首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neosurugatoxin, a neurotoxin isolated from the Japanese ivory mollusc (Babylonia japonica) is a nicotinic antagonist with a specificity towards ganglionic nicotinic receptors. At low concentration (5 × 10?8 M) neosurugatoxin inhibited the release of [3H]dopamine evoked by 1,1-dimethyl-4-phenylpiperazinium (DMPP) from rat striatal nerve terminals, without affecting the response to K+-depolarisation. In contrast, αbungarotoxin did not antagonise the action of DMPP. Neosurugatoxin also inhibited [3H] nicotine binding to rat brain membranes but had no effect on [125I]αbungarotoxin binding to the same tissue preparation. These results support the view that functional nicotinic receptors in the CNS resemble ganglionic nicotinic receptors. Neosurugatoxin has considerable potential as a useful probe for such receptors in the brain.  相似文献   

2.
J C Miller  A J Friedhoff 《Life sciences》1979,25(14):1249-1255
The effect of dopamine on the K+-depolarized overflow of 3H-acetylcholine from rat striatal slices was investigated to determine whether drug-induced changes in neuronal sensitivity to dopamine might be manifested in changes in striatal cholinergic activity. Dopamine was found to produce a dose-dependent inhibition of the K+-evoked release of 3H-Ach. This inhibition could be blocked by prior exposure of the slices to haloperidol, a dopamine receptor blocker. Dopamine receptors localized on striatal cholinergic axon terminals and possibly postsynaptic dopamine receptors on cholinergic perikarya and dendrites may mediate the DA inhibition of 3H-Ach release induced by high K+. Chronic pretreatment with haloperidol followed by alpha-methyl-p-tyrosine resulted in a significant shift to the left in the dose-dependent inhibition of K+-stimulated overflow of 3H-Ach by dopamine. This shift to the left in the dose-response curve may be the result of an increase in the number of striatal dopamine receptors produced by chronic dopamine receptor blockade and inhibition of dopamine synthesis.  相似文献   

3.
Nicotinic receptors in aging and dementia   总被引:16,自引:0,他引:16  
Activation of neuronal nicotinic acetylcholine receptors (nAChRs) has been shown to maintain cognitive function following aging or the development of dementia. Nicotine and nicotinic agonists have been shown to improve cognitive function in aged or impaired subjects. Smoking has also been shown in some epidemiological studies to be protective against the development of neurodegenerative diseases. This is supported by animal studies that have shown nicotine to be neuroprotective both in vivo and in vitro. Treatment with nicotinic agonists may therefore be useful in both slowing the progression of neurodegenerative illnesses, and improving function in patients with the disease. While increased nicotinic function has been shown to be beneficial, loss of cholinergic markers is often seen in patients with dementia, suggesting that decreased cholinergic function could contribute to both the cognitive deficits, and perhaps the neuronal degeneration, associated with dementia. In this article we will review the literature on each of these areas. We will also present hypotheses that might address the mechanisms underlying the ability of nAChR function to protect against neurodegeneration or improve cognition, two potentially distinct actions of nicotine.  相似文献   

4.
J.F. Cubells  J.A. Joseph 《Life sciences》1981,28(11):1215-1218
This study was carried out to evaluate the behavioral implications of previously reported declines in striatal dopamine receptors sensitive to [3H]-neuroleptic specific binding. Rotational behavior was examined following right intrastriatal dopamine (DA) injections in nialamide pretreated rats that had been previously unilaterally lesioned in the left substantia nigra with 6-hydroxydopamine. Results showed that following DA injections old rats exhibited significant deficits in rotational behavioral response strength when compared to young rats. Results are discussed in terms of relating behavioral alterations in stereotypic behavior that occur with senescence to changes in striatal D2 receptors.  相似文献   

5.
Multiple nicotinic receptors are present in rodent and monkey striatum, with a selective localization of alpha-conotoxinMII-sensitive sites in the striatum and preferential declines in their numbers after nigrostriatal damage. Here we report the presence of 125I-alpha-conotoxinMII and alpha-conotoxinMII-sensitive 125I-epibatidine nicotinic receptors in human control and Parkinson's disease striatum. 125I-alpha-ConotoxinMII bound to control striatum with the characteristics of a nicotinic receptor ligand although the number of sites was approximately fivefold lower than in rodent and monkey. Competition analyses of alpha-conotoxinMII with 125I-epibatidine showed that toxin-sensitive sites comprised approximately 15% of nicotinic receptors in human striatum. In Parkinson's disease caudate, there was a approximately 50% decline in 125I-alpha-conotoxinMII sites with a similar decline in the dopamine transporter. In putamen, there were substantially greater losses of the dopamine transporter (80-90%) but only 50-60% decreases in 125I-alpha-conotoxinMII sites with corresponding declines in alpha-conotoxinMII-sensitive 125I-epibatidine sites, 125I-epibatidine (multiple) sites and 125I-A85380 (beta2-containing) nicotinic receptors. The greater loss of the transporter compared with nicotinic sites suggests that only a subpopulation of nicotinic receptors is located pre-synaptically on striatal dopaminergic neurons in man. Correlation analyses between changes in nicotinic receptors and the dopamine transporter in Parkinson's disease striatum suggest that alpha-conotoxinMII-sensitive 125I-epibatidine sites (low-affinity sites), 125I-A85380 and 125I-epibatidine sites are localized in part to dopaminergic terminals. In summary, these results show that alpha-conotoxinMII-sensitive sites are present in human striatum and that there are high- and low-affinity subtypes which are both decreased in Parkinson's disease.  相似文献   

6.
Perhydrohistrionicotoxin at micromolar concentrations blocked the nicotine-evoked transmitter release from perfused striatal (dopaminergic) and hippocampal (cholinergic) nerve terminals. Perhydrohistrionicotoxin failed to compete with [3H]nicotine for its high-affinity binding site in rat brain, suggesting that the action of this toxin on central nicotinic receptors is noncompetitive. From the dose-response curve, 50% inhibition of nicotine-evoked striatal dopamine release occurred at 5 microM perhydrohistrionicotoxin, a value similar to that obtained in frog sartorius muscle and Electrophorus electroplax. This close agreement may suggest that the ionic channel of the presynaptic nicotinic acetylcholine receptor of brain neurons has similar properties to those of the peripheral receptor.  相似文献   

7.
l ‐dopa‐induced dyskinesias (LIDs) are a side effect of Parkinson's disease therapy that is thought to arise, at least in part, because of excessive dopaminergic activity. Thus, drugs that regulate dopaminergic tone may provide an approach to manage LIDs. Our previous studies showed that nicotine treatment reduced LIDs in Parkinsonian animal models. This study investigates whether nicotine may exert its beneficial effects by modulating pre‐synaptic dopaminergic function. Rats were unilaterally lesioned by injection of 6‐hydroxydopamine (6‐OHDA) (2 × 3 ug per site) into the medial forebrain bundle to yield moderate Parkinsonism. They were then implanted with minipumps containing vehicle or nicotine (2.0 mg/kg/d) and rendered dyskinetic with l ‐dopa (8 mg/kg plus 15 mg/kg benserazide). Lesioning alone decreased the striatal dopamine transporter, nicotinic receptor (nAChR) levels, and nAChR‐mediated 3H‐dopamine release, consistent with previous results. Nicotine administration reduced l ‐dopa‐induced abnormal involuntary movements throughout the course of the study (4 months). Nicotine treatment led to declines in the striatal dopamine transporter, α6β2* nAChRs and various components of α6β2* and α4β2* nAChR‐mediated release. l ‐dopa treatment had no effect. These data suggest that nicotine may improve LIDs in Parkinsonian animal models by dampening striatal dopaminergic activity.  相似文献   

8.
Nicotinic acetylcholine receptors are ligand‐gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real‐time polymerase chain reaction (PCR) experiments demonstrated that β1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against β1 subunit revealed that inhibition of β1 expression strongly decreases nicotine‐induced currents amplitudes. Moreover, co‐application with 0.5 μM α‐bungarotoxin completely inhibited nicotine currents whereas 10 μM d‐tubocurarine had a partial effect demonstrating that β1‐containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α‐bungarotoxin.  相似文献   

9.
The orexigenic peptide ghrelin plays a prominent role in the regulation of energy balance and in the mediation of reward mechanisms and reinforcement for addictive drugs, such as nicotine. Nicotine is the principal psychoactive component in tobacco, which is responsible for addiction and relapse of smokers. Nicotine activates the mesencephalic dopaminergic neurons via nicotinic acetylcholine receptors (nAchR). Ghrelin stimulates the dopaminergic neurons via growth hormone secretagogue receptors (GHS-R1A) in the ventral tegmental area and the substantia nigra pars compacta resulting in the release of dopamine in the ventral and dorsal striatum, respectively. In the present study an in vitro superfusion of rat striatal slices was performed, in order to investigate the direct action of ghrelin on the striatal dopamine release and the interaction of ghrelin with nicotine through this neurotransmitter release. Ghrelin increased significantly the dopamine release from the rat striatum following electrical stimulation. This stimulatory effect was reversed by both the selective nAchR antagonist mecamylamine and the selective GHS-R1A antagonist GHRP-6. Nicotine also increased significantly the dopamine release under the same conditions. This stimulatory effect was antagonized by mecamylamine, but not by GHRP-6. Ghrelin further stimulated the nicotine-induced dopamine release and this effect was abolished by mecamylamine and was partially inhibited by GHRP-6. The present results demonstrate that ghrelin stimulates directly the dopamine release and amplifies the nicotine-induced dopamine release in the rat striatum. We presume that striatal cholinergic interneurons also express GHS-R1A, through which ghrelin can amplify the nicotine-induced dopamine release in the striatum. This study provides further evidence of the impact of ghrelin on the mesolimbic and nigrostriatal dopaminergic pathways. It also suggests that ghrelin signaling may serve as a novel pharmacological target for treatment of addictive and neurodegenerative disorders.  相似文献   

10.
Chronic nicotine exposure up-regulates neuronal nicotinic receptors, but the functional consequences for these receptors is less well understood. Following 2 weeks of nicotine or saline treatment by osmotic minipump, the functional activity of nicotinic receptors was measured by concentration-response curves for epibatidine-stimulated (86)Rb efflux. Nicotine-treated animals had a significantly higher maximal efflux in cerebral cortex and superior colliculus, but not in thalamus or interpeduncular nucleus plus medial habenula. This increase was confirmed in a separate experiment with stimulation by single concentrations of epibatidine (cortex, superior colliculus) or nicotine (cortex only). Chronic nicotine did not alter (86)Rb efflux stimulated by cytisine, an alpha3beta4-selective agonist, or by potassium chloride, in any region. Short-term (16 h) nicotine exposure caused no changes in either (86)Rb efflux or receptor binding measured with [(3)H]epibatidine. Binding was significantly increased after 2 weeks nicotine exposure in cortex, superior colliculus and thalamus, but not in interpeduncular nucleus plus medial habenula. The increases in epibatidine-stimulated (86)Rb efflux in the four regions tested was linearly correlated with the increases in [(3)H]epibatidine binding in these regions (R(2) = 0.91), suggesting that rat brain receptors up-regulated by chronic nicotine are active. These results have important consequences for understanding nicotinic receptor neurobiology in smokers and users of nicotine replacement therapy.  相似文献   

11.
Mouse striatum was incubated with [3H]dopamine ([3H]DA) and superfused with and the tritium efflux induced by nicotine, electrical stimulation, or simultaneous nicotine and electrical stimulation was measured, to characterize the role of different Ca2+ channels in the transmitter release. Nicotine stimulation and electrical stimulation exerted additive effects on tritium efflux. Separation of the released radioactivity on alumina columns indicated that nicotine or electrical stimulation increases the release of [3H]DA and that the outflow of3H-labeled metabolites was similar with the two different stimulation procedures. Removal of Ca2+ from the superfusate resulted in a marked reduction in the tritium release evoked by nicotine, whereas the electrical stimulation-evoked tritium release was completely dependent on external Ca2+. The L-and N-type calcium channel blockers omega-conotoxin GVIA and Cd2+ inhibited the tritium release from the striatum evoked by either nicotine or electrical stimulation, whereas the L-type and T-type channel blockers diltiazem and Ni2+ did not alter release of [3H]DA. We conclude that N-type voltage-sensitive Ca2+ channels participate in striatal dopamine release, and we speculate that nicotinic receptor-operated ion channels permeable to cations such as Ca2+ and N-type voltage-sensitive calcium channels may simultaneously open up, and they additively increase free intracellular Ca2+ concentration.  相似文献   

12.
This study establishes that presynaptic nicotinic receptors modulate dopamine release in the mouse striatum. Nicotinic agonists elicit a dose-dependent increase in the release of [3H]dopamine from synaptosomes prepared from mouse striatum. At low concentrations, this release is Ca2+ dependent, whereas at higher concentrations Ca(2+)-independent, mecamylamine-insensitive release was also observed. The Ca(2+)-dependent nicotine-evoked release was not blocked by alpha-bungarotoxin but was effectively blocked by neuronal bungarotoxin as well as several other nicotinic receptor antagonists. The relationship between potency for stimulation of release for agonists and potency for inhibition of release for antagonists was compared to the affinity of these compounds for the [3H]nicotine binding site. The overall correlation between release and binding potency was not high, but the drugs may be classified into separate groups, each of which has a high correlation with binding. This finding suggests either that more than one nicotinic receptor regulates dopamine release or that not all agonists interact with the same receptor in an identical fashion.  相似文献   

13.
Opiates, like other addictive drugs, elevate forebrain dopamine levels and are thought to do so mainly by inhibiting GABA neurons near the ventral tegmental area (VTA), in turn leading to a disinhibition of dopamine neurons. However, cholinergic inputs from the laterodorsal (LDT) and pedunculopontine (PPT) tegmental nucleus to the VTA and substantia nigra (SN) importantly contribute, as either LDT or PPT lesions strongly attenuate morphine-induced forebrain dopamine elevations. Pharmacological blockade of muscarinic acetylcholine receptors in the VTA or SN has similar effects. M5 muscarinic receptors are the only muscarinic receptor subtype associated with VTA and SN dopamine neurons. Here we tested the contribution of M5 muscarinic receptors to morphine-induced dopamine elevations by measuring nucleus accumbens dopamine efflux in response to intra-VTA morphine infusion using in vivo chronoamperometry. Intra-VTA morphine increased nucleus accumbens dopamine efflux in urethane-anesthetized wildtype mice starting at 10 min after infusion. These increases were absent in M5 knockout mice and were similarly blocked by pre-treatment with VTA scopolamine in wildtype mice. Furthermore, in wildtype mice electrical stimulation of the PPT evoked an initial, short-lasting increase in striatal dopamine efflux, followed 5 min later by a second prolonged increase in dopamine efflux. In M5 knockout mice, or following systemic pre-treatment with scopolamine in wildtype mice, the prolonged increase in striatal dopamine efflux was absent. The time course of increased accumbal dopamine efflux in wildtype mice following VTA morphine was consistent with both the prolonged M5-mediated excitation of striatal dopamine efflux following PPT electrical stimulation and accumbal dopamine efflux following LDT electrical stimulation. Therefore, M5 receptors appear critical for prolonged PPT excitation of dopamine efflux and for dopamine efflux induced by intra-VTA morphine.  相似文献   

14.
Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.  相似文献   

15.
Striatal dopamine plays key roles in our normal and pathological goal-directed actions. To understand dopamine function, much attention has focused on how midbrain dopamine neurons modulate their firing patterns. However, we identify a presynaptic mechanism that triggers dopamine release directly, bypassing activity in dopamine neurons. We paired electrophysiological recordings of striatal channelrhodopsin2-expressing cholinergic interneurons with simultaneous detection of dopamine release at carbon-fiber microelectrodes in striatal slices. We reveal that activation of cholinergic interneurons by light flashes that cause only single action potentials in neurons from a small population triggers dopamine release via activation of nicotinic receptors on dopamine axons. This event overrides ascending activity from dopamine neurons and, furthermore, is reproduced by activating ChR2-expressing thalamostriatal inputs, which synchronize cholinergic interneurons in vivo. These findings indicate that synchronized activity in cholinergic interneurons directly generates striatal dopamine signals whose functions will extend beyond those encoded by dopamine neuron activity.  相似文献   

16.
Abstract: The potent nicotinic agonist anatoxin-a elicits mecamylamine-sensitive [3H]dopamine release from striatal synaptosomes, and this action is both Na+ and Ca2+ dependent and is blocked by Cd2+. This suggests that stimulation of presynaptic nicotinic receptors results in Na+ influx and local depolarisation that activates voltage-sensitive Ca2+ channels, which in turn provide the Ca2+ for exocytosis. Here we have investigated the subtypes of Ca2+ channels implicated in this mechanism. [3H]Dopamine release evoked by anatoxin-a (1 µM) was partially blocked by 20 µM nifedipine, whereas KCl-evoked release was insensitive to the dihydropyridine. However, a 86Rb+ efflux assay of nicotinic receptor function suggested that nifedipine has a direct effect on the receptor, discrediting the involvement of L-type channels. The N-type Ca2+ channel blocker ω-conotoxin GVIA (1 µM) blocked anatoxin-a-evoked [3H]dopamine release by 60% but had no significant effect on 86Rb+ efflux; release evoked by both 15 and 25 mM KCl was inhibited by only 30%. The P-type channel blocker ω-agatoxin IVA (90 nM) also inhibited KCl-evoked release by ~30%, whereas anatoxin-a-evoked release was insensitive. The Q-type channel blocker ω-conotoxin MVIIC (1 µM) had no effect on either stimulus. These results suggest that presynaptic nicotinic receptors on striatal nerve terminals promote [3H]dopamine release by activation of N-type Ca2+ channels. In contrast, KCl-evoked [3H]dopamine release appears to involve both N-type and P-type channels.  相似文献   

17.
Biogenic amines (BAs) play a central role in the generation of complex behaviors in vertebrates and invertebrates, including the fly Drosophila melanogaster. The comparative advantages of Drosophila as a genetic model to study the contribution of BAs to behaviors stumble upon the difficulty to access the fly brain to ask relevant physiological questions. For instance, it is not known whether the activation of nicotinic acetylcholine receptors (nAChRs) induces the release of BAs in fly brain, a phenomenon associated to several behaviors in vertebrates. Here, we describe a new preparation to study the efflux of BAs in the adult fly brain by in vitro chronoamperometry. Using this preparation we show that nAChR agonists including nicotine induce a fast, transient, dose‐dependent efflux of endogenous BAs, an effect mediated by α‐bungarotoxin‐sensitive nAChRs. By using different genetic tools we demonstrate that the BA whose efflux is induced by nAChR activation is octopamine (Oct). Furthermore, we show that the impairment of a mechanically induced startle response after nicotine exposure is not observed in flies deficient in Oct transmission. Thus, our data show that the efflux of BAs in Drosophila brain is increased by nAChR activation as in vertebrates, and that then AChR‐induced Oct release could have implications in a nicotine‐induced behavioral response.  相似文献   

18.
The present studies were done to investigate the effect of long-term nicotine treatment against nigrostriatal damage in non-human primates. Monkeys were administered nicotine in drinking water for 6 months to provide chronic but intermittent delivery as with smoking. Plasma nicotine levels ranged from 10 to 15 ng/mL, which were within the range in cigarette smokers. Animals were then lesioned with low doses of the dopaminergic neurotoxin MPTP for several months while nicotine was continued. The results showed that levels of striatal tyrosine hydroxylase, dopamine transporter, vesicular monoamine transporter, dopamine and nicotinic receptors were greater in nicotine-treated MPTP-lesioned primates than in lesioned animals not receiving nicotine. Nicotine had no effect in unlesioned animals. Monoamine oxidase activity was similar in unlesioned and lesioned animals treated with or without nicotine, suggesting that nicotine did not exert its effects through changes in MPTP or dopamine metabolism. MPTP-induced cell loss in the substantia nigra was unaffected by nicotine treatment, indicating that nicotine acts at the striatal level to restore/maintain dopaminergic function. These data further support the possibility that nicotine contributes to the lower incidence of Parkinson's disease in smokers.  相似文献   

19.
A number of studies have found that the chronic administration of nicotine causes an increase in the density of nicotinic binding sites in the brain, but it is not known whether these additional binding sites are functionally active receptors. In this study, the effects of 1-week administration of the potent nicotinic agonist, (+)-anatoxin-a (96 nmol/day via osmotic minipumps), was assessed on [3H]nicotine binding and [3H]dopamine uptake and release in rat striatal synaptosomes. Chronic (+)-anatoxin-a treatment resulted in a 32% increase in the Bmax of [3H]nicotine binding in anatoxin-treated animals compared to control. There was a 43% increase in the activity of 3 microM nicotine to release [3H]dopamine from synaptosomes of anatoxin-treated animals, but the release induced by 20 mM K+ depolarization was unaffected. There was no effect of chronic (+)-anatoxin-a treatment on the uptake of [3H]dopamine. A strong positive correlation (r = 0.64) was found between the density of [3H]nicotine binding sites and the nicotine-induced stimulation of [3H]dopamine release in individual animals. These results indicate that (+)-anatoxin-a, like nicotine, produces an up-regulation of nicotine binding sites following chronic administration, and that these additional sites are functional receptors capable of mediating the release of dopamine from striatal synaptosomes.  相似文献   

20.
This study examined the 24-hour changes in a number of transmitters in the corpus striatum of young and middle-aged male Wistar rats. The contents of excitatory amino acids (glutamate, aspartate) and inhibitory amino acids (gamma-aminobutyric acid, GABA; taurine, glycine) and of somatostatin were measured in 2-month- and 18- to 20-month-old rats killed at six different time points along the 24-hour cycle. The striatal serotonin and dopamine turnover was also measured. Both young and middle-aged rats showed significant 24-hour variations in striatal glutamate and aspartate contents; only in young rats these variations fitted a cosine function, with acrophase during the first part of rest span. Mesor values of striatal excitatory amino acid contents were lowest in middle-aged rats. Significant 24-hour variations in striatal contents of GABA, taurine, and glycine occurred in young rats, while only striatal GABA exhibited 24-hour changes in middle- aged rats (acrophases during the first part of rest span). For every inhibitory transmitter, the mesor values in middle-aged rats were significantly lower than in young rats. The 24-hour variation of the striatal somatostatin content showed acrophase during the first part of rest span, mesor values and amplitude being lowest in middle-aged rats. Aging rats exhibited significantly higher mesor values of striatal serotonin turnover (34% increase) and lower mesor values of dopamine turnover (69% decrease) than their younger counterparts. Some of the circadian modifications of motor function seen in aging rats could be related to the striatal transmitter changes reported herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号