressure from baseline compared with fructose-fed ovary-intact rats (change of 21 +/- 5 vs. -2 +/- 4 mmHg). The results demonstrate that females do not develop hypertension or hyperinsulinemia upon fructose feeding except after ovariectomy, suggesting that female sex hormones may confer protection against the effects of a fructose diet.  相似文献   

5.
To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.  相似文献   

6.
Hyperinsulinemia and insulin resistance have been linked to hypertension; however, the influence of sex on this relationship has not been well studied. The purpose of this experiment was to compare the effects of chronic insulin treatment on insulin sensitivity and blood pressure in male and female rats. Male and female Wistar rats were treated with insulin (2 U/day) via subcutaneous sustained release implants for 5 wk. Systolic blood pressure was measured via the tail-cuff method before and after treatment, and insulin sensitivity was assessed with an oral glucose tolerance test. The insulin sensitivity of female rats was 4.5-fold greater than male rats. Chronic insulin treatment impaired insulin sensitivity in both sexes; however, this occurred to a greater degree in male rats. Blood pressure increased in male rats treated with insulin only. The results demonstrate that hyperinsulinemia and insulin resistance are associated with hypertension in male rats only. Therefore, the link between these conditions appears to depend on sex.  相似文献   

7.
Differences in gender are in part responsible for the development of insulin resistance (IR) and associated hypertension. Currently, it is unclear whether these differences are dictated by gender itself or by the relative changes in plasma estrogen and/or testosterone. We investigated the interrelationships between testosterone and estrogen in the progression of IR and hypertension in vivo in intact and gonadectomized fructose-fed male rats. Treatment with estrogen significantly reduced the testosterone levels in both normal chow-fed and fructose-fed rats. Interestingly, fructose feeding induced a relative increase in estradiol levels, which did not affect IR in both intact and gonadectomized fructose-fed rats. However, increasing the estrogen levels improved insulin sensitivity in both intact and gonadectomized fructose-fed rats. In intact males, fructose feeding increased the blood pressure (140 +/- 2 mmHg), which was prevented by estrogen treatment. However, the blood pressure in the fructose-fed estrogen rats (125 +/- 1 mmHg) was significantly higher than that of normal chow-fed (113 +/- 1 mmHg) and fructose-fed gonadectomized rats. Estrogen treatment did not affect the blood pressure in gonadectomized fructose-fed rats (105 +/- 2 mmHg). These data suggest the existence of a threshold value for estrogen below which insulin sensitivity is unaffected. The development of hypertension in this model is dictated solely by the presence or absence of testosterone. In summary, the development of IR and hypertension is governed not by gender per se but by the interactions of specific sex hormones such as estrogen and testosterone.  相似文献   

8.
Two experiments were conducted to examine the effect of zinc deficiency on glucose tolerance, and on blood and pancreatic insulin concentrations. In the first study, no significant differences in blood glucose or plasma insulin levels were noted between pair-weighted zinc deficient and zinc sufficient rats after an oral glucose load. In the second experiment, the concentration of pancreatic insulin in pair-fed zinc sufficient rats did not differ significantly from that of zinc deficient rats. However, a zinc deficient group fed ad libitum had significantly lower pancreatic insulin levels, suggesting that food restriction may cause increased pancreatic insulin. Thus, zinc deficiency per se had no apparent effect on oral glucose tolerance or pancreatic insulin concentrations.  相似文献   

9.
We previously showed that chronic insulin infusion induces insulin resistance, hyperendothelinemia, and hypertension in rats (C. C. Juan, V. S. Fang, C. F. Kwok, J. C. Perng, Y. C. Chou, and L. T. Ho. Metabolism 48: 465-471, 1999). Endothelin-1 (ET-1), a potent vasoconstrictor, is suggested to play an important role in maintaining vascular tone and regulating blood pressure, and insulin increases ET-1 production in vivo and in vitro. In the present study, BQ-610, a selective endothelin A receptor antagonist, was used to examine the role of ET-1 in insulin-induced hypertension in rats. BQ-610 (0.7 mg/ml; 0.5 ml/kg body wt) or normal saline was given intraperitoneally two times daily for 25 days to groups of rats infused with either saline or insulin (2 U/day via sc-implanted osmotic pumps), and changes in plasma levels of insulin, glucose, and ET-1 and the systolic blood pressure were measured over the experimental period, whereas changes in insulin sensitivity were examined at the end of the experimental period. Plasma insulin and ET-1 levels were measured by RIA, plasma glucose levels using a glucose analyzer, systolic blood pressure by the tail-cuff method, and insulin sensitivity by an oral glucose tolerance test. Our studies showed that insulin infusion caused sustained hyperinsulinemia in both saline- and BQ-610-injected rats over the infusion period. After pump implantation (2 wk), the systolic blood pressure was significantly higher in insulin-infused rats than in saline-infused rats in the saline-injected group (133 +/- 3.1 vs. 113 +/- 1.1 mmHg, P < 0.05) but not in the BQ-610-injected group (117 +/- 1.2 vs. 117 +/- 1.8 mmHg). Plasma ET-1 levels in both sets of insulin-infused rats were higher than in saline-infused controls (2.5 +/- 0.6 and 2.5 +/- 0.8 vs. 1.8 +/- 0.4 and 1.7 +/- 0.3 pmol/l, P < 0.05). Oral glucose tolerance tests showed that BQ-610 treatment did not prevent the insulin resistance caused by chronic insulin infusion. No significant changes were found in insulin sensitivity and blood pressure in saline-infused rats treated with BQ-610. In a separate experiment, insulin infusion induced the increase in arterial ET-1 content, hypertension, and subsequent plasma ET-1 elevation in rats. These results suggest that, in the insulin infusion rat model, ET-1 plays a mediating role in the development of hypertension, but not of insulin resistance.  相似文献   

10.
The study examined the effects of galangin (GA) on oxidative stress, inflammatory cytokine levels and nuclear factor-kappa B (NF-κB) activation in fructose-fed rat liver. Adult male albino Wistar rats were divided into 4 groups. Groups 1 and 4 received the control diet containing starch as the source of carbohydrate while groups 2 and 3 were fed a diet containing fructose. Groups 3 and 4 additionally received GA (100 μg/kg, p.o) from the 15th day. At the end of 60 days, the levels of plasma glucose, insulin and triglycerides, insulin sensitivity indices and oxidative stress markers in the liver were determined. Cytokines of interest were assayed by ELISA and RT-PCR and NF-κB p65 nuclear translocation by Western blot and RT-PCR. Compared to control diet-fed animals, fructose-fed animals developed hyperglycemia, hyperinsulinemia, hypertriglyceridemia and insulin resistance (IR) (all p < 0.01). GA prevented the rise in plasma glucose, insulin and triglycerides and improved insulin sensitivity. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in plasma and the mRNA and protein levels of TNF-α and transforming growth factor-β1(TGF-β1) in liver were significantly higher in fructose-fed rats than control rats. However, treatment with GA downregulated the expression of these cytokines. Translocation of NF-κB into the nucleus was also increased in fructose diet-fed animals, which was prevented by GA. These results suggest that GA prevents oxidative damage and has a downregulatory effect on the inflammatory pathway in liver of fructose-fed rats.  相似文献   

11.
Two of the most potent vasoconstrictors, endothelin-1 (ET-1) and angiotensin II (Ang II), are upregulated in fructose hypertensive rats. It is unknown whether an interrelationship exists between these peptides that may contribute to the development of fructose-induced hypertension. The objective of this study was to investigate the existence of an interaction between the endothelin and renin angiotensin systems that may play a role in the development of fructose-induced hypertension. High fructose feeding and treatment with either bosentan, a dual endothelin receptor antagonist, or with L-158,809, an angiotensin type 1 receptor antagonist, were initiated simultaneously in male Wistar rats. Systolic blood pressure, fasted plasma parameters, insulin sensitivity, plasma Ang II, and vascular ET-1-immunoreactivity were determined following 6 weeks of high fructose feeding. Rats fed with a high fructose diet exhibited insulin resistance, hyperinsulinemia, hypertriglyceridemia, hypertension, and elevated plasma Ang II. Treatment with either bosentan or L-158,809 significantly attenuated the rise in blood pressure with no effect on insulin levels or insulin sensitivity in fructose-fed rats. Bosentan treatment significantly reduced plasma Ang II levels, while L-158,809 treatment significantly increased vascular ET-1-immunoreactivity in fructose-fed rats. Thus, treatment with the endothelin receptor antagonist prevented the development of fructose-induced hypertension and decreased plasma Ang II levels. These data suggest that ET-1 contributes to the development of fructose-induced hypertension through modulation of Ang II levels.  相似文献   

12.
Metabolic syndrome (MS) is a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes. MS is associated with obesity, increased blood pressure, hyperlipidemia, and hyperglycemia. This study was designed to investigate the pharmacological profile of phentolamine, a nonselective α adrenergic receptor antagonist, in the prevention of increased blood pressure in fructose-fed rats. Phentolamine prevented the fructose-induced increase in systolic blood pressure without affecting insulin sensitivity and major metabolic parameters. The levels of plasma noradrenaline and angiotensin II, 2 proposed contributors to the development of fructose-induced elevated blood pressure, were examined. Neither noradrenaline nor angiotensin II levels were affected by phentolamine treatment. Since overproduction of nitric oxide has been shown to lead to an elevation in peroxynitrite, the role of oxidative stress, a proposed mechanism of fructose-induced elevated blood pressure and insulin resistance, was examined by measuring plasma levels of total nitrate/nitrite. Plasma nitrate/nitrite was significantly elevated in all fructose-fed animals, regardless of treatment with phentolamine. Another proposed contributor toward fructose-induced MS is an elevation in uric acid levels. In this experiment, plasma levels of uric acid were found to be increased by dietary fructose and were unaffected by phentolamine treatment.  相似文献   

13.
Obesity is associated with insulin resistance and hyperinsulinemia, which is considered to be a core component in the pathophysiology of obesity-related comorbidities. As yet it is unknown whether insulin resistance and hyperinsulinemia already develop during weight gain within the normal range. In 10 healthy male subjects the effect of intentional weight gain by 2 BMI points was examined on insulin. C-peptide and glucose levels following a meal, 75 g of glucose, and a two-step hyperglycemic clamp increased plasma glucose by 1.38 and 2.75 mmol/l, respectively. Baseline insulin, C-peptide, and glucose concentrations were significantly higher after weight gain from 21.8 to 23.8 kg/m(2) BMI within 4(1/2) mo. Calculations of insulin secretion and clearance indicate that reduced insulin clearance contributes more to post-weight gain basal hyperinsulinemia than insulin secretion. Following oral or intravenous stimulation insulin concentrations were significantly higher post-weight gain during all three test conditions, whereas C-peptide and glucose levels did not differ. Calculations of insulin secretion and clearance demonstrated that higher stimulated insulin concentrations are entirely due to clearance but not secretion. Despite significantly higher insulin levels, the rate of intravenous glucose required to maintain the defined elevation of glucose levels was either identical (1.38 mmol/l) or even significantly lower (2.75 mmol/l) following weight gain. The present study demonstrates for the first time that insulin resistance already develops during weight gain within the normal range of body weight. The associated basal and stimulated hyperinsulinemia is the result of differentiated changes of insulin secretion and clearance, respectively.  相似文献   

14.
The purpose of this study was to investigate the effect of chronic treatment with prazosin, a selective α1-adrenoceptor antagonist, on the development of hypertension in fructose-fed rats (FFR). High-fructose feeding and treatment with prazosin (1 mg/kg/day via drinking water) were initiated simultaneously in male Wistar rats. Systolic blood pressure, fasted plasma parameters, insulin sensitivity, plasma norepinephrine (NE), uric acid, and angiotensin II (Ang II) were determined following 9 weeks of treatment. FFR exhibited insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension, as well as elevations in plasma NE and Ang II levels. Treatment with prazosin prevented the rise in blood pressure without affecting insulin levels, insulin sensitivity, uric acid, or Ang II levels, while normalizing plasma NE levels in FFR. These data suggest that over-activation of the sympathetic nervous system, specifically α1-adrenoceptors, contributes to the development of fructose-induced hypertension, however, this over-activation does not appear to an initial, precipitating event in FFR.  相似文献   

15.
Fructose feeding has been shown to induce insulin resistance and hypertension. Renal protein expression for the cytochrome P (CYP) 450 arachidonic acid metabolizing enzymes has been shown to be altered in other models of diet-induced hypertension. Of special interest is CYP4A, which produces the potent vasoconstrictor, 20-hydroxyeicosatetraenoic acid and CYP2C, which catalyzes the formation of the potent dilators epoxyeicosatrienoic acids as well as soluble epoxide hydrolase (sEH) which metabolizes the latter to dihydroxyeicosatrienoic acids. The RhoA/Rho kinase (ROCK) signaling pathway is downstream of arachidonic acid and is reported to mediate metabolic-cardio-renal dysfunctions in some experimental models of insulin resistance and diabetes. The aim of the present study was to determine the expression of CYP4A, CYP2C23, CYP2C11, sEH, RhoA, ROCK-1, ROCK-2, and phospho-Lin-11/Isl-1/Mec-3 kinase (LIMK) in kidneys of fructose-fed (F) rats. Male Wistar rats were fed a high fructose diet for 8 weeks. Body weight, systolic blood pressure, insulin sensitivity, and renal expression of the aforementioned proteins were assessed. No change was observed in the body weight of F rats; however, euglycemia and hyperinsulinemia implicating impaired glucose tolerance and significant elevation in systolic blood pressure were observed. Renal expression of CYP4A and CYP2C23 was significantly increased while that of CYP2C11 and sEH was not changed in F rats. Equal expression for RhoA in both control and F rats and an enhanced level of ROCK-1 and ROCK-2 constitutively activate 130 kDa cleavage fragments as well as phospho-LIMK. These data suggest that the kidneys could be actively participating in the pathogenesis of insulin resistance-induced hypertension through the arachidonic acid CYP 450-RhoA/Rho kinase pathway(s).  相似文献   

16.
We examined the effects of anesthetic, age, and strain on oral glucose tolerance tests (OGTT, 1 g/kg body weight) and intraperitoneal glucose tolerance tests (IPGTT, 2 g/kg body weight) in spontaneously hypertensive (SH) and Wistar rats. Pentobarbital anesthesia caused an elevation in basal glucose and insulin levels in Wistar rats at 9 and 16 weeks of age and in SH rats at 9 weeks. Anesthesia increased the insulin output during an OGTT in both strains of rats while glucose was unchanged. Anesthesia reduced the insulin sensitivity index calculated from the OGTT but not from the IPGTT data. The age of the rats (9-11 vs. 16-18 weeks) had no effect on the basal glucose or insulin levels, but older Wistar rats had a greater insulin output following oral glucose and older SH rats had a greater insulin output following intraperitoneal glucose. On the basis of the insulin sensitivity index, SH rats were clearly more insulin resistant than age-matched Wistar rats. The SH rats also had higher basal insulin levels, as well as higher insulin output, following both glucose challenges. In summary, SH rats are more insulin resistant than Wistar rats, and anesthesia, which elevated basal glucose and insulin levels and increased the insulin output in response to a glucose challenge, may increase insulin resistance.  相似文献   

17.
After receiving an i.p. glucose load, 24 h fasted thyroidectomized rats showed a progressive increase in blood glucose and a slow decrease in blood ketone bodies. Both liver glycogen and plasma insulin levels showed no differences within 60 min of the glucose administration. It is suggested that the glucose intolerance in these animals is partly due to an insulin deficiency. Thyroidectomized rats treated daily with 25 microgram of L-thyroxine/100 g body weight for 40 days responded to the glucose test with a supranormal and more persistent elevation of blood glucose but with a faster and a greater fall in blood ketone bodies, as compared to controls. Sixty min after the glucose loading, liver glucogen levels were lower and plasma insulin were slightly higher than controls. It is suggested that a diminished extraction of glucose during transhepatic passage can be responsible for the impaired glucose tolerance observed in the hyperthyroid animals.  相似文献   

18.
Insulin resistance has been shown to be associated with increased blood pressure (BP). The sex hormones estrogen and testosterone have opposing effects in the development of increased BP. Since testosterone has been implicated in increased BP following insulin resistance, we have tried to dissect out the effects of insulin resistance on endothelium-dependent vasorelaxation in the presence and absence of testosterone. Both gonadectomized and sham-operated male Wistar rats fed with a high-fructose diet developed insulin resistance, but BP increased only in the sham-operated rats. Reintroduction of testosterone in vivo restored the increase in BP, thereby abolishing the protective effects of gonadectomy. Fructose feeding did not affect plasma testosterone levels. Insulin resistance induced endothelial dysfunction in the mesenteric arteries of sham-operated rats, which was prevented by gonadectomy, thus suggesting a key role for testosterone in the pathogenesis of secondary vascular complications. Subsequent to blocking the actions of endothelium-dependent hyperpolarizing factor (EDHF), relaxation to acetylcholine (ACh) was lower in sham-operated fructose-fed rats compared with other groups, suggesting the involvement of nitric oxide (NO) in vasorelaxation. Inhibition of NO synthesis nearly abolished the ACh-evoked relaxation in both fructose-fed groups, thus suggesting a testosterone-independent impairment of EDHF-mediated relaxation. The improvement in endothelial function following gonadectomy could be ascribed to a NO component, although plasma nitrite and nitrate levels were unchanged. In summary, testosterone is essential in vivo for the development of endothelial dysfunction and hypertension secondary to insulin resistance, suggesting a facilitatory role for testosterone in increasing BP in fructose-fed male rats.  相似文献   

19.
Oral glucose tolerance tests were performed under pentobarbital anesthesia in 43 male Wistar rats 2 to 18 months of age in order to determine if insulin and glucagon secretion are altered with aging. Although any linear correlation was not demonstrated between aging and blood glucose, plasma insulin or glucagon levels, post-glucose levels of blood glucose were significantly suppressed and those of plasma glucagon were significantly elevated at 4 to 6 months of age. No significant difference was found between young (2 months of age) and aged rats (12 to 14 and 17 to 18 months of age) in either blood glucose or plasma insulin levels during oral glucose load. On the other hand, post-glucose plasma glucagon levels of the aged rats were significantly higher than those of the young ones. Furthermore, comparisons of various kinds of indices among the different age groups, such as insulinogenic index, insulin/glucagon and so forth during oral glucose tolerance tests also indicate the significant alteration of glucagon secretion during aging process. It is concluded from the present data that glucose tolerance does not apparently deteriorate during aging process in rats but that glucagon responses to oral glucose administration are elevated with aging.  相似文献   

20.
BackgroundIslet NADPH oxidase activity is modulated by glucose and other insulin secretagogues and it might be part of the regulatory mechanism of insulin secretion. We studied its modulatory role of islet NADPH oxidase upon β-cell function in rats with fructose-induced oxidative stress.MethodsNormal rats were fed for 3 weeks with a standard diet, a fructose-rich diet or both diets plus apocynin. We measured plasma glucose, insulin, triacylglycerol and lipid peroxidation levels and the homeostasis model assessment-insulin resistance (HOMA-IR) and HOMA-β indexes, and performed an oral glucose tolerance test. β-cell volume density and the number of islets per mm2 were determined by immunomorphometric analysis of the pancreas. Insulin secretion, glucose metabolism, glucokinase and NADPH oxidase activities were studied in islets isolated from each experimental group.ResultsFructose-fed rats had increased plasma triacylglycerol, insulin and lipid peroxidation levels associated with an insulin resistance state; the reactive higher secretion was unable to cope with the increased demand of insulin, leading to an impaired glucose tolerance. They also have a lower number of islets per area unit with a decreased β-cell volume density. All these alterations were prevented by blocking NADPH oxidase activity with apocynin.ConclusionFructose-induced changes are partly mediated by modulation of NADPH oxidase activity.General significanceThe metabolic dysfunctions and enhanced oxidative stress measured in fructose-fed rats resemble those recorded in human prediabetes; thus, successful strategies employed in this model could be later used to prevent the progression of this state towards type 2 diabetes in human beings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号