首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus subtilis phage SP10 DNA has two oxopyrimidines, thymidine 5'-monophosphate (dTMP) and its hypermodified analog (YdTMP). Published data suggest that both are synthesized by postreplicational modification of 5-hydroxymethyldeoxyuridylate (HOMedUMP) in nascent DNA by the following pathway: HOMedUMP----PPOMedUMP----dTMP (85%) or YdTMP (15%); PPOMedUMP is 5-(hydroxymethyl-O-pyrophosphoryl)deoxyuridylate, the pyrophosphoric acid ester of the C5CH2OH function of HOMedUMP. This paper describes aberrant DNAs synthesized at nonpermissive temperatures by a complementary series of heat-sensitive, modification-defective (mod) mutants. Collectively, these mutants encompass the major steps in the complete modification of nascent SP10 DNA. DNA produced by modA phage retains HOMedUMP as its sole oxopyrimidine, implying that (i) this mutant is defective in the pyrophosphorylation step and (ii) formation of PPOMedUMP is required for any further modification. Furthermore, studies with double mutants indicated that modA is epistatic for all other mod mutants, which supports the hypothesis that modA controls the earliest step in the modification pathway. Since their DNAs contain no YdTMP, modC and modD are defective in hypermodification (i.e., PPOMedUMP----YdTMP). However, dTMP occupies the entire oxopyrimidine fraction of modC DNA, whereas modD DNA has a normal dTMP content, but the now-missing YdTMP is replaced by either PPOMedUMP or a byproduct of abortive hypermodification. It is proposed that the modD mutants are defective in the catalytic aspects of hypermodification and that modC are defective in some regulatory function that promotes hypermodification at the expense of reductive modification (i.e., PPOMedUMP----dTMP). Reductive modification is defective in modB phage, as evidenced by the absence of dTMP. In contrast to the others, modB DNA has a complex oxopyrimidine content: HOMedUMP, ca. 30%; PPOMedUMP, ca. 40%; and YdTMP, ca. 30%. The expanded level of YdTMP suggests that at certain sites, reductive modification and hypermodification are competing reactions. Interestingly, the PPOMedUMP content of modB DNA seemingly reflects the maximum degree to which phage DNA can be pyrophosphorylated, since the loss of YdTMP from modBmodC and modBmodD DNAs results in a unilateral increase in HOMedUMP content.  相似文献   

2.
Variath P  Liu Y  Lee TT  Stroud RM  Santi DV 《Biochemistry》2000,39(10):2429-2435
Experimental evidence for a 5-exocyclic methylene-dUMP intermediate in the thymidylate synthase reaction was recently obtained by demonstrating that tryptophan 82 mutants of the Lactobacillus casei enzyme produced 5-(2-hydroxyethyl)thiomethyl-dUMP (HETM-dUMP) (Barret, J. E., Maltby, D. A., Santi, D. V., and Schultz, P. G. (1998) J. Am. Chem. Soc. 120, 449-450). The unusual product was proposed to emanate from trapping of the intermediate with beta-mercaptoethanol in competition with hydride transfer from H(4)folate to form dTMP. Using mutants of the C-terminal residue of thymidylate synthase, we found that the ratio of HETM-dUMP to dTMP varies as a function of CH(2)H(4)folate concentration. This observation seemed inconsistent with the conclusion that both products arose from a common intermediate in which CH(2)H(4)folate was already bound to the enzyme. The enigma was resolved by a kinetic model that allowed for differential partitioning of the intermediate formed on each of the two subunits of the homodimeric enzyme in forming the two different products. With three C-terminal mutants of L. casei TS, HETM-dUMP formation was consistent with a model in which product formation occurs upon occupancy of the first completely bound subunit, the rate of which is unaffected by occupancy of the second subunit. With one analogous E. coli TS mutant, HETM-dUMP formation occurred upon occupancy of the first subunit, but was inhibited when both subunits were occupied. With all mutants, dTMP formation occurs from occupied forms of both subunits at different rates; here, binding of cofactor to the first subunit decreased affinity for the second, but the reaction occurred faster in the enzyme form with both subunits bound to dUMP and CH(2)H(4)folate. The model resolves the apparent enigma of the cofactor-dependent product distribution and supports the conclusion that the exocyclic methylene intermediate is common to both HETM-dUMP and dTMP formation.  相似文献   

3.
Despite the fact that mature SP10c DNA contains dTMP, the acid-soluble fraction of infected cells contained no dTTP during the interval of phage replication. However, infected cells contained normal cellular levels of dATP, dGTP, and dCTP. Upon infection of deoxythymidine-starved Bacillus subtilis M160 (a deoxythymidine-requiring mutant of B. subtilis W23), mature phage DNA with a normal dTMP content was made. SP10c codes for an enzyme that seems to catalyze the tetrahydrofolate-dependent transfer of 1-carbon fragments to the 5 position of dUMP. The transfer of 1-carbon fragments is not accompanied by oxidation of tetrahydrofolage to dihydrofolate, implying that the enzyme in question is not a dTMP synthetase. It is proposed that dTMP in mature SP10c DNA is derived by the postreplicational modification of some other nucleotide and not by the direct incorporation of dTTP into DNA.  相似文献   

4.
Exocyclic olefin variants of thymidylate (dTMP) recently have been proposed as reaction intermediates for the thymidyl biosynthesis enzymes found in many pathogenic organisms, yet synthetic reports on these materials are lacking. Here we report two strategies to prepare the exocyclic olefin isomer of dTMP, which is a putative reaction intermediate in pathogenic thymidylate biosynthesis and a novel nucleotide analog. Our most effective strategy involves preserving the existing glyosidic bond of thymidine and manipulating the base to generate the exocyclic methylene moiety. We also report a successful enzymatic deoxyribosylation of a non-aromatic nucleobase isomer of thymine, which provides an additional strategy to access nucleotide analogs with disrupted ring conjugation or with reduced heterocyclic bases. The strategies reported here are straightforward and extendable towards the synthesis of various pyrimidine nucleotide analogs, which could lead to compounds of value in studies of enzyme reaction mechanisms or serve as templates for rational drug design.  相似文献   

5.
The DNA of Bacillus subtilis bacteriophage SP10 is partially resistant to cleavage and methylation in vitro by restriction enzyme R . BsuRI and its cognate methylase even though greater than 20 copies of the target sequence, 5' ... GGCC ... 3', are present on the phage genome. YThy, a hypermodified oxopyrimidine that replaces a fraction of the thymine residues in SP10 DNA, was responsible for this protection, since YThy-free DNA was no longer resistant. Sites that were normally resistant could nevertheless be cleaved or methylated in vitro if the salt concentration was reduced or dimethyl sulfoxide was added to the reaction buffer. Analysis of the termini produced by cleavage suggested that resistant sites occurred in the sequence 5' ... GGCC-YThy ... 3', whereas sensitive sites, of which there were only two per genome, occurred in the sequence 5' ... GGCCG ... 3'. These in vitro results provide an explanation for the in vivo resistance of SP10 to restriction-modification by B. subtilis R. They also suggest ways in which the presence of the atypical base YThy in regions that flank the target might upset critical DNA-enzyme interactions necessary to locate and recognize the specific site of cleavage or methylation. YThy also strongly protected 5' ... GCNGC ... 3' (R . Fnu4HI) sequences on SP10 DNA, but the biological relevance of this protection is unclear.  相似文献   

6.
The ability of wild type and mutant T4 DNA polymerases to discriminate in the utilization of the base analog 2-aminopurine (2AP) and the fluorescence of 2AP were used to determine how DNA polymerases distinguish between correct and incorrect nucleotides. Because T4 DNA polymerase incorporates dTMP opposite 2AP under single-turnover conditions, it was possible to compare directly the kinetic parameters for incorporation of dTMP opposite template 2AP to the parameters for incorporation of dTMP opposite template A without the complication of enzyme dissociation. The most significant difference detected was in the K(d) for dTTP, which was 10-fold higher for incorporation of dTMP opposite template 2AP (approximately 367 microm) than for incorporation of dTMP opposite template A (approximately 31 microm). In contrast, the dTMP incorporation rate was reduced only about 2-fold from about 318 s(-1) with template A to about 165 s(-1) for template 2AP. Discrimination is due to the high selectivity in the initial nucleotide-binding step. T4 DNA polymerase binding to DNA with 2AP in the template position induces formation of a nucleotide binding pocket that is preshaped to bind dTTP and to exclude other nucleotides. If nucleotide binding is hindered, initiation of the proofreading pathway acts as an error avoidance mechanism to prevent incorporation of incorrect nucleotides.  相似文献   

7.
8.
Fritz TA  Liu L  Finer-Moore JS  Stroud RM 《Biochemistry》2002,41(22):7021-7029
Mutant forms of thymidylate synthase (TS) with substitutions at the conserved active site residue, Trp 80, are deficient in the hydride transfer step of the TS reaction. These mutants produce a beta-mercaptoethanol (beta-ME) adduct of the 2'-deoxyuridine-5'-monophosphate (dUMP) exocyclic methylene intermediate. Trp 80 has been proposed to assist hydride transfer by stabilizing a 5,6,7,8-tetrahydrofolate (THF) radical cation intermediate [Barrett, J. E., Lucero, C. M., and Schultz, P. G. (1999) J. Am. Chem. Soc. 121, 7965-7966.] formed after THF changes its binding from the cofactor pocket to a putative alternate site. To understand the molecular basis of hydride transfer deficiency in a mutant in which Trp 80 was changed to Gly, we determined the X-ray structures of this mutant Escherichia coli TS complexed with dUMP and the folate analogue 10-propargyl-5,8-dideazafolate (CB3717) and of the wild-type enzyme complexed with dUMP and THF. The mutant enzyme has a cavity in the active site continuous with bulk solvent. This cavity, sealed from bulk solvent in wild-type TS by Leu 143, would allow nucleophilic attack of beta-ME on the dUMP C5 exocyclic methylene. The structure of the wild-type enzyme/dUMP/THF complex shows that THF is bound in the cofactor binding pocket and is well positioned to transfer hydride to the dUMP exocyclic methylene. Together, these results suggest that THF does not reorient during hydride transfer and indicate that the role of Trp 80 may be to orient Leu 143 to shield the active site from bulk solvent and to optimally position the cofactor for hydride transfer.  相似文献   

9.
Of 42 amber mutants of bacteriophage phi W-14, 6 were defective in DNA synthesis. Three of the mutants synthesized DNA in the nonpermissive host, but were defective in post-replicational modification of the DNA. The DNA synthesized by two of these mutants, am36 and am42, contained more thymine and less alpha-putrescinylthymine than did wild-type DNA; that synthesized by the third mutant, am37, contained the normal amount of thymine, no alpha-putrescinylthymine, and hydroxymethyluracil. The properties of these mutants suggested that the presence of the normal amount of alpha-putrescinylthymine in phi W-14 DNA was essential for the production of viable progeny. Three of the mutants, am6, am35, and am45, failed to synthesize DNA in the nonpermissive host. These mutants were analogous to the DNA off mutants of T4. Nonpermissive cells infected with DNA off mutants accumulated dATP, dGTP, dCTP, and hydroxymethyl dUTP, but not dTTP or alpha-putrescinyldeoxythymidine triphosphate, confirming that both thymine and alpha-putrescinylthymidine in phi W-14 DNA are formed from hydroxymethyluracil at the polynucleotide level. The synthesis of phi W-14 DNA is unusual because (i) thymine is formed from hydroxymethyluracil at the polynucleotide level, (ii) the hypermodification forming alpha-putrescinylthymine is essential, and (iii) thymine and alpha-putrescinylthymine must be made in the correct proportions. Complementation tests showed that the mutants defined three genes involved in DNA polymerization and two genes involved in post-replicational modification.  相似文献   

10.
dTMP exposure concentrations of 0.1 mM or higher are genotoxic in exponentially growing cells of thymidylate low-requiring mutants of Saccharomyces cerevisiae. Mutagenicity of excess dTMP is highest in an exposure concentration 10-fold of that needed for external supplementation of endogenously blocked thymidylate synthesis. Still higher dTMP concentrations are primarily cytotoxic. The canavanine forward-mutation system shows excess dTMP to be as potent a mutagen as irradiation by ultraviolet light. Mutagenicity of excess dTMP, however, differs from that of direct DNA-attacking mutagens in that it is highest in the absence of significant toxicity. Alkaline sucrose gradient centrifugation shows that excess dTMP does not induce significant numbers of DNA single- or double-strand breaks, while conditions of thymidylate deprivation lead to DNA-strand breaks and thymineless death.  相似文献   

11.
12.
To identify genes that contribute to the virulence of Erwinia amylovora in plants, 1892 mutants were created and screened in pools of < or =96 mutants using signature-tagged mutagenesis. Nineteen mutants were not recovered from apple shoots following inoculation, which suggested that the insertions in these mutants affected genes important for bacterial survival in planta. DNA flanking the Tn5 insertions in the 19 mutants was sequenced and analysed by blast. One mutant had a Tn5 insertion in amsE, a gene involved in the biosynthesis of exopolysaccaride (EPS). Fourteen mutants had insertions in loci that were implicated in biosynthesis or transport of particular amino acids or nucleotides, a site-specific recombinase active during cell division and several putative proteins of unknown function; the flanking DNA of the remaining four mutants lacked significant homology with any DNA in the database. When inoculated individually to hosts, 10 of the 19 mutants caused significantly less disease and multiplied less, as compared with the wild-type strain.  相似文献   

13.
The alternating copolymer poly(dC-dG) has been methylated with either dimethyl sulphate or N-methyl-N-nitrosourea and the levels of the various methylation products determined. In addition to the 3-methylcytosine, 3-methylguanine and 7-methylguanine (produced by both agents) reaction with N-methyl-N-nitrosourea also yielded easily detectable amounts of O(6)-methylguanine and phosphotriesters. These methylated polymers were then used as templates in an in vitro assay with Escherichia coli DNA polymerase I measuring the incorporation of complementary (dCMP and dGMP) and noncomplementary (dAMP and dTMP) nucleotides. When the dimethyl sulphate-methylated polymer was used as template there was virtually no detectable incorporation of non-complementary nucleotides indicating that no miscoding could be attributed to the presence of 3-methylcytosine, 3-methylguanine or 7-methylguanine. However, when the N-methyl-N-nitrosourea-methylated polymer was used as template there was a specific incorporation of dTMP but not of dAMP. The amount of dTMP incorporated was always less than the level of O(6)-methylguanine in the template and was found to vary with the relative concentrations of the deoxynucleoside 5'-triphosphates in the assay. As the amount of dCTP present in the assay was decreased the wrong incorporation of dTMP increased and approached the level that would have been expected for a one-to-one miscoding by O(6)-methylguanine as the concentration of dCTP approached zero. The results indicate that O(6)-methylguanine is capable of miscoding with a DNA polymerase but the miscoding is competitive with the normal incorporation of dCMP: when the 5'-triphosphate precursors are present in equal amounts approximately one O(6)-methylguanine in three miscodes leading to the incorporation of dTMP.  相似文献   

14.
15.
Development of tumor-specific probes for imaging by positron emission tomography has broad implications in clinical oncology, such as diagnosis, staging, and monitoring therapeutic responses in patients, as well as in biomedical research. Thymidylate synthase (TSase)-based de novo biosynthesis of DNA is an important target for drug development. Increased DNA replication in proliferating cancerous cells requires TSase activity, which catalyzes the reductive methylation of dUMP to dTMP using (R)-N(5),N(10)-methylene-5,6,7,8-tetrahydrofolate (MTHF) as a cofactor. In principle, radiolabeled MTHF can be used as a substrate for this reaction to identify rapidly dividing cells. In this proof-of-principle study, actively growing (log phase) breast cancer (MCF7, MDA-MB-231, and hTERT-HME1), normal breast (human mammary epithelial and MCF10A), colon cancer (HT-29), and normal colon (FHC) cells were incubated with [(14)C]MTHF in culture medium from 30 min to 2 h, and uptake of radiotracer was measured. Cancerous cell lines incorporated significantly more radioactivity than their normal counterparts. The uptake of radioactively labeled MTHF depended upon a combination of cell doubling time, folate receptor status, S phase percentage, and TSase expression in the cells. These findings suggest that the recently synthesized [(11)C]MTHF may serve as a new positron emission tomography tracer for cancer imaging.  相似文献   

16.
A hypermodified base (Y-Thy) replaces 20% of the thymine (Thy) in mature DNA of Bacillus subtilis phage SP10. Two noncomplementing hypermodification-defective (hmd) mutants are described. At 30°C, hmd phage carried out a normal program, but at temperatures of ≥37°C, the infection process was nonproductive. When cells were infected at 37°C with hmd phage, DNA synthesis started at its usual time (12 min), proceeded at about half the normal rate for 6 to 8 min, and then stopped or declined manyfold. All, or nearly all, of the DNA made under hmd conditions consisted of fully hypermodified parental DNA strands H-bonded to unhypermodified nascent strands. The reduced levels of DNA synthesis observed under hmd conditions were accompanied by weak expression of late genes. A sucrose gradient analysis of SP10 hmd+ replicating DNA intermediates was made. Two intermediates, called VG and F, were identified. VF consisted of condensed DNA complexed to protein; VF also contained negatively supercoiled domains covalently joined to relaxed regions. F was composed of linear concatenates from which mature DNA was cleaved. None of those intermediates was evident in cells infected at 37°C with hmd phage. Shiftup experiments were performed wherein cells infected with hmd phage at 30°C were shifted to 37°C at a time when replication was well under way. DNA synthesis stopped or declined manyfold 10 min after shiftup. The hmd DNA made after shiftup was conserved as a form sedimentationally equivalent to the F intermediate, but little mature DNA was evident. It is proposed that Y-Thy is required for replication and DNA maturation because certain key proteins involved with these processes interact preferentially with hypermodified DNA.  相似文献   

17.
The high error rate characteristic of DNA polymerases from RNA tumor viruses has permitted measurements on the simultaneous incorporation of complementary and noncomplementary nucleotides during DNA synthesis. For example, avian myeloblastosis virus DNA polymerase incorporates 1 molecule of dCMP for approximately 500 molecules of dTMP polymerized using polyriboadenylic acid as a template. The parallel incorporation of complementary and noncomplementary nucleotides afer gel filtration of avian myeloblastosis virus DNA polymerase indicates that the observed fidelity is catalyzed by the polymerase itself. Nearest neighbor analysis of the product indicates that noncomplementary nucleotides are incorporated as single base substitutions. The incorporation of the noncomplementary dCMP is not reduced by a 20-fold greater amount of the complementary nucleotide, dTTP. Conversely, the concentration of the noncomplementary nucleotides does not effect the rate of incorporation of the complementary nucleotide. A similar lack of competition between complementary dGTP and noncomplementary dATP is exhibited using poly(rC)-oligo(dG) as a template-primer. Furthermore, there was no detectable competition between the different noncomplementary nucleotides. Possible explanations for this lack of competition are considered.  相似文献   

18.
In DNA isolated from proliferating human lymphoblastoid CCRF-CEM cells which had been pulse-labeled by exposure to [3H]thymidine for periods from 30 s to 10 min, single-stranded regions were analyzed by caffeine-gradient elution from benzoylated DEAE-cellulose. Two classes of structural defect were evident. Some replicating DNA exhibited single-stranded regions of approximately 200 nucleotides, while most newly incorporated radioactivity was associated with DNA containing single-stranded regions from 900 to approximately 4000 nucleotides. The distribution of thymidine-derived radioactivity did not suggest sequential or preferential labeling of these DNA fractions as the incorporation time was varied. The findings may be correlated with recent proposals regarding the structural basis of eukaryotic DNA replication.  相似文献   

19.
SP10 phage cannot propagate in Bacillus subtilis Marburg 168 containing the wild-type allele of either gene nonA or gene nonB. The latter gene codes for the intrinsic cellular restriction activity. SP10 DNA was degraded in nonB+ derivatives of Marburg 168. The degree of degradation depended upon the previous host in which SP10 was propagated. In the case of SP10 grown in B. subtilis W23 (a nonrestricting, nonmodifying bacterium), 90% of the phage DNA was hydrolyzed to acid solubles, and the residual acid-precipitable material was recovered as 0.5- to 1-megadalton fragments. In contrast, if SP10 was propagated in B. subtilis PS9W7 (a nonA nonB derivative of Marburg 168 that retains modifying activity), 40 to 50% of the input DNA was degraded to acid solubles, and most of the remainder was recovered as 15- to 20-megadalton fragments. In nonA+ nonB cells, SP10 DNA was conserved as unit-length molecules (ca. 80 megadalton). Prior infection of nonB+ cells with SP18 protected superinfecting SP10 DNA, even when rifampin or chloramphenicol was added before the primary infection. The data are discussed in terms of the following conclusions. (i) The nonB gene product of B. subtilis Marburg 168 is required for restriction of SP10 DNA. (ii) Some sites on SP10 DNA are sensitive to both the restricting and modifying activities, whereas other sites are nonmodifiable even though they are sensitive to the restriction enzyme. (iii) In some manner, SP18 antagonizes the action of the nonB gene product.  相似文献   

20.
SP62 is a mutant of bacteriophage T4D that was discovered because it produces fewer phage than the wild type in the presence of 5-fluorodeoxyuridine. In the absence of phage DNA synthesis, SP62 solubilizes host DNA slower than normal; this may explain the sensitivity to 5-fluorodeoxyuridine. In Escherichia coli B at 37 C in the absence of drugs, SP62 makes DNA at a normal rate and the kinetics of appearance of phage are nearly normal. Under the same conditions, SP62 produces T4 lysozyme (gene e) at a normal rate until 20 min, but then produces it at twice the normal rate until at least 60 min. It has long been known that, when T4 DNA synthesis is blocked (DNA state) in an otherwise normal infection, the synthesis of a number of early enzymes continues beyond the shutoff time of about 12 min seen in the DNA+ state, but still stops at about 20 min. We have termed the 12-min shutoff event S1 and the 20-min shutoff event S2. We show here that, in the DNA+ state, SP62 makes four early enzymes normally, i.e., S1 occurs. However, in the DNA state (where S1 is missing), SP62 continues to make dCTPase (gene 56), dCMP hydroxymethylase (gene 42), and deoxynucleotide kinase (gene 1) for at least an hour; this results in production of up to 13 times the normal level of dCTPase at 60 min after infection, or 6 times the DNA level. We conclude that SP62 is defective in the second shutoff mechanism, S2, for these three enzymes. In contrast, SP62 causes premature cessation of dTMP synthetase production in the DNA state; the result is a twofold underproduction of dTMP synthetase. Autoradiograms of pulse-labeled proteins separated by slab-gel electrophoresis in the presence of sodium dodecyl sulfate show that a number of other T4 early proteins, including the products of genes 45, 46, and rIIA, are synthesized longer than normal by SP62 in the DNA state. Few late proteins are made in the DNA state, but in autoradiograms examining the DNA+ state there is little or no effect of the SP62 mutation on the synthesis of T4 late or early proteins. Circumstantial evidence is presented favoring a role for the gene of SP62 in translation of certain mRNAs. At very high temperatures (above 43 C) in the absence of drugs, phage production, but not DNA synthesis, is much reduced in SP62 infections relative to wild-type T4 infections; this temperature sensitivity is greater on E. coli CR63 than on E. coli B. This property has facilitated recognition of the SP62 genotype and aided in complementation testing and genetic mapping. A later publication will provide evidence that SP62 defines a new T4 gene named regA, which maps between genes 43 and 62.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号