首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Several proteins, in addition to the polysaccharide capsule, have recently been implicated in the full virulence of the Streptococcus pneumoniae bacterial pathogen. One of these novel virulence factors of S. pneumoniae is pneumococcal surface protein A (PspA). The N-terminal, cell surface exposed, and functional part of PspA is essential for full pneumococcal virulence, as evidenced by the fact that antibodies raised against this part of the protein are protective against pneumococcal infections. PspA has recently been implicated in anti-complementary function as it reduces complement-mediated clearance and phagocytosis of pneumococci. Several recombinant N-terminal fragments of PspA from different strains of pneumococci, Rx1, BG9739, BG6380, EF3296, and EF5668, were analyzed using circular dichroism, analytical ultracentrifugation sedimentation velocity and equilibrium methods, and sequence homology. Uniformly, all strains of PspA molecules studied have a high alpha-helical secondary structure content and they adopt predominantly a coiled-coil structure with an elongated, likely rod-like shape. No beta-sheet structures were detected for any of the PspA molecules analyzed. All PspAs were found to be monomeric in solution with the exception of the BG9739 strain which had the propensity to partially aggregate but only into a tetrameric form. These structural properties were correlated with the functional, anti-complementary properties of PspA molecules based on the polar distribution of highly charged termini of its coiled-coil domain. The recombinant Rx1 PspA is currently under consideration for pneumococcal vaccine development.  相似文献   

2.
Analysis of the sequence for the gene encoding PspA (pneumococcal surface protein A) of Streptococcus pneumoniae revealed the presence of four distinct domains in the mature protein. The structure of the N-terminal half of PspA was highly consistent with that of an alpha-helical coiled-coil protein. The alpha-helical domain was followed by a proline-rich domain (with two regions in which 18 of 43 and 5 of 11 of the residues are prolines) and a repeat domain consisting of 10 highly conserved 20-amino-acid repeats. A fourth domain consisting of a hydrophobic region too short to serve as a membrane anchor and a poorly charged region followed the repeats and preceded the translation stop codon. The C-terminal region of PspA did not possess features conserved among numerous other surface proteins, suggesting that PspA is attached to the cell by a mechanism unique among known surface proteins of gram-positive bacteria. The repeat domain of PspA was found to have significant homology with C-terminal repeat regions of proteins from Streptococcus mutans, Streptococcus downei, Clostridium difficile, and S. pneumoniae. Comparisons of these regions with respect to functions and homologies suggested that, through evolution, the repeat regions may have lost or gained a mechanism for attachment to the bacterial cell.  相似文献   

3.
Insertion-duplication mutagenesis was used to generate mutants of Streptococcus pneumoniae that produced truncated forms of PspA (pneumococcal surface protein A). The truncated products, representing from 20 to 80% of the complete PspA molecule, were all secreted from the cell and could be detected in unconcentrated culture medium. Analysis of the truncated molecules showed that the antigenic variability known to be associated with PspA is located in the alpha-helical N-terminal half of the molecule. This region was also found to contain immunogenic and protection-eliciting epitopes and to define the maximum region of the molecule that is likely to be surface exposed. The apparent molecular weight variability seen for PspA molecules of different S. pneumoniae strains was localized to both the N- and C-terminal halves of the protein. Attachment of PspA to S. pneumoniae was found to require regions located carboxy to the fifth repeat unit in the C-terminal end of the molecule. From the insertion-duplication mutants, the complete pspA gene was cloned and expressed in Escherichia coli. Differences in apparent molecular weight were observed when the same cloned product was expressed in E. coli and S. pneumoniae, suggesting that PspA is modified differently in the two hosts.  相似文献   

4.
Human lactoferrin, a component of the innate immune system, kills a wide variety of microorganisms including the Gram positive bacteria Streptococcus pneumoniae. Pneumococcal surface protein A (PspA) efficiently inhibits this bactericidal action. The crystal structure of a complex of the lactoferrin-binding domain of PspA with the N-lobe of human lactoferrin reveals direct and specific interactions between the negatively charged surface of PspA helices and the highly cationic lactoferricin moiety of lactoferrin. Binding of PspA blocks surface accessibility of this bactericidal peptide preventing it from penetrating the bacterial membrane. Results of site-directed mutagenesis, in vitro protein binding assays and isothermal titration calorimetry measurements corroborate that the specific electrostatic interactions observed in the crystal structure represent major associations between PspA and lactoferrin. The structure provides a snapshot of the protective mechanism utilized by pathogens against the host's first line of defense. PspA represents a major virulence factor and a promising vaccine candidate. Insights from the structure of the complex have implications for designing therapeutic strategies for treatment and prevention of pneumococcal diseases that remain a major public health problem worldwide.  相似文献   

5.
Streptococcus pneumoniae is a major public health problem and new strategies for the development of cost-effective alternative vaccines are important. The use of protein antigens such as PspA (pneumococcal surface protein A) is a promising approach to increase coverage at reduced costs. We have previously described the induction of a strong antibody response by a DNA vaccine expressing a C-terminal fragment of PspA. Fusion of this fragment with the cytoplasmic variant of SV40 large T-antigen (CT-Ag) caused reduction in specific interferon-gamma produced by stimulated spleen cells. In this work we show that the DNA vaccine expressing the C-terminal region of PspA elicits significant protection in mice against intraperitoneal challenge with a virulent strain of S. pneumoniae. Furthermore, fusion with CT-Ag completely abrogated the protection elicited by DNA immunization with this fragment. In this case, protection did not correlate with total anti-PspA antibody production nor with total IgG2a levels. The anti-PspA sera obtained from both constructs showed equivalent opsonic activity of pneumococci, indicating that the antibodies produced were functional. We could, though, observe a correlation between a lower IgG1:IgG2a ratio, which is indicative of a stronger bias towards Th1 responses, and protection. We also show that a vector expressing the most variable N-terminal alpha-helical region induces higher antibody formation, with increased protection of mice against intraperitoneal challenge with a more virulent strain of S. pneumoniae. As a whole, these results indicate that antibodies elicited against PspA would not be solely responsible for the protection induced by DNA vaccination and that cell-mediated immune responses could also be involved in protection against pneumococcal sepsis.  相似文献   

6.
Pneumococcal surface protein A (PspA) of Streptococcus pneumoniae has been found to utilize a novel mechanism for anchoring to the bacterial cell surface. In contrast to that of surface proteins from other gram-positive bacteria, PspA anchoring required choline-mediated interactions between the membrane-associated lipoteichoic acid and the C-terminal repeat region of PspA. Release of PspA from the cell surface could be effected by deletion of 5 of the 10 C-terminal repeat units, by high concentrations of choline, or by growth in choline-deficient medium. Other pneumococcal proteins, including autolysin, which has a similar C-terminal repeat region, were not released by these treatments. The attachment mechanism utilized by PspA thus appears to be uniquely adapted to exploit the unusual structure of the pneumococcal cell surface. Further, it has provided the means for rapid and simple isolation of immunogenic PspA from S. pneumoniae.  相似文献   

7.
Streptococcus pneumoniae is a major bacterial pathogen that causes diseases such as pneumonia and meningitis in humans. One of the antigens of this organism is pneumococcal surface protein A (PspA). PspA is a virulence factor of the bacteria that has been shown to protect mice against pneumococcal infection. Among several domains of the protein, the amino-terminal part of PspA has been found to be a functional module which is essential for full pneumococcal infectivity. In order to investigate the properties of this protein, several internal fragments of the pspA gene were amplified from S. pneumoniae strain Rxl using the polymerase chain reaction (PCR). The fragments were then cloned and expressed in Escherichia coli in a soluble form using the T7 RNA polymerase pET15b and pET21a vector systems. The size of these fragments ranges from 24 to 32 kDa corresponding to amino acids 67-272 (PspA-206), 1-236 (PspA-236), and 1-272 (PspA-272). The fragments were purified to homogeneity using nickel chelating affinity, size exclusion, and anion-exchange chromatographic methods. During the course of expression of some of the PspA constructs, a shorter fragment was coexpressed due to translational pausing and subsequent secondary translation initiation. Two of the constructs, PspA-206 and PspA-272, were also crystallized allowing for the initiation of a structural elucidation of PspA.  相似文献   

8.
Strategies for the development of new vaccines against Streptococcus pneumoniae infections try to overcome problems such as serotype coverage and high costs, present in currently available vaccines. Formulations based on protein candidates that can induce protection in animal models have been pointed as good alternatives. Among them, the Pneumococcal Surface Protein A (PspA) plays an important role during systemic infection at least in part through the inhibition of complement deposition on the pneumococcal surface, a mechanism of evasion from the immune system. Antigen delivery systems based on live recombinant lactic acid bacteria (LAB) represents a promising strategy for mucosal vaccination, since they are generally regarded as safe bacteria able to elicit both systemic and mucosal immune responses. In this work, the N-terminal region of clade 1 PspA was constitutively expressed in Lactobacillus casei and the recombinant bacteria was tested as a mucosal vaccine in mice. Nasal immunization with L. casei-PspA 1 induced anti-PspA antibodies that were able to bind to pneumococcal strains carrying both clade 1 and clade 2 PspAs and to induce complement deposition on the surface of the bacteria. In addition, an increase in survival of immunized mice after a systemic challenge with a virulent pneumococcal strain was observed.  相似文献   

9.
EhCaBP1 is a well-characterized calcium binding protein from Entamoeba histolytica with four canonical EF-hand motifs. The crystal structure of EhCaBP1 reveals the trimeric organization of N-terminal domain. The solution structure obtained at pH 6.0 indicated its monomeric nature, similar to that of calmodulin. Recent domain-wise studies showed clearly that the N-terminal domain of EhCaBP1 is capable of performing most of the functions of the full-length protein. Additionally, the mode of target binding in the trimer is similar to that found in calmodulin. To study the dynamic nature of this protein and further validate the trimerization of N-terminal domain at physiological conditions, the crystal structure of N-terminal domain was determined at 2.5 Å resolution. The final structure consists of EF-1 and EF-2 motifs separated by a long straight helix as seen in the full-length protein. The spectroscopic and stability studies, like far and near-ultraviolet circular dichroism spectra, intrinsic and extrinsic fluorescence spectra, acrylamide quenching, thermal denaturation, and dynamic light scattering, provided clear evidence for a conversion from trimeric state to monomeric state. As the pH was lowered from the physiological pH, a dynamic trimer-monomer transition was observed. The trimeric state and monomeric state observed in spectroscopic studies may represent the x-ray and NMR structures of the EhCaBP1. At pH 6.0, the endogenous kinase activation function was almost lost, indicating that the monomeric state of the protein, where EF-hand motifs are far apart, is not a functional state.  相似文献   

10.
We have studied the solution properties of Nef, a 24-kDa cotranslationally myristoylated protein produced by HIV-1 and other primate lentiviruses. Nef is found in the cytosol and also in association with cytoplasmic membranes, the latter, mediated in part by the myristoyl group attached to the N-terminal glycine. Recombinant Nef was coexpressed in Escherichia coli in tandem with N-myristoyl-transferase and is fully myristoylated. Analysis by circular dichroism showed the myristoylated form to contain a greater alpha-helical content than the nonmyristoylated form. Analysis of modified and unmodified Nef in solution using small angle X-ray scattering, dynamic laser light scattering and analytical ultracentrifugation consistently showed differences in the oligomeric states of the two forms of Nef. Myristoylated Nef is predominantly monomeric and small oligomers which are also present, can be converted to the monomeric form under reducing conditions. By contrast, the nonmyristoylated form exists as a stable hexadecamer in solution which disassociates into tetramers upon addition of reducing agents. Shape reconstructions from small angle scattering curves of nonmyristoylated Nef are compatible with a large disc-like structure in the hexadecameric oligomer consisting of four Nef tetramers. From these findings, we hypothesize that Nef undergoes a substantial conformational change from an "open" into a "closed" form whereby the myristate group is sequestered in a hydrophobic pocket. The myristoylated protein can switch to the open conformation by association of the N-terminal region of molecule with membranes. These changes would allow Nef to carry out various functions depending on the conformational and oligomeric states.  相似文献   

11.
Streptococcus pneumoniae cell wall and cytoplasmic proteins contribute directly to pathogenesis of pneumococcal infection. Protective effect of pneumococcal proteins such as pneumolysin (Ply), muramylamidase (LytA) and pneumococcal surface protein A (PspA). There is discussion in the literature about development of conjugared pneumococcal vaccines, which should include polysaccharides of invasive serotypes of pneumococci as well as protein antigens of this pathogen, for prevention of infections caused by S. pneumoniae. Researches suggest that such hybrid vaccines will be effective, first of all, for children < 2 years of age and elderly > 65 years old because immune response to polysaccharide vaccines either do not form at all or insufficient for prevention of pneumococcal infection.  相似文献   

12.
Streptococcus pneumoniae is the main causative agent of acute otitis media in children. Serotype-based vaccines have provided some protection against otitis media, but not as much as anticipated, demonstrating the need for alternative vaccine options. Pneumococcal otitis media isolates were obtained from children 5 years old or younger from hospitals around Mississippi in the prevaccine era (1999-2000). These isolates were compared by capsular typing, pneumococcal surface protein A (PspA) family typing, antibiotic susceptibility, and DNA fingerprinting. Our study shows that there is great genetic variability among pneumococcal clinical isolates of otitis media, except with regard to PspA. Therefore, efforts focused on the development of a PspA-based pneumococcal vaccine would be well placed.  相似文献   

13.
14.
Mycoplasma pneumoniae forms an attachment organelle at one cell pole, binds to the host cell surface, and glides via a unique mechanism. A 170-kDa protein, P1 adhesin, present on the organelle surface plays a critical role in the binding and gliding process. In this study, we obtained a recombinant P1 adhesin comprising 1476 amino acid residues, excluding the C-terminal domain of 109 amino acids that carried the transmembrane segment, that were fused to additional 17 amino acid residues carrying a hexa-histidine (6?×?His) tag using an Escherichia coli expression system. The recombinant protein showed solubility, and chirality in circular dichroism (CD). The results of analytical gel filtration, ultracentrifugation, negative-staining electron microscopy, and small-angle X-ray scattering (SAXS) showed that the recombinant protein exists in a monomeric form with a uniformly folded structure. SAXS analysis suggested the presence of a compact and ellipsoidal structure rather than random or molten globule-like conformation. Structure model based on SAXS results fitted well with the corresponding structure obtained with cryo-electron tomography from a closely related species, M. genitalium. This recombinant protein may be useful for structural and functional studies as well as for the preparation of antibodies for medical applications.  相似文献   

15.
The surface of Streptococcus pneumoniae is decorated with a family of choline-binding proteins (CBPs) that are non-covalently bound to the phosphorylcholine of the teichoic acid. Two examples (PspA, a protective antigen, and LytA, the major autolysin) have been well characterized. We identified additional CPBs and characterized a new CBP, CbpA, as an adhesin and a determinant of virulence. Using choline immobilized on a solid matrix, a mixture of proteins from a pspA -deficient strain of pneumococcus was eluted in a choline-dependent fashion. Antisera to these proteins passively protected mice challenged in the peritoneum with a lethal dose of pneumococci. The predominant component of this mixture, CbpA, is a 75-kDa surface-exposed protein that reacts with human convalescent antisera. The deduced sequence from the corresponding gene showed a chimeric architecture with a unique N-terminal region and a C-terminal domain consisting of 10 repeated choline-binding domains nearly identical to PspA. A cbpA -deficient mutant showed a >50% reduction in adherence to cytokine-activated human cells and failed to bind to immobilized sialic acid or lacto-N-neotetraose, known pneumococcal ligands on eukaryotic cells. Carriage of this mutant in an animal model of nasopharyngeal colonization was reduced 100-fold. There was no difference between the parent strain and this mutant in an intraperitoneal model of sepsis. These data for CbpA extend the important functions of the CBP family to bacterial adherence and identify a pneumococcal vaccine candidate.  相似文献   

16.
Tom70 is a mitochondrial protein import receptor composed of 11 tetratricopeptide repeats (TPRs). The first three TPRs form an N-terminal domain that recruits heat shock protein family chaperones, while the eight C-terminal TPRs form a domain that receives, from the bound chaperone, mitochondrial precursor proteins destined for import. Analytical ultracentrifugation and solution small-angle X-ray scattering (SAXS) analysis characterized Tom70 as an elongated monomer. A model for the Tom70 monomer was proposed based on the alternate interpretation of the domain pairings observed in the crystal structure of the Tom70 dimer and refined against the SAXS data. In this “open” model of the Tom70 monomer, the chaperone- and precursor-binding sites are exposed and lay side by side on one face of the molecule. Fluorescence anisotropy measurements indicated that monomeric Tom70 can bind both chaperone and precursor peptides and that chaperone peptide binding does not alter the affinity of Tom70 for the precursor peptide. SAXS was unable to detect any shape change in Tom70 upon chaperone binding. However, molecular modeling indicated that chaperone binding is incompatible with Tom70 dimer formation. It is proposed that the Tom70 monomer is the functional unit mediating initial chaperone docking and precursor recognition.  相似文献   

17.
A comparison of the conformation of Folch-Pi apoprotein in organic solvent and in aqueous solutions has been made by ESR, infrared and circular dichroism spectroscopy studies. Electrophoresis and ultracentrifugation have been carried out in order to correlate molecular weight and charge of the molecule with its conformation. It appears that the protein is monomeric in organic solution. In water, only one component is present but the molecules behave as a polydisperse system of associating molecules. Hydrophobic interacitons seem to be important for this polymerisation which does not appear to be accompanied by the formation of beta-structure. After the transfer of the protein from organic solution to water, the ESR spectra of the protein labelled on the free SH groups show an heterogeneity in the motional environment of the label which permits to assume that different areas of association exist in the polymeric molecule.  相似文献   

18.
A mutant version of the N-terminal domain of Escherichia coli DnaB helicase was used as a model system to assess the stabilization against unfolding gained by covalent cyclization. Cyclization was achieved in vivo by formation of an amide bond between the N and C termini with the help of a split mini-intein. Linear and circular proteins were constructed to be identical in amino acid sequence. Mutagenesis of Phe102 to Glu rendered the protein monomeric even at high concentration. A difference in free energy of unfolding, DeltaDeltaG, between circular and linear protein of 2.3(+/-0.5) kcal mol(-1) was measured at 10 degrees C by circular dichroism. A theoretical estimate of the difference in conformational entropy of linear and circular random chains in a three-dimensional cubic lattice model predicted DeltaDeltaG=2.3 kcal mol(-1), suggesting that stabilization by protein cyclization is driven by the reduced conformational entropy of the unfolded state. Amide-proton exchange rates measured by NMR spectroscopy and mass spectrometry showed a uniform, approximately tenfold decrease of the exchange rates of the most slowly exchanging amide protons, demonstrating that cyclization globally decreases the unfolding rate of the protein. The amide proton exchange was found to follow EX1 kinetics at near-neutral pH, in agreement with an unusually slow refolding rate of less than 4 min(-1) measured by stopped-flow circular dichroism. The linear and circular proteins differed more in their unfolding than in their folding rates. Global unfolding of the N-terminal domain of E.coli DnaB is thus promoted strongly by spatial separation of the N and C termini, whereas their proximity is much less important for folding.  相似文献   

19.
20.
A biochemical approach to identify proteins with high affinity for choline-containing pneumococcal cell walls has allowed the localization, cloning and sequencing of a gene (lytC ) coding for a protein that degrades the cell walls of Streptococcus pneumoniae. The lytC gene is 1506 bp long and encodes a protein (LytC) of 501 amino acid residues with a predicted M r of 58 682. LytC has a cleavable signal peptide, as demonstrated when the mature protein (about 55 kDa) was purified from S. pneumoniae. Biochemical analyses of the pure, mature protein proved that LytC is a lysozyme. Combined cell fractionation and Western blot analysis showed that the unprocessed, primary product of the lytC gene is located in the pneumococcal cytoplasm whereas the processed, active form of LytC is tightly bound to the cell envelope. In vivo experiments demonstrated that this lysozyme behaves as a pneumococcal autolytic enzyme at 30 degrees C. The DNA region encoding the 253 C-terminal amino acid residues of LytC has been cloned and expressed in Escherichia coli. The truncated protein exhibits a low, but significant, choline-independent lysozyme activity, which suggests that this polypeptide adopts an active conformation. Self-alignment of the N-terminal part of the deduced amino acid sequence of LytC revealed the presence of 11 repeated motifs. These results strongly suggest that the lysozyme reported here has changed the general building plan characteristic of the choline-binding proteins of S. pneumoniae and its bacteriophages, i.e. the choline-binding domain and the catalytic domain are located, respectively, at the N-terminal and the C-terminal moieties of LytC. This work illustrates the natural versatility exhibited by the pneumococcal genes coding for choline-binding proteins to fuse separated catalytic and substrate-binding domains and create new and functional mature proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号