首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In invertebrates oocytes or eggs, the fertilization or activation potential establishes the fast electrical block to polyspermy and, in some species, provides the Ca2+ influx which contributes to the following intracellular Ca2+ wave. In echinoderms, the molecule triggering the activation potential is still unknown. The aim of this study was to assess whether nicotinic acid-adenine dinucleotide phosphate (NAADP) elicited the fertilization potential in starfish oocytes. The changes in membrane potential induced by the sperm were measured in oocytes held at a low resting potential, so that the Ca2+-action potential was inactivated and only the initial slower depolarization caused by the sperm could be studied. Decreasing extracellular Na+ concentration did not prevent the onset of the fertilization potential, while removal of external Ca2+ abolished it. The pre-incubation with SK&F 96365 and verapamil and the pre-injection of BAPTA inhibited the fertilization potential, while the injection of heparin only reduced its duration. The biophysical and pharmacological properties of the sperm-elicited depolarization were similar to those displayed by the NAADP-activated Ca2+-mediated current recently described in starfish oocytes. Indeed, the desensitization of NAADP-receptors prevented the onset of the fertilization potential. Taken together, these data suggest that NAADP could trigger the fertilization potential in starfish oocytes.  相似文献   

2.
In the starfish Astropecten aurantiacus the acrosome reaction occurs when the spermatozoon contacts the outer surface of the jelly layer. A long thin acrosomal filament is extruded from the anterior region of the spermatozoon and establishes contact with the oocyte surface. This latter interaction initiates the movement of the spermatozoon to the oocyte surface, formation of the fertilization cone and the cortical reaction. The first detectable electrical change across the oocyte plasma membrane during interaction with the spermatozoon is the fertilization potential (FP) which occurs simultaneously with the cortical reaction. The FP is probably the electrical result of the modification of the oocyte plasma membrane during cortical exocytosis. There are no primary step-like depolarizations during fertilization of starfish oocytes, which contrasts with the situation in sea urchin eggs [see 13]. We suggest that the difference in electrical response to fertilization of starfish oocytes and sea urchin eggs may be attributed to the location of the acrosome reaction in these animals and not to their different meiotic states.  相似文献   

3.
The electrokinetic potential of fertilized sea-urchin eggs, without the fertilization membrane and hyaline layer, was investigated by measuring the electrophoretic mobility of the eggs from fertilization to the second cleavage. A cyclic change in mobility was found to accompany the division cycle: the peak of the change was observed about 15 min before the appearance of both the first and second cleavage furrows.
A smaller peak was observed at 20–30 min after fertilization, but such a peak was not repeated between the first and the second cleavage.
Fertilized eggs with the fertilization membrane intact did not show a significant change in electrophoretic mobility throughout the division cycle.  相似文献   

4.
The role of the actin cytoskeleton in calcium signaling in starfish oocytes   总被引:2,自引:0,他引:2  
Ca(2+) is the most universal second messenger in cells from the very first moment of fertilization. In all animal species, fertilized eggs exhibit massive mobilization of intracellular Ca(2+) to orchestrate the initial events of development. Echinoderm eggs have been an excellent model system for studying fertilization and the cell cycle due to their large size and abundance. In preparation for fertilization, the cell cycle-arrested oocytes must undergo meiotic maturation. Studies of starfish oocytes have shown that Ca(2+) signaling is intimately involved in this process. Our knowledge of the molecular mechanism of meiotic maturation and fertilization has expanded greatly in the past two decades due to the discovery of cell cycle-related kinases and Ca(2+)-mobilizing second messengers. However, the molecular details of their actions await elucidation of other cellular elements that assist in the creation and transduction of Ca(2+) signals. In this regard, the actin cytoskeleton, the receptors for second messengers and the Ca(2+)-binding proteins also require more attention. This article reviews the physiological significance and the mechanism of intracellular Ca2+ mobilization in starfish oocytes during maturation and fertilization.  相似文献   

5.
Catecholamine secretion and adenylate cyclase activation in sea urchin eggs   总被引:1,自引:0,他引:1  
The role of neurotransmitters in sea-urchin eggs was investigated by studying their effect on adenylate cyclase of the egg membrane. Maximal stimulation of enzyme activity occurs in the presence of dopamine and GTP. 5-hydroxytriptamine, 5-methoxytriptamine and acetylcholine have no effect on activity, despite a decrease in intracellular cAMP level in eggs treated with 5-hydroxytriptamine antagonists as previously reported (Renaud et al., 1983). High-performance liquid chromatography (HPLC) revealed that dopamine is released from the sea-urchin egg into the external medium following fertilization.  相似文献   

6.
Research from many laboratories over the past several decades indicates that invertebrate oocytes and eggs are extraordinarily difficult to freeze. Since starfish oocytes, eggs, and embryos are an important cell and developmental biology model system, there is great interest to cryopreserve these cells. Previous starfish oocyte cryopreservation studies using slow cooling protocols revealed that these cells are highly sensitive to osmotic stress and form intracellular ice at very high sub-zero temperatures, suggesting that common freezing methodologies may not prove useful. We report here that a short exposure to 1.5 M Me2SO/1 M trehalose in hypotonic salt solution followed by ultra-rapid cooling to cryogenic temperatures allows starfish oocytes to be cryopreserved with the average survival rate of 34% when normalized to control oocytes that were exposed to CPA, but not frozen. On average, 51% of the oocytes in 77% of the batches of frozen oocytes underwent meiotic maturation in response to the starfish maturation hormone, 1-methyladenine. In one experiment, eggs developing from thawed oocytes were capable of being fertilized and two developed into embryos. These data suggests that successful cryopreservation of starfish oocytes is possible, but will need further refinement to increase the numbers of fully competent embryos.  相似文献   

7.
Fertilization or activation by ionophore A 23187 induces a transient acid release in prophase-blocked and in maturing oocytes of Asterias rubens and Marthasterias glacialis. 1-Methyladenine-induced maturation is not accompanied by acid release. There is no significant difference in the kinetic and amount of acid release related to the nature of activation or the stage of oocytes in each species. The amount of acid released per oocyte volume is smaller than total "fertilization acid" of sea urchin eggs but comparable to its Na-insensitive component. Cortical reaction can be initiated without significant acid release in ammonia treated oocytes. A burst of sodium influx occurs at activation or fertilization of oocytes. Kinetic and amount of Na influx are comparable to acid release. Vitelline membrane elevation is impaired upon activation of oocytes in the absence of extracellular sodium but a significant although smaller release of acid occurs. This suggests that starfish oocytes release acid by a mechanism differing from the Na+-H+ exchange of sea urchin eggs.  相似文献   

8.
In most invertebrates, creatine kinase is replaced by arginine kinase, which catalyzes reversibly the transfer of a phosphate group between adenosine triphosphate and arginine. In sea-urchin larvae, arginine kinase only is expressed whereas in adult sea-urchins both arginine kinase and creatine kinase can be found in the same tissue. In order to study their developmental regulation and properties, we have purified arginine kinase to homogeneity from the eggs of the sea-urchin Paracentrotus lividus. The purification involves ethanol and ammonium sulfate precipitations, followed by an anion-exchange chromatography, an affinity chromatography and a gel filtration. A 500-fold increase in specific activity leads to a specific activity of 360 IU/mg protein at 25 degrees C. Arginine kinase (pI = 5.7) is rapidly and irreversibly inactivated at 45 degrees C. Amino acid composition and Km values (2.08 mM for phospho-L-arginine and 1.25 mM for ADP) are also given. Determination of molecular mass by gel filtration and separation by SDS/polyacrylamide gel electrophoresis indicate that the enzyme is an 81-kDa dimer of two subunits of 42 kDa.  相似文献   

9.
Being present in starfish oocytes, the cofilin/ADF (actin-depolymerizing factor) family protein depactin severs actin filaments. Previously, we reported that exogenous cofilin microinjected into starfish eggs significantly augmented the Ca2+ release in response to inositol 1,4,5-trisphosphate (InsP3) or fertilizing sperm, raising the possibility that intracellular Ca2+ signaling could be modulated by the actin cytoskeleton. In this communication, we have targeted the endogenous depactin by use of the specific antibody that was raised against its actin-binding domain. The anti-depactin antibody microinjected into the starfish oocytes and eggs effectively altered the structure of the actin cytoskeleton, and significantly delayed the meiotic progression induced by 1-methyladenine. When microinjected into the mature eggs, the anti-depactin antibody markedly reduced the amplitude of the Ca2+ response in a dose-dependent manner, corroborating the results of our previous study with cofilin. In addition, the eggs microinjected with the anti-depactin antibody displayed reduced rate of successful elevation of the fertilization envelope and an elevated tendency of polyspermic interaction. Taken together, our data suggest that the actin cytoskeleton is implicated not only in meiotic maturation and intracellular Ca2+ signaling, but also in the fine regulation of gametes interaction and cortical granules exocytosis.  相似文献   

10.
The concentrations of Ca2+, Na+ and H+ in echinoderm oocytes and eggs were measured during maturation and activation using ion-selective microelectrodes. In both oocytes and eggs, from three species of starfish and two species of sea urchin, the resting level of cytosolic Ca2+ was about 10-7 M. We did not detect any change in Ca2+ concentration either during hormone-induced oocyte maturation (starfish) or during egg activation (starfish and sea urchin) induced by spermatozoa or chemical agents. During 1-methyl-adenine induced maturation of starfish oocytes the intracellular level of Na+ increased from 12–35 mM to 40–90 mM, while the pH changed from 6.6–6.8 to 7.0–7.2 Aged oocytes, with intact germinal vesicles, also had elevated levels of Na+ and pH.  相似文献   

11.
dNTP pools are quite low in immature oocytes of the starfish, expand during the 1-methyladenine-induced maturational process and thereafter reach a maximal level (approx. 35, 20, 15 and 5 fmoles/egg for dTTP, dCTP, dATP and dGTP, respectively) which is maintained in overmatured eggs. Maturing oocytes were inseminated at the stage just before extrusion of the first polar body and determination of dNTP pools during early embryogenesis showed the same expansion pattern as that of the 1-methyladenine-treated oocytes. Therefore, the increase in dNTP pools during early embryogenesis is dependent on 1-methyladenine (1-MA) but independent of fertilization. Aphidicolin, a specific inhibitor of eukaryotic DNA polymerase alpha, has no effect on dNTP pool size in 1-methyladenine-treated oocytes, but causes considerable expansion of dNTP pools in fertilized eggs which cleave achromosomally in the presence of the drug.  相似文献   

12.
Results obtained in various species, from mammals to invertebrates, show that arrest in the cell cycle of mature oocytes is due to a high ERK activity. Apoptosis is stimulated in these oocytes if fertilization does not occur. Our previous data suggest that apoptosis of unfertilized sea urchin eggs is the consequence of an aberrant short attempt of development that occurs if ERK is inactivated. They contradict those obtained in starfish, another echinoderm, where inactivation of ERK delays apoptosis of aging mature oocytes that are nevertheless arrested at G1 of the cell cycle as in the sea urchin. This suggests that the cell death pathway that can be activated in unfertilized eggs is not the same in sea urchin and in starfish. In the present study, we find that protein synthesis is necessary for the survival of unfertilized sea urchin eggs, contrary to starfish. We also compare the effects induced by Emetine, an inhibitor of protein synthesis, with those triggered by Staurosporine, a non specific inhibitor of protein kinase that is widely used to induce apoptosis in many types of cells. Our results indicate that the unfertilized sea urchin egg contain different mechanisms capable of leading to apoptosis and that rely or not on changes in ERK activity, acidity of intracellular organelles or intracellular Ca and pH. We discuss the validity of some methods to investigate cell death such as measurements of caspase activation with the fluorescent caspase indicator FITC-VAD-fmk or acidification of intracellular organelles, methods that may lead to erroneous conclusions at least in the sea urchin model.  相似文献   

13.
The eggs of Arbacia and starfish contained about 70 and 25 micrograms of pyruvate per gm. of dry cells respectively. Arbacia eggs utilized added pyruvate, although the O2 uptake did not increase. On fertilization the utilization of pyruvate increased sevenfold. This pyruvate seems to be metabolized, as in other cells, with diphosphothiamine as coenzyme. The diphosphothiamine content of fertilized and non-fertilized eggs was about 16 micrograms; that of sperm, 30 micrograms. Penetration of sperm into the egg and fertilization with cell division to the pluteus stage did not bring forth appearance of succino-dehydrogenase. The possible mechanism of fertilization and cell division is discussed.  相似文献   

14.
Populations of hormone-stimulated starfish oocytes and fertilized sea urchin eggs undergo synchronous meiotic and mitotic divisions. We have studied the requirement for protein phosphorylation during these events by testing the effects of 6-dimethylaminopurine (6-DMAP) upon the incorporation of [32P]orthophosphate. It was found that 6-DMAP blocked meiosis reinitiation and early cleavage and simultaneously inhibited protein phosphorylation, without changing the rate of [35S]methionine incorporation or pattern of protein synthesis. The protein, cyclin (54 kDa in starfish and 57 kDa in sea urchin), continues to be synthesized in the presence of 6-DMAP. This protein is destroyed at first and second cell cycles when 6-DMAP is added 30 min following fertilization but not when this drug is present before fertilization. Thus, cyclin breakdown does not depend on the completion of the nuclear events of M-phase, and its time of breakdown is set at an early step between fertilization and first cleavage. Using tubulin immunostaining, we found that 6-DMAP did not affect the cortical microtubules and resting female centrioles of prophase-arrested starfish oocytes, whereas it induced a precocious disappearance of spindle fibers when applied to hormone-stimulated oocytes. While an early addition of 6-DMAP precluded nuclear breakdown and spindle formation in both systems, a late treatment always allowed chromosome separation and centriole separation. Under these conditions pericentriolar tubulin persisted and could organize new spindles after the inhibitor was removed. It is suggested that (1) the assembly of cortical and centriolar-associated microtubules is not controlled by the same factors as spindle-associated tubulin; (2) specific proteins which are required for the cell to enter the following M-phase can become operative only via a process depending upon protein phosphorylation; (3) microtubule-associated kinases may play an important role in MPF function and spindle dynamics.  相似文献   

15.
Mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase) prevents DNA replication and parthenogenesis in maturing oocytes. After the meiotic cell cycle in starfish eggs, MAPK activity is maintained until fertilization. When eggs are fertilized, inactivation of MAPK occurs, allowing development to proceed. Without fertilization, highly synchronous apoptosis of starfish eggs starts 10 h after germinal vesicle breakdown, which varies according to season and individual animals. For induction of the apoptosis, MAPK should be activated for a definite period, called the MAPK-dependent period, during which eggs develop competence to die, although the exact duration of the period was unclear. In this study, we show that the duration of the MAPK-dependent period was approximately 8 h. Membrane blebbing occurred approximately 2 h after the MAPK-dependent period. Surprisingly, when MAPK was inhibited by U0126 after the MAPK-dependent period, activation of caspase-3 occurred earlier than in the control eggs. Thus, inactivation of MAPK is a prerequisite for apoptosis. Also, even in the absence of the inhibitor, MAPK was inactivated spontaneously when eggs began to bleb, indicating that inactivation of MAPK after the MAPK-dependent period acts upstream of caspase-3. Inactivation of MAPK also resulted in the activation of p38MAPK, which may contribute to apoptotic body formation.  相似文献   

16.
Starfish oocytes, eggs, and embryos are popular models for studying meiotic maturation, fertilization, and embryonic development. Their large (170- to 200-microm) oocytes are obtainable in copious amounts and are amenable to manipulations that mammalian oocytes are not. The most formidable obstacle to working with marine oocytes is their seasonal availability, yet a successful means of preserving them for use during the nonreproductive season has not been reported. The aim of this study was to investigate the response of starfish oocytes to freezing with rapid and slow cooling rates under a variety of conditions to develop a cryopreservation protocol for these cells. Cryomicroscopic observation revealed that starfish oocytes in isotonic medium undergo intracellular ice formation (IIF) at very high subzero temperatures, such that the mean difference between the temperature of extracellular ice formation (T(EIF)) and IIF (TI(IF)) was less than 3 degrees C and the average T(IIF) was approximately between -4 and -6 degrees C. Neither partial cellular dehydration nor addition of the cryopreservative dimethyl sulfoxide significantly depressed the T(IIF). Under some conditions, we observed ice nucleation at multiple locations within the cytoplasm, suggesting that several factors contribute to the unusually high T(IIF) during controlled-rate freezing and thus vitrification may be a more suitable method for cryopreserving these cells.  相似文献   

17.
The cell cycle in oocytes generally arrests at a particular meiotic stage to await fertilization. This arrest occurs at metaphase of meiosis II (meta-II) in frog and mouse, and at G1 phase after completion of meiosis II in starfish. Despite this difference in the arrest phase, both arrests depend on the same Mos-MAPK (mitogen-activated protein kinase) pathway, indicating that the difference relies on particular downstream effectors. Immediately downstream of MAPK, Rsk (p90 ribosomal S6 kinase, p90(Rsk)) is required for the frog meta-II arrest. However, the mouse meta-II arrest challenges this requirement, and no downstream effector has been identified in the starfish G1 arrest. To investigate the downstream effector of MAPK in the starfish G1 arrest, we used a neutralizing antibody against Rsk and a constitutively active form of Rsk. Rsk was activated downstream of the Mos-MAPK pathway during meiosis. In G1 eggs, inhibition of Rsk activity released the arrest and initiated DNA replication without fertilization. Conversely, maintenance of Rsk activity prevented DNA replication following fertilization. In early embryos, injection of Mos activated the MAPK-Rsk pathway, resulting in G1 arrest. Moreover, inhibition of Rsk activity during meiosis I led to parthenogenetic activation without meiosis II. We conclude that immediately downstream of MAPK, Rsk is necessary and sufficient for the starfish G1 arrest. Although CSF (cytostatic factor) was originally defined for meta-II arrest in frog eggs, we propose to distinguish ;G1-CSF' for starfish from ;meta-II-CSF' for frog and mouse. The present study thus reveals a novel role of Rsk for G1-CSF.  相似文献   

18.
The release of calcium ions (Ca(2+)) from their intracellular stores is essential for the fertilization of oocytes of various species. The calcium pools can be induced to release Ca(2+) via two main types of calcium channel receptor: the inositol 1,4,5-trisphosphate receptor (IP(3)R) and the ryanodine receptor. Starfish oocytes have often been used to study intracellular calcium mobilization during oocyte maturation and fertilization, but how the intracellular calcium channels contribute to intracellular calcium mobilization has never been understood fully, because these molecules have not been identified and no specific inhibitors of these channels have ever been found. In this study, we utilized a novel IP(3)R antagonist, the "IP(3) sponge," to investigate the role of IP(3) during fertilization of the starfish oocyte. The IP(3) sponge strongly and specifically competed with endogenous IP(3)R for binding to IP(3). By injecting IP(3) sponge into starfish oocyte, the increase in intracellular calcium and formation of the fertilization envelope were both dramatically blocked, although oocyte maturation was not blocked. To investigate the role of IP(3)R in the starfish oocyte more precisely, we cloned IP(3)R from the ovary of starfish, and the predicted amino acid sequence indicated that the starfish IP(3)R has 58-68% identity to mammalian IP(3)R types 1, 2, and 3. We then raised antibodies that recognize starfish IP(3)R, and use of the antibodies to perform immunoblot analysis revealed that the level of expression of IP(3)R remained unchanged throughout oocyte maturation. An immunocytochemical study, however, revealed that the distribution of starfish IP(3)R changes during oocyte maturation.  相似文献   

19.
The relationship between onset of the early cytoplasmic stages of oocyte activation (vitelline membrane separation and elevation) and nuclear meiotic maturation was investigated in starfish oocytes after their exposure to divalent ionophore (A-23187) or sperm. Meiotically mature oocytes, isolated in calcium-free seawater, underwent activation in response to sperm or ionophore as previously reported. Large, immature starfish oocytes, arrested in prophase I of meiosis (germinal vesicle stage), underwent vitelline membrane elevation when treated with divalent ionophore A-23187 or starfish sperm. Histological studies demonstrated that cortical granule breakdown in the oocyte cortex was associated with vitelline membrane elevation after these treatments. Activation of oocytes by sperm occurred only in response to starfish sperm. Sea urchin, sand dollar, surf clam, or marine worm sperm did not induce vitelline membrane elevation of either immature or mature starfish oocytes. Sperm- or ionophore-activated immature oocytes underwent nuclear maturation after addition of the meiosis-inducing hormone, l-methyladenine; however, parthenogenetic development did not occur and embryonic development was markedly inhibited. In contrast to previous studies, the present results indicate that cytoplasmic activation can be initiated before and without hormone induction of the nuclear maturation process. Differentiation of the oocyte cell surface or cortex reactivity therefore appears to occur during oogenesis rather than as a consequence of maturation. The data further support the view that divalent ions mediate certain of the early activation responses initiated by sperm at the time of fertilization and that synchronization of fertilization to the meiotic process in the oocyte is important for the occurrence of normal development.  相似文献   

20.
Ionomycin is a Ca(2+)-selective ionophore that is widely used to increase intracellular Ca(2+) levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca(2+) levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca(2+) increase. The ionomycin-induced Ca(2+) rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca(2+) response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号