首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hamster monoclonal antibody (MAb), designated 8.1.1, was raised against murine thymic stromal cell lines and was found to react with cell surface molecules expressed by a morphologically distinct population of epithelial cells of the murine thymus comprising the subcapsular environment, cells investing vascular structures throughout the thymus, and some of the cellular elements in the medulla. The epithelial nature of the labeled cells was confirmed with immunoelectron microscopy. Reactivity with MAb 8.1.1 was associated with thymic epithelial cells in contact with basal laminae. Ontological studies of thymic tissue demonstrated that the epitope recognized by this MAb was expressed before Day 14 of gestation, although the restricted subcapsular and medullar expression of 8.1.1 was not apparent until sometime after birth. MAb 8.1.1 also reacted with a number of extra-thymic tissues, including lamina propria of gut, glomeruli and tubules in the kidney, mesothelia covering a number of organs, and the dermis and epidermis of skin. Within the epidermis, reactivity of MAb 8.1.1 was largely restricted to basal epithelial cells. Immunochemical analysis of 8.1.1 reactivity with detergent-soluble extracts of thymic stromal cell lines and thymus tissue indicated that detergent-soluble extracts of thymic stromal cell lines and thymus tissue indicated that the epitope recognized by this MAb was associated with a glycoprotein bearing terminal N-acetylglucosamine residues and possessing an Mr of approximately 36-38 KD under reducing or non-reducing conditions.  相似文献   

2.
Summary The epithelial framework of the human thymus has been studied in parallel by immunohistochemical methods at the light- and electron-microscopic levels. Different monoclonal antibodies were used, reacting with components of the major histocompatibility complex, keratins, thymic hormones and other as yet antigenically undefined substances, which show specific immunoreactivities with human thymus epithelial cells.The electron-microscopic immunocytochemical observations clearly confirm microtopographical differences of epithelial cells not only between the thymic cortex and medulla, but also within the cortex itself. At least four subtypes of epithelial cells could be distinguished: 1) the cortical surface epithelium; 2) the main cortical epithelial cells and thymic nurse cells; 3) the medullary epithelial cells; and 4) the epithelial cells of Hassall's corpuscles.The various epithelial cell types of the thymus display several common features like tonofilaments, desmosomes and some surface antigens as demonstrated by anti-KiM3. In other respects, however, they differ from each other. The cortical subtype of thymic epithelial cells including the thymic nurse cells shows a distinct pattern of surface antigens reacting positively with antibodies against HLA-DR (anti-HLA-DR) and anti-21A62E. Electron-microscopic immunocytochemistry with these antibodies clearly reveals a surface labeling and a narrow contact to cortical thymocytes particularly in the peripheral cortical regions. An alternative staining pattern is realized by antibodies to some antigens associated with other subtypes of thymic epithelial cells. Medullary epithelial cells as well as the cortical surface epithelium react likewise positively with antibodies to special surface antigens (anti-Ep-1), to special epitopes of cytokeratin (anti-IV/82), and to thymic hormones (anti-FTS). The functional significance of distinct microenvironments within the thymus provided by different epithelial cells is discussed in view of the maturation of T-precursor cells.Glossary of Abbreviations Anti-X anti-X antibody - APUD-cells amine precursor uptake and decarboxylation (gastro-intestinal endocrine cells) - DAB diamino-benzidine - DMSO dimethyl sulfoxide - FTS facteur thymique sérique - HLA-A, B, C human leucocyte antigen, A, B, C-region related - HLA-DR human leucocyte antigen, D-region related - IDC interdigitating cell - MHC major histocompatibility gene complex - PBS phosphate-buffered saline - TNC thymic nurse cell This investigation was supported by grants from the Deutsche Forschungsgemeinschaft, and its Sonderforschungsbereich 111Fellow of the Alexander von Humbold-Stiftung, Institute of Pathology, University of Würzburg, Federal Republic of GermanyThe authors appreciate the contribution of human thymus tissue from Professor Alexander Bernhard, Abteilung kardiovasculäre Chirurgie der Universität Kiel; the gift of monoclonal antibodies from Dr. M.J.D. Anderson, Dr. M. Dardenne and Dr. H.J. Radzun; and the excellent technical assistence of Mrs. O.M. Bracker, Mrs. H. Hansen, Mrs. R. Köpke, Mrs. M. v. Kolszynski, Mrs. J. Quitzau, Mrs. H. Siebke, and Mrs. H. Waluk  相似文献   

3.
Rat thymus has been identified as a tissue comparatively enriched in a 35-KD substrate of the epidermal growth factor receptor/kinase (lipocortin-1) (J Biol Chem 261:13784, 1986). A polyclonal antiserum prepared against the 35-KD protein was used to determine histological distribution of the protein in thymus. Frozen sections of rat thymus were examined after indirect labeling of the 35-KD protein with a rhodamine conjugate of secondary antibody. The antigen was localized primarily in the reticular network of the thymic epithelium, with no detectable labeling of resident thymocytes. Immunoblotting (Western blots) of cytosol extracts also demonstrated that thymocytes did not contain detectable amounts of the antigen. Cultured thymic epithelial cells (TEC), however, contained an abundance of two immunologically related protein bands with molecular weights similar but not identical to the antigen from the parental cell line (human A-431 carcinoma). Paraffin sections of rat and human thymus were subjected to an immunoperoxidase staining procedure, and it was observed that Hassall's corpuscles (keratinized epithelial cells) and other cortical and medullary TECs were intensely stained. The demonstration that the antigen is primarily associated with TEC in thymus, in conjunction with its distribution in other tissues, will aid in deducing its physiological role.  相似文献   

4.
A monoclonal antibody (MAb), G8.8, was raised against glycoconjugates isolated from a cloned line of murine medullary thymic epithelial cells. Flow cytometric analysis of the reactivity of this MAb with cultured thymic epithelium demonstrated that the ligand was expressed on the cell surface. Immunohistochemical examination of normal murine thymus revealed labeling of cells in the subcapsular and medullary areas. Immunoelectron microscopy revealed surface labeling restricted to cells possessing ultrastructural features of epithelium (desmosomes, tonofilaments, and cytoplasmic cysts). During thymic ontogeny, G8.8+ cells predominated in fetal development at the earliest time point examined (Day 14 of gestation). There was an expansion of the cortical epithelial component so that by Day 18 cortical and medullary compartments could be clearly distinguished. Immunoprecipitation of radioiodinated thymic stroma with MAb G8.8 detected a molecule with an apparent Mr of approximately 38 KD under non-reducing conditions. When reduced, the apparent Mr was slightly increased (42 KD). This MAb also exhibited reactivity with gut and epidermal epithelium and some tubular epithelium in the kidney, but did not react with epithelial parenchymal cells of the liver.  相似文献   

5.
Rat monoclonal antibodies (MAb) directed to mouse Ig heavy and light chain determinants were produced. A rat anti-mouse light chain MAb (RAMOL-1) which bound to all (24/24) mouse Ig of the kappa light chain type and with varying strength to 4/4 lambda light chain-bearing Ig was evaluated as a general secondary reagent, together with two MAb that bound to the heavy chain of mouse IgG. They were conjugated with biotin or FITC and used in immunohistochemical and immunofluorescence assays to detect mouse monoclonal antibodies binding to antigens expressed in rat and human tissues and cells. As compared to commercially available polyclonal reagents, RAMOL-1 gave higher staining contrast by showing lower background staining and equal or higher staining of the primary MAb tested. This was a result of two main effects. First, crossreactivity with endogenous Ig and tissue type-specific determinants was eliminated. With polyclonal anti-mouse Ig reagents, binding to endogenous Ig was noted in vascular spaces and on Ig-bearing cells, and to rat gastric mucosa and epithelial tumor tissue in frozen tissue sections, even when diluted in high concentrations of serum homologous to the tissue. Second, binding of the secondary reagent was reduced to cells and tissues prone to have high nonspecific binding capability, such as monocytes/macrophages and formalin-fixed, paraffin-embedded tissue. Owing to unlimited and reproducible access to this homogeneous reagent, RAMOL-1 is used as second antibody to standardize the procedure used for immunohistochemical grading of human malignant tumors by determination of blood group antigen expression detected with mouse MAb.  相似文献   

6.
Thymopoietin-containing cells in the thymus were identified immunohistochemically using murine antiserum generated by immunization with synthetic Cys-thymopoietin28-39 (Cys-TP28-39). human thymopoietin, This antiserum, previously shown to react with both bovine and human thymopoietin, gave reactivity restricted to cortical and medullary epithelial cells of bovine and human thymus. Monoclonal antibodies with reactivity restricted to native bovine thymopoietin did not react with tissue sections of bovine thymus; most likely the epitopes recognized by monoclonal antibodies are not expressed on the inactive precursor forms of thymopoietin within thymic epithelial cells.  相似文献   

7.
Antiserum to epithelial membrane antigen and three monoclonal antibodies (MAb) to milk-fat globule membranes immunocytochemically stain only epithelial cells, whereas a fourth reacts also with myoepithelial cells in inter- and intralobular ducts of human breast. Staining with peanut lectin shows a gradual increase for epithelial cells, from little or no staining in ducts through variable staining in ductules to intense staining in secretory alveoli. Antisera and MAb to vimentin, smooth-muscle actin, MAb to the common acute lymphoblastic leukemia antigen and to a glycoprotein of 135 KD stain myoepithelial cells in main ducts, but this staining is reduced in inter- and intralobular ducts and ductules. MAb to epithelial-specific keratin 18 stain a minor population of ductal epithelial cells, the major population of epithelial cells in interlobular (ILD) and extralobular terminal ducts (ETD), and epithelial cells in a minority of ductules. In lactating glands most epithelial cells in ductules are stained, but the alveolar and myoepithelial cells are unstained. Keratin MAb PKK2 and LP34 strongly stain myoepithelial cells, but only a minor population of epithelial cells in main ducts. However, these MAb stain principally the epithelial cells in ILD, ETD, and a minority of ductules. In lactating glands most epithelial cells are stained in ductules, but the myoepithelial and not the alveolar cells are stained intensely in secretory lobules. It is suggested that the unusual staining pattern of cells found principally in the ILD, ETD, and some ductules may represent regions of growth and/or subpopulation(s) of cells intermediate between epithelial and myoepithelial cells.  相似文献   

8.
In developing human breast, terminal end buds (TEBs), lateral buds (LBs), and lobules of three to five alveolar buds (ABs) predominate in prepubertal females, whereas lobules of ABs and lobules of up to 60 ductules predominate in pubertal females. The appearance of clefts in TEBs and LBs suggests that they are precursors of ABs. In histological sections the ductal buds are composed of a heterogeneous collection of cells that include cortical and peripheral cells. The cortical cells can line small lumina in TEBs/LBs, whereas the peripheral cells which cap their distal tips are more irregular and loosely packed. Monoclonal antibodies (MAb) to epithelial milk-fat globule membranes and antiserum to epithelial membrane antigen immunocytochemically stain the cortical cells, particularly where such cells line lumina, and weakly stain the peripheral cap cells. Similar histochemical staining patterns are observed in desialylated sections with peanut lectin. Antiserum and MAb to smooth muscle actin moderately stain the peripheral cap cells, and this staining increases the closer the peripheral cells become to the myoepithelial cells of the subtending duct. Similar but weaker staining patterns are observed with antibodies to vimentin. Keratin MAb PKK2 and LP34, which stain myoepithelial cells in preference to epithelial cells in main ducts, as well as MAb to epithelium-specific keratin 18, all stain many of the cortical/luminal cells in buds and lobules of developing breast; the peripheral cap cells are relatively unstained. It is suggested that the undifferentiated peripheral cap cells show transitional forms both to the cortical epithelial cells that eventually line the lumina and to the myoepithelial cells of the subtending duct.  相似文献   

9.
Lymphoepithelial complexes known as thymic "nurse" cells (TNC) have been isolated and described in the thymus of several animal species including man. Most of the investigations on TNC have been carried out in enzymatically digested thymuses in which TNC were isolated by differential sedimentation. In the present study we demonstrate TNC in immunohistochemically stained sections of human thymus as ring-shaped cells completely enclosing thymocytes and localized not only in the cortex, but also at the corticomedullary junction where they have not been previously described. TNC expressed epithelial markers [low and high molecular weight keratins identified by 35 beta H11 and 34 beta E12 monoclonal antibodies, a cortical antigen shared with neuroectodermal neoplasms recognized by the GE2 monoclonal antibody, and tissue polypeptide antigen (TPA:B1)], class II histocompatibility antigens (HLA-DR), and thymosin alpha 1. Double staining experiments with the nuclear proliferation-associated antigen Ki-67 and the cortical epithelium marker GE2 showed that most thymocytes enclosed in these cortical TNC were not proliferating. The antigens expressed by TNC indicate that not only cortical, but also medullary epithelial cells are part of the TNC system. The possible role of TNC in the education and maturation of thymocytes is discussed.  相似文献   

10.
The presence and structure of nicotinic acetylcholine receptor (nAChR) in the thymus has been a subject of interest for many years because of its possible role in the pathogenesis of the autoimmune disease myasthenia gravis. Using the polymerase chain reaction with primers specific for the alpha-chain of nAChR (nAChR-alpha), an 880-bp homologous band was found after amplification of cDNA prepared from mouse thymus, thymic medullary and cortical epithelial cell lines, but not from thymocytes or kidney. Sequencing of the polymerase chain reaction product from the thymus and thymic medullary and cortical epithelial lines showed identity with skeletal muscle nAChR-alpha over the region examined. This region includes the domains of the molecule on which B cell and T cell autoantigenic targets have been described. No evidence was found in mouse tissue for the exon 3A, which has been described in human muscle and the human rhabdomyosarcoma cell line TE671. Our results provide evidence at the RNA level for the expression of the nAChR-alpha on stromal cells but not on thymocytes in normal murine thymus and are consistent with a role for intrathymic autoantigen expression in the pathogenesis of myasthenia gravis.  相似文献   

11.
Although much effort has been directed at dissecting the mechanisms of central tolerance, the role of thymic stromal cells remains elusive. In order to further characterize this event, we developed a mouse model restricting LacZ to thymic stromal cotransporter (TSCOT)-expressing thymic stromal cells (TDLacZ). The thymus of this mouse contains approximately 4,300 TSCOT+ cells, each expressing several thousand molecules of the LacZ antigen. TSCOT+ cells express the cortical marker CDR1, CD40, CD80, CD54, and major histocompatibility complex class II (MHCII). When examining endogenous responses directed against LacZ, we observed significant tolerance. This was evidenced in a diverse T cell repertoire as measured by both a CD4 T cell proliferation assay and an antigen-specific antibody isotype analysis. This tolerance process was at least partially independent of Autoimmune Regulatory Element gene expression. When TDLacZ mice were crossed to a novel CD4 T cell receptor (TCR) transgenic reactive against LacZ (BgII), there was a complete deletion of double-positive thymocytes. Fetal thymic reaggregate culture of CD45- and UEA-depleted thymic stromal cells from TDLacZ and sorted TCR-bearing thymocytes excluded the possibility of cross presentation by thymic dendritic cells and medullary epithelial cells for the deletion. Overall, these results demonstrate that the introduction of a neoantigen into TSCOT-expressing cells can efficiently establish complete tolerance and suggest a possible application for the deletion of antigen-specific T cells by antigen introduction into TSCOT+ cells.  相似文献   

12.
The mouse thymic epithelial network was studied using three different anti-keratin antibodies. One of these antibodies, KL1, exclusively recognized a small subset of medullary epithelial cells characterized by its content of a high molecular weight keratin (63 kD). Since epithelial differentiation is known to be associated with the acquisition of high molecular weight keratins, KL1-positive cells, which express the Ia antigen and secrete thymulin, may represent a subset of highly differentiated cells among mouse thymic epithelial cells (TEC). These data reflect the heterogeneity of the thymic epithelium and support the concept that distinct TEC subsets might provide the thymus with different microenvironments.  相似文献   

13.
The stromal cells of the thymus of sham-irradiated and sublethal fission neutron-irradiated CBA/H mice were analyzed with immunohistology, using monoclonal antibodies directed to I-A and H-2K antigens as well as specific determinants for cortical and medullary stromal elements. In the control thymuses, I-A expression in the thymus shows a reticular staining pattern in the cortex and a confluent staining pattern in the medulla. In contrast, H-2K expression is mainly confluently located in the medulla. Whole body irradiation with 2.5 Gy fission neutrons reduces within 24 hr the cortex to a rim of vacuolized "nurse cell-like" epithelial cells, largely depleted of lymphoid cells. The localization of I-A antigens changes in the cortex and I-A determinants are no longer associated with or localized on epithelial reticular cells. Medullary stromal cells, however, are more or less unaffected. A high rate of phagocytosis is observed during the first 3 days after irradiation. About 5 days after irradiation, the thymus becomes highly vascularized and lymphoid cells repopulate the cortex. The repopulation of the thymic cortex coincides with the appearance of a bright H-2K expression in the cortex which is associated with both stromal cells as well as lymphoid blasts. During the regeneration of the thymus, the thymic stromal architecture is restored before the expression of cell surface-associated reticular MHC staining patterns. The observed sequential changes in the thymic microenvironment are related to the lymphoid repopulation of the thymus.  相似文献   

14.
Summary In recent studies, the α2 chain of laminin (Ln) has been suggested to be the only laminin α chain expressed in mouse and human thymus. We have now used chain-specific monoclonal antibodies and indirect immunofluorescence microscopy to study the expression of laminin chains in samples of foetal and 6-year-old human thymus. The subepithelial basement membrane of the capsule of foetal 16- to 18-week thymus presented a bright immunoreactivity for Ln α1, α3, β1, β3 and γ1 chains but not for α2 chain, suggesting the expression of laminins-1 and-5. Most cortical and medullary epithelial cells, including Hassall's corpuscles, however, lacked laminin immunoreactivity. Immunoreactivity for Ln β2 chain was only seen in basal laminae of larger blood vessels. In thymic specimens from 6-year-old children, immunoreactivity for the laminin α1, α3, β1, β3 and γ1 chains was invariably found in subepithelial basement membrane of the capsule and that for laminin α2 chain was now also distinct but more heterogeneous. Furthermore, the thymic subepithelial basement membrane of the capsule at all stages showed immunore-activity for collagen type VII, forming the anchoring fibres in epithelial basement membranes. The subcapsular thymic epithelium also showed immunoreactivity for the BP 230 antigen and β4 integrin subunit, both components of hemidesmosomes. The present results show that the thymic subepithelial basement membrane of the capsule presents properties which are commonly seen in stratified and combined epithelia, and are compatible with suggestions of the antigenic similarity of thymic epithelial cells and keratinocytes.  相似文献   

15.
By indirect immunofluorescence microscopy, an antiserum raised in rabbit against serum thymic factor (FTS) was found to decorate the epithelial cells not only in the thymus, but also in the kidney, uterus, urinary bladder, prostatic glands, stomach, ileum, colon, submaxillary glands, trachea, epidermis and epidermal appendages of mouse. The staining ability was completely absorbed with an FTS-binding immunoabsorbent, and affinity-purified anti-FTS IgG showed the same staining patterns as the original antiserum. The staining profiles resembled those described for tissues stained with antiprekeratin and antikeratin antibodies in both distribution in tissue and localization in the epithelial cells. In primary-cultured cells from mouse kidney medullae, the anti-FTS antibodies decorated the cytoplasmic fiber network. The fibers were wavy, bundled together and branched. They were dense in the perinuclear cytoplasm and spread in the cytoplasm toward the cell periphery. This decoration was resistant to colchicine and cytochalasin B, but sensitive to pretreatment with formaldehyde. The organization and shape of the fiber network were similar to those of the networks of intermediate-sized filaments containing cytokeratins, keratins and vimentin. However, the antiserum did not give a precipitin band in immunodiffusion test with prekeratin from bovine muzzle, keratin from human epidermis or 3T3 vimentin. Neither tubulin nor actin formed precipitin bands with the antiserum. These results show that the epithelial cells of various mouse tissues contain FTS or substances close to FTS in chemical structure and suggest that they are associated with the intermediate-sized filaments.  相似文献   

16.
The thymic microenvironment contains a mixture of phenotypically distinct epithelial cells of varied functions, some of which are unknown. In an attempt to understand their relevance to T cell differentiation in the thymus, human thymic epithelial cell clones from both fetal (SM3-SM5) and postnatal (SM6) thymus were produced by using a defective recombinant retroviral vector encoding the simian virus 40 large T antigen and the neomycin resistance gene. The presence of keratins 8 and 18, desmosomes, and tonofilaments confirmed the epithelial origin of the cell strains. The cells expressed Thy-1 and HLA-Class I at high levels, showed weak-expression antigens defined by TE3B and A2B5, and low to negligible levels of the MR19-defined molecule. When compared with the phenotype of thymic epithelial cells in situ, the cell strains appear to be derived from neuroendocrine components in the outer cortical region of the human thymus. The use of retroviral vectors to transform human thymic epithelium was considerably more efficient than transfection with a plasmid carrying the origin of replication-defective SV40 large T gene. In the latter case, only two cell strains with subcapsular epithelial phenotypes were derived from fetal thymus. With the retroviral vectors, epithelial cell strains could, for the first time, be generated from human postnatal thymus as well as from fetal thymus.  相似文献   

17.
A new method for the long-term culture of pure rat thymic epithelial cells was established. The cultures were characterized by immunocytochemistry, electron microscopy and proliferation assays. Non-epithelial thymic cells were eliminated with a reliable and reproducible pre-plating method, by differential trypsin treatment of the cultures and by addition of horse serum to the culture medium instead of fetal calf serum. The final cultures contained more than 95% pure epithelial cells as evidenced by immunostaining for cytokeratin. Ultrastructural studies indicated that these cells are physiologically active epithelial cells with tonofilaments, desmosomes and filopods. The subsets of the thymic epithelial cells in vitro were investigated by comparing their staining pattern with that obtained in situ using several subtype-selective antibodies. Thymic epithelial cells in vitro showed a preferential expression of subcapsular/perivascular and medullary markers. Only few cultivated cells were of cortical origin. In the first to the fourth subcultures, some cells were immunopositive for the thymus hormone/factor thymulin. The proliferation of thymic epithelial cells was stimulated by horse serum and to a lesser extend by fetal calf serum. The adenylate cyclase activators isoproterenol and forskolin, and the glucocorticoid cortisol inhibited the proliferation. Received: 12 May 1995 / Accepted: 13 October 1995  相似文献   

18.
Architectural changes in the thymus of aging mice   总被引:1,自引:0,他引:1  
Age-associated thymic involution is one of the most dramatic and ubiquitous changes in the immune system, although the precise mechanisms involved still remain obscured. Several hypotheses have been proposed incorporating extrinsic and intrinsic factors, however, changes in the thymic microenvironment itself is one of the least investigated. We therefore decided to undertake a detailed histological examination of the aging thymus in order to elucidate possible mechanisms of thymic atrophy. This investigation provides insight into the changes within the murine thymus with age, demonstrating a new approach to quantify protein expressional differences while preserving the thymic architecture. There is a decline in expression of thymic epithelial cell-specific makers and an increase in fibroblast content in the aging mouse thymus. This is concurrent with a disorganization of the thymic compartments, a morphological transformation within the epithelial cells and alterations of their archetypal staining patterns. Furthermore, this is linked to a rise in apoptotic cells and the novel finding of increased senescence in the thymus of older mice that appears to be colocalized in the epithelial compartment. These changes within the thymic epithelial cells may be in part accountable for thymic atrophy and responsible for the decline in T-cell output.  相似文献   

19.
The immunoreactivity for epidermal-type fatty acid binding protein of epidermis type (E-FABP) was selectively localized in the epithelial cells of both cortex and medulla of mouse thymus. The cortical epithelial cytoreticulum was clearly visible with the intense immunoreactivity and the immunoreactive cytoreticulum extended intricately throughout the thymic cortex to enclose thymocytes. In the thymic medulla, the immunoreactivity was variable in intensity among the epithelial cells and there was a tendency that epithelial cells containing more numerous tonofilament bundles were less immunoreactive. Considering the possibility that FABPs function as intracellular carriers for unsaturated long chain fatty acids, the present finding suggests that E-FABP in the thymic epithelial cells, especially the cortical ones because of their extensive location, are intimately involved in the metabolic processes of fatty acids including production of bioactive substances, such as prostaglandin and leukotriene, which are known to exert some regulation of thymic immune responses.  相似文献   

20.
Summary Epithelial cells from the normal mouse thymus were successfully cultivated on tissue culture plastic when plated with lethally irradiated support cells of the LA7 rat mammary tumor line. As the irradiated LA7 cells slowly decreased in number the thymus cells proliferated concomitantly to form a confluent monolayer. The cells now in culture have been subcultured 8 times, have doubled in number at least 30 times, and are still proliferating vigorously. The culture technique also supported clonal growth from a single cell, and nine clones have been isolated. The colony-forming efficiency of thymic cells plated at low concentrations was about 8%. These cultures were never overgrown by fibroblasts. The thymus cells were characterized as epithelial by the presence of cytoplasmic keratin and numerous desmosomes and tonofilaments. They were shown to be mouse cells by immunocytochemistry with species specific antibodies, by isoenzyme analysis, and by karyology. The cells stained when reacted with antibodies to tubulin, vimentin, and actin, but not with antibodies to Thy-1.2, Lyt-1, Lyt-2, Ia, or H-2 proteins. More than 85% of the cells had a normal mouse diploid chromosome number of 40. This culture technique opens the way for future studies of T-cell education with homogeneous thymic epithelial cell populations both in vitro and after reimplantation into genetically defined strains of mice. This work was supported by the Veterans Administration, Washington, D.C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号