首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The phosphorylation of ribosomal proteins from eukaryotes in homologous and heterologous cell-free systems has been studied. The ribosomes and protein kinases from yeast (Saccharomyces cerevisiae, strain Bu), wheat (Triticum vulgare) and rabbit (Orystolagus cuniculus) have been used.It has been found that five ribosomal proteins incorporate γ-32P from ATP during the incubation of wheat ribosomes with wheat protein kinase. When the phosphorylation of isolated wheat ribosomal proteins was examined more phosphoproteins were detected. These data confirm the suggestion that the ribosomal structure affects the phosphorylation. Probably some ribosomal proteins remain hidden for the action of protein kinase.The results from the crossed experiments show that there is no barrier for phosphorylation of yeast ribosomes with liver protein kinase, of wheat ribosomes with yeast and liver protein kinases and of liver ribosomes with yeast and plant protein kinases. The wheat protein kinase does not phosphorylate the yeast ribosomes under these experimental conditions. Some differences in the set of phosphoproteins obtained with various protein kinases have been detected. These data suggest that the ribosomal protein phosphorylation is not highly species specific although it is not universal.  相似文献   

2.
Summary Separation of the proteins from rat liver 40S and 60S ribosomal subunits and polysomes was done in four different two-dimensional polyacrylamide gel electrophoresis systems. The first dimension was run at acidic or basic pH, the second dimension either with sodium dodecyl sulphate or at acidic pH in 18% acrylamide. The position of each individual protein of both subunits and polysomes was determined in each system. This identification resulted from a new method avoiding any previous purification of individual proteins. The new proposed uniform nomenclature for mammalian ribosomal proteins (McConkey et al. in press) was used for numbering the proteins in the four systems.  相似文献   

3.
Polyclonal antibodies were elicited against seven of the 33 different proteins of the large subunit of the chloroplast ribosome from Chlamydomonas reinhardtii. Three of these proteins are synthesized in the chloroplast and four are made in the cytoplasm and imported. In western blots, six of the seven antisera are monospecific for their respective large subunit ribosomal proteins, and none of these antisera cross-reacted with any chloroplast small subunit proteins from C. reinhardtii. Antisera to the three chloroplast-synthesized ribosomal proteins cross-reacted with specific Escherichia coli large subunit proteins of comparable charge and molecular weight. Only one of the four antisera to the chloroplast ribosomal proteins synthesized in the cytoplasm cross-reacted with an E. coli large subunit protein. None of the antisera cross-reacted with any E. coli small subunit proteins. On the assumption of a procaryotic, endosymbiotic origin for the chloroplast, those chloroplast ribosomal proteins still synthesized within the organelle appear to have retained more antigenic sites in common with E. coli ribosomal proteins than have those which are now the products of cytoplasmic protein synthesis. Antisera to this cytoplasmically synthesized group of chloroplast ribosomal proteins did not recognize any antigenic sites among C. reinhardtii cytoplasmic ribosomal proteins, suggesting that the genes for the cytoplasmically synthesized chloroplast ribosomal proteins either are not derived from the cytoplasmic ribosomal protein genes or have evolved to a point where no antigenic similarities remain.   相似文献   

4.
The ribosomal proteins from 40 S and 60 S subunits of rabbit reticulocytes were separated by two-dimensional polyacrylamide gel electrophoresis. The protein spots stained with Coomassie brilliant blue were cut out and the proteins were extracted. The material extracted from each spot was mixed with proteins of known molecular weight and then analyzed by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. Both the total number and the molecular weights of each of the proteins were determined by these procedures. Thirty-two proteins were identified in the 40 S subunits; their molecular weights ranged from 8000 to 39,000 (average mol. wt = 25,000). Thirty-nine proteins were identified in the 60 S subunit; their molecular weights ranged from 9000 to 58,000 (average mol. wt = 31,000). The sum of the molecular weights of the individual proteins from each subunit is in agreement with previous estimations, derived from physico-chemical measurements of the total protein in mammalian ribosomal subunits. The molecular weight distribution obtained for the isolated proteins was nearly identical to that derived from spectrophotometric analysis of polyacrylamide-sodium dodecyl sulfate gels of the total protein mixtures from each subunit stained with Coomassie brilliant blue. The results are consistent with the hypothesis that reticulocyte ribosomes contain one copy of most of their protein constituents.  相似文献   

5.
Investigations were carried out on the phosphorylation of ribosomal proteins in vivo in cerebral cortices of immature rats. Two-dimensional electrophoresis revealed that the cerebral 40S subunit contained at least four ribosomal proteins which were phosphorylated in animals given [32P]orthophosphate intracisternally. These proteins exhibited electrophoretic properties similar to those of the constitutive basic proteins S2, S3a, S5 and S6. The cerebral 60S subunit contained several proteins that were phosphorylated in vivo, including three basic proteins with electrophoretic mobilities similar to those of ribosomal proteins L6, L14 and L19. Four other proteins associated with the 60S subunit that were more acidic were also phosphorylated. Phosphorylated congeners of 40S and 60S ribosomal proteins could often be detected in distinct protein-stained spots on two-dimensional electrophoretograms. The cerebral S6 protein consisted of at least five distinct species in different states of phosphorylation. Administration of N6O-2' dibutyryl cyclic AMP increased the proportion of the more phosphorylated congeners of the S6 protein, but appeared to have little or no effect on phosphorylation of other cerebral ribosomal proteins. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated S6-protein phosphorylation; N2O2'-dibutyryl cyclic GMP had no effect on this process. These observations indicate that several ribosomal proteins of both subunits are normally phosphorylated in rat cerebral cortex in situ. The results also suggest that selective and specific alterations in the phosphorylation state of the S6 ribosomal protein of the cerebral 40S subunit may accompany the production of cyclic AMP during neural activation.  相似文献   

6.
Mammalian mitochondrial small subunit ribosomal proteins were separated by two-dimensional polyacrylamide gel electrophoresis. The proteins in six individual spots were subjected to in-gel tryptic digestion. Peptides were separated by capillary liquid chromatography, and the sequences of selected peptides were obtained by electrospray tandem mass spectrometry. The peptide sequences obtained were used to screen human expressed sequence tag data bases, and complete consensus cDNAs were assembled. Mammalian mitochondrial small subunit ribosomal proteins from six different classes of ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins correspond to Escherichia coli S10 and S14. Homologs of two human mitochondrial proteins not found in prokaryotes were observed in the genomes of Drosophila melanogaster and Caenorhabditis elegans. A homolog of one of these proteins was observed in D. melanogaster but not in C. elegans, while a homolog of the other was present in C. elegans but not in D. melanogaster. A homolog of one of the ribosomal proteins not found in prokaryotes was tentatively identified in the yeast genome. This latter protein is the first reported example of a ribosomal protein that is shared by mitochondrial ribosomes from lower and higher eukaryotes that does not have a homolog in prokaryotes.  相似文献   

7.
Two-dimensional polyacrylamide gel electrophoresis of proteins from the separated ribosomal subunits of rabbit reticulocytes, rabbit liver, mouse liver, rat liver, chicken liver, and toad liver was performed using the "pH 4.5/SDS" system previously described (Martini and Gould, 1975), with internal standards to measure the molecular weight distributions. With few exceptions, the patterns were remarkably similar, indicating a high degree of conservation during evolution of both net charge (largely determining mobility in the first dimension) and size (determining mobility in the second dimension). The aggregate mass (sum of molecular weights) of both small and large subunit proteins, about 0.65 X 10(6) and 0.95 X 10(6) daltons respectively, were invariant. These figures are significantly smaller than the hydrodynamically determined mass of protein in the subunits. The implications of this discrepancy, which is opposite that found in the prokaryotes, is discussed.  相似文献   

8.
Two proteins of yeast 40S ribosome subunit and four proteins of the 60S ribosome subunit were labelled in vivo with [32P]orthophosphate. Five of these proteins were phosphorylated by protein kinase 3, an enzyme which is cyclic AMP-independent and uses ATP and GTP as phosphoryl donors. Two proteins, belonging to the 60S ribosome subunit were phosphorylated by another, highly specific, cyclic AMP-independent protein kinase 1 B. Both in vivo and in vitro the most extensively phosphorylated protein species were acidic proteins, L44, L45 (according to the nomenclature of Kruiswijk & Planta, Molec. Biol. Rep., 1, 409-415, 1974) possibly corresponding to bacterial L7 and L12 proteins. The 40S ribosomal protein, S9, analogous to mammalian S6 protein, was phosphorylated in vivo but was not phosphorylated in vitro by either of the cyclic AMP-independent protein kinases. The obtained results clearly indicate that cyclic AMP-independent yeast protein kinases might be involved in the modification in vivo of some ribosomal proteins, in particular of the strongly acidic proteins of 60S ribosome subunit.  相似文献   

9.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

10.
Cross-linking of proteins within the small subunit of rat liver ribosomes by the bifunctional reagent dimethyl 4,7-dioxo-5,6-dihydroxy-3,8-diazadecanbisimidate produced numerous covalently linked protein dimers which could be separated by a combination of ion-exchange chromatography on carboxymethyl cellulose and polyacrylamide gel electrophoresis. The protein components of the dimers were identified electrophoretically after periodate cleavage of the cross-link(s). The analysis revealed 42 cross-linked dimers involving 25 different proteins. Among these, proteins S3, S4 and S20 occurred in combinations with six, eight and seven different proteins, respectively. For proteins S13, S14 and S17 five protein neighbours could be identified, while 13 of the remaining proteins were linked to three or four different protein partners. The involvement of the majority of proteins in the formation of multiple cross-linked dimers implies that a large number of protein-protein interaction sites exist within the ribosomal subunit. A preliminary model illustrating the arrangement of 16 proteins in the small ribosomal subunit is presented and discussed with respect to possible functions, especially in the event of translation initiation.  相似文献   

11.
A minocycline (MINO)-resistant mutant was isolated from Mycobacterium smegmatis strain Rabinowitschi. Polypeptide synthesis in the cell-free system prepared from the mutant was resistant to minocycline (MINO) because of alterated 30S ribosomal subunits. Upon two-dimensional gel electrophoresis, two proteins of 30S subunit were found to be altered. MINO resistance phenotype was transferred by mating to the recipient strain P-53. MINO resistance phenotype of a recombinant thus obtained was transferred by a different mating system to the recipient strain Jucho, once again. Ribosomal proteins of each of the donors, recipients and recombinants were analyzed and compared on 2-dimensional (2D) electrophoresis. Approximately 50 ribosomal proteins were observed in 70S ribosomes. Some proteins were differently electrophoresed in different strains. The 30S ribosomal subunits contained at least 19 proteins and 50S ribosomal subunits contained at least 23 proteins. Some proteins were easily washed off during dissociation of subunits in sucrose gradients. At least one protein (designated F) in both subunits was observed at the same position. One protein designated C in 30S subunits could be co-transferred to the recipient cells together with resistance phenotype at the frequency of 100% in the 30 recombinants examined so far. The other protein designated D in 30S subunits could be transferred at the frequency of 86-88%. Three other proteins in 50S subunits could be co-transferred to the recipient strain at a lower frequency. Minocycline resistance, therefore, could be mapped close to genes encoding the structure of ribosomal proteins in M. smegmatis.  相似文献   

12.
A comparison has been made between the ribosomal proteins phosphorylated in intact cells and proteins isolated from ribosomal subunits after modification in vitro by purified protein kinases and [gamma-32P]ATP. When intact reticulocytes were incubated for 2 h in a nutritional medium containing radioactive inorganic phosphate, one phosphorylated protein was identified as a 40S ribosomal component using two-dimensional polyacrylamide gel electrophoresis followed by electrophoresis in a third step containing sodium dodecyl sulfate. This protein, containing 99% of the total radioactivity associated with ribosomal proteins as observed by two-dimensional electrophoresis, is found in a nonphosphorylated form in addition to several phosphorylated states. These states differ by the number of phosphoryl group attached to the protein. The same 40S protein is modified in vitro by the three cAMP-regulated protein kinases from rabbit reticulocytes. Two additional proteins associated with the 40S subunit are phosphorylated in situ. These proteins migrate as a symmetrical doublet, and contain less than 1% of the radioactive phosphate in the 40S subunit. A number of phosphorylated proteins associated with 60S subunits are observed by disc gel electrophoresis after incubation of whole cells with labeled phosphate. These proteins do not migrate with previously identified ribosomal proteins and are not present in sufficient amounts to be identified as ribosomal structural proteins. Proteins in the large subunit are modified in vitro by cAMP-regulated protein kinases and ATP, and these modified proteins migrate with known ribosomal proteins. However, this phosphorylation has not been shown to occur in intact cells.  相似文献   

13.
The distribution of ribosomal proteins in monosomes, polysomes, the postribosomal cytosol, and the nucleus was determined during steady-state growth in vegetative amoebae. A partitioning of previously reported cell-specific ribosomal proteins between monosomes and polysomes was observed. L18, one of the two unique proteins in amoeba ribosomes, was distributed equally among monosomes and polysomes. However S5, the other unique protein, was abundant in monosomes but barely visible in polysomes. Of the developmentally regulated proteins, D and S6 were detectable only in polysomes and S14 was more abundant in monosomes. The cytosol revealed no ribosomal proteins. On staining of the nuclear proteins with Coomassie blue, about 18, 7 from 40S subunit and 11 from 60S subunit, were identified as ribosomal proteins. By in vivo labeling of the proteins with [35S]methionine, 24 of the 34 small subunit proteins and 33 of the 42 large subunit proteins were localized in the nucleus. For the majority of the ribosomal proteins, the apparent relative stoichiometry was similar in nuclear preribosomal particles and in cytoplasmic ribosomes. However, in preribosomal particles the relative amount of four proteins (S11, S30, L7, and L10) was two- to four-fold higher and of eight proteins (S14, S15, S20, S34, L12, L27, L34, and L42) was two-to four-fold lower than that of cytoplasmic ribosomes.  相似文献   

14.
Full-length cDNAs of four new genes encoding cytoplasmic ribosomal proteins L14 and L20 (large ribosomal subunit) and S1 and S27 (small ribosomal subunit) were isolated and sequenced during the analysis of the fission yeast Schizosaccharomyces pombe genome. One of the Sz. pombe genes encoding translation elongation factor EF-2 was also cloned and its precise position on chromosome I established. A unified nomenclature was proposed, and the list of all known genetic determinants encoding cytoplasmic ribosomal proteins of Sz. pombe was compiled. By now, 76 genes/cDNAs encoding different ribosomal proteins have been identified in the fission yeast genome. Among them, 35 genes are duplicated and three homologous genes are identified for each of the ribosomal proteins L2, L16, P1, and P2.  相似文献   

15.
Structural proteins of active 60-S and 40-S subunits of rat liver ribosomes were analysed by two-dimensional polyacrylamide gel electrophoresis. 35 and 29 spots were shown on two-dimensional gel electrophoresis of proteins from large and small subunits, respectively. It was noted that the migration distances of stained proteins with Amido black 10B remained unchanged in the following sodium dodecyl sulfate-acrylamide gel electrophoresis, although some minor degradation and/or aggregation products were observed in the case of several ribosomal proteins, especially of those with high molecular weights. This finding made it possible to measure the molecular weight of each ribosomal protein in the spot on two-dimensional gel electrophoresis by following sodium dodecyl sulfate-acrylamide gel electrophoresis. The molecular weights of the protein components of two liver ribosomal subunits were determined by this 'three-dimensional' polyacrylamide gel electrophoresis. The molecular weights of proteins of 40-S subunits ranged from 10 000 to 38 000 and the number average molecular weight was 23 000. The molecular weights of proteins of 60-S subunits ranged from 10 000 to 60 000 and the number average molecular weight was 23 900.  相似文献   

16.
Four different classes of mammalian mitochondrial ribosomal proteins were identified and characterized. Mature proteins were purified from bovine liver and subjected to N-terminal or matrix-assisted laser-desorption mass spectroscopic amino acid sequencing after tryptic in-gel digestion and high pressure liquid chromatography separation of the resulting peptides. Peptide sequences obtained were used to virtually screen expressed sequence tag data bases from human, mouse, and rat. Consensus cDNAs were assembled in silico from various expressed sequence tag sequences identified. Deduced mammalian protein sequences were characterized and compared with ribosomal protein sequences of Escherichia coli and yeast mitochondria. Significant sequence similarities to ribosomal proteins of other sources were detected for three out of four different mammalian protein classes determined. However, the sequence conservation between mitochondrial ribosomal proteins of mammalian and yeast origin is much less than the sequence conservation between cytoplasmic ribosomal proteins of the same species. In particular, this is shown for the mammalian counterparts of the E. coli EcoL2 ribosomal protein (MRP-L14), that do not conserve the specific and functional highly important His(229) residue of E. coli and the corresponding yeast mitochondrial Rml2p.  相似文献   

17.
The acidic proteins of eukaryotic ribosomes. A comparative study   总被引:5,自引:0,他引:5  
The acidic proteins extracted by 0.4 M NH4Cl and 50% ethanol from ribosomes from Saccharomyces cerevisiae, wheat germ, Artemia salina, Drosophila melanogaster, rat liver and rabbit reticulocytes have been studied comparatively in several structural and functional aspects. All the species studied have in the ribosome two strongly acidic proteins with pI values not greater than pH 4.5., which appear to be monophosphorylated in the case of S. cerevisiae, A.Salina, D. melanogaster and wheat germ. Rat liver proteins are multiphosphorylated, as possibly are those from reticulocytes. The molecular weight of these acidic proteins as determined by SDS electrophoresis ranges from around 13,500 to 17,000 and, except in the case of yeast, of which both proteins have the same molecular weight, the size of the two proteins in the other species differs by approx. 1,000-2,000. In general, the size of the proteins increases with the evolutionary position of the organism, as seems to be the case with the degree of phosphorylation. From an immunological point of view the ribosomal acid proteins of eukaryotic cells are partically related, since antisera against yeast protein cross-react with proteins from wheat germ, rat liver and reticulocytes. Bacterial proteins L7 and L12 are very weakly recognized by the anti-yeast sera. Anti-bacterial acidic proteins do not cross-react with any of the protein from the species studied. The proteins from all the species studied are functional equivalents and can reconstitute the activity of particles of S. cerevisiae deprived of their acidic proteins.  相似文献   

18.
The number of proteins in yeast ribosomal subunits was determined by two-dimensional polyacrylamide gel electrophoresis. The 40S subunit obtained after dissociation of ribosomes at high ionic strength contains 30 different protein species (including six acidic proteins). The 60S subunit, obtained in the same way contains 39 different species (including 1 acidic protein). While the total number of protein species found in yeast ribosomes, thus, is in close agreement with those reported for other eukaryotic organisms, the distribution between acidic and basic proteins is quite different. When the ribosomes were dissociated at low ionic strength, four extra protein spots appeared in the electropherograms of both 40S and 60S subunits. We consider these proteins to be nonribosomal.  相似文献   

19.
The binding site for eIF-3 on the small ribosomal subunit was studied (a) by use of a complex of eIF-3 and derived 40 S ribosomal subunit from rat liver, and (b) by use of native small ribosomal subunits from rabbit reticulocytes. After treatment of both complexes with dimethyl 4,7-dioxo-5,6-dihydroxy-3,8-diazadecanbisimidate ribosomal proteins S3a, S4, S6, S7, S8, S9, S10, S23/24 and S27 became covalently linked to eIF-3 and were isolated together with the factor by gradient centrifugation. The ribosomal proteins were identified by two-dimensional polyacrylamide gel electrophoresis after periodate cleavage of the link(s).  相似文献   

20.
Phosphorylation of acidic ribosomal proteins P1/P2-P0 is a common phenomenon in eukaryotic organisms. It was found previously that in Trichosporon cutaneum, unlike in other yeast species, in addition to the two acidic ribosomal proteins, two other proteins of 15 kDa and 19 kDa of the small ribosomal subunit were phosphorylated. Here we describe two protein kinases: CKI and CKII, which are engaged in the modification of T. cutaneum ribosomal proteins. The acidic ribosomal proteins and the protein of 19 kDa were modified by CKII associated with ribosomes, while the protein of 15 kDa was modified by CKI. Protein kinase CKI was purified from cell-free extract (CKIC) and from ribosomal fraction (CKIR). The molecular mass of CKIC was established at 33 kDa while that of CKIR at 35-37 kDa. A protein of 40 kDa copurified with CKIR but not CKIC. Heparin significantly increased 40 kDa protein phosphorylation level by CKIR. Microsequencing analysis revealed the presence of CKI recognition motifs in the N-terminal fragment of the 40 kDa protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号