首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Skin temperature, cardiovascular and neuroendocrine responses to morphine withdrawal in the rat were evaluated in an effort to develop a potential animal model for the menopausal hot flush in women. Morphine dependency was produced by s.c. implantation of pellets containing morphine alkaloid. In response to precipitous, naloxone-induced withdrawal, rats showed surges in tail skin temperature (TST) which were similar in magnitude (4.8 to 7.2 degrees C) and duration (60 to 90 min.) to peripheral skin temperature increases reported during menopausal hot flushes. Additionally, a brief period of accelerated heart rate (59%) and a 9-fold hypersecretion of luteinizing hormone (LH) preceded the TST response to morphine withdrawal. These cardiovascular and neuroendocrine responses are observed to precede or coincide with the menopausal hot flush. Additionally, protracted morphine withdrawal subsequent to abstention, resulted in TST instability characterized by spontaneous, high amplitude TST fluctuations. Thus, the alteration in skin temperature, heart rate and LH secretion during precipitated morphine withdrawal in the rat are similar in magnitude, duration and in their temporal relationship to those observed during the hot flush. These data suggest a possible opioid etiology in this vasomotor disturbance. Acute withdrawal in the morphine addicted rats may serve as an animal model by which to study the neural mechanism underlying the menopausal hot flush.  相似文献   

2.
Single doses of naloxone (0.025 to 0.5 mg/kg) or of one of four quaternary narcotic antagonists (i.e. nalorphine allobromide, nalorphine methobromide, naloxone methobromide or naltrexone methobromide, 1 to 60 mg/kg) were given s.c. to rats before morphine, 5 mg/kg i.v. In the absence of antagonists morphine reduced G.I. transit of a charcoal meal to about 15% of drug-free controls and consistently delayed nociceptive reactions (55°C hot plate) in all animals. Doses of antagonists slightly reducing morphine antinociception (centrally effective = A) and restoring G.I. transit to about 50% of drug-free rats (peripherally effective = B) were estimated. The A:B ratio, indicating peripheral selectivity, was at least 8 for any of the quaternary antagonists given 10 min before morphine, but prolonging this interval may have resulted in a lower figure (i.e. less peripheral selectivity) because of reduced A and increased B. This was definitely so for naltrexone methobromide (A:B, > 60 at 10 min, about 1 at 80 min) and was not apparent for nalorphine methobromide according to available data, which for nalorphine allobromide and to a lesser extent for naloxone methobromide showed only an increase in B at intervals longer than 10 min. Both morphine-induced antinociception and inhibition of G.I. transit were reduced by naloxone at the lower doses tested and were fully prevented at the higher. These findings indicate that, unlike naloxone, the investigated quaternary narcotic antagonists are interesting prototype drugs for selective blockade of opiate receptors outside the CNS, although certain critical aspects, possibly biological N-dealkylation to the corresponding tertiary antagonists, condition peripheral selectivity.  相似文献   

3.
Administration of naloxone to morphine-dependent rats results in an elevation of tail skin temperature and a fall in core temperature. Previous studies have demonstrated a role of the adrenal gland in the thermal responses that accompany morphine withdrawal in the rat. In the present study, experiments were designed to determine if the duration of adrenalectomy significantly influenced the thermal response observed in morphine withdrawal. In addition we evaluated the influence of the adrenal medulla and glucocorticoid replacement in adrenalectomized rats in mediating the thermal responses of the morphine-dependent rat. Ovariectomized rats were addicted to morphine and subsequently withdrawn by administration of naloxone. This treatment results in a significant rise in tail skin temperature and subsequent fall in colonic temperature. These thermal responses were not observed in morphine-naive rats. Adrenalectomy resulted in a significant attenuation of the rise in tail skin temperature associated with withdrawal. This reduced tail skin temperature response was not different among animals adrenalectomized for 1, 7, 14, 21, or 28 days. Likewise, the moderate increase in core temperature associated with morphine treatment was not observed in the adrenalectomized rats. Serum corticosteroid determinations confirmed the loss of the adrenal steroids in the adrenalectomized rats. In a subsequent experiment it was determined that adrenal demedullation did not reduce the tail skin temperature response during morphine withdrawal, and corticosteroids restored the naloxone-induced surge in tail skin temperature in morphine-dependent, adrenalectomized rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Studies were undertaken to evaluate the role of peripheral adrenergic mechanisms and the adrenal gland in the thermal responses which accompany morphine withdrawal in the rat. Ovariectomized rats were addicted to morphine and subsequently withdrawn by administration of naloxone. This treatment resulted in a significant rise (5-6 degrees C) in tail skin temperature (TST) and fall in colonic temperature (2-4 degrees C). Systemic administration of clonidine (0.5 mg/kg) completely suppressed this surge in TST and significantly attenuated the fall in core temperature. Similar results were observed following the systemic administration of ST-91, another alpha 2-adrenergic agonist which does not cross the blood-brain barrier. Central administration of ST-91 (50 micrograms/5 microliters, icv) was also successful in attenuating these temperature changes in the morphine-dependent rat. Adrenalectomy and peripheral administration of propranolol (10 mg/kg sc) both resulted in a significant attenuation of the surge in TST and the fall in core temperature in the morphine-dependent rat which suggest some peripherally mediated event is necessary to produce the full skin temperature surge. Collectively, the data suggest a role for the adrenal gland and adrenergic receptors in producing the surge in TST in morphine-dependent rats. It also suggests that the blocking effects of the alpha 2-adrenergic agonist can be mediated both centrally and peripherally.  相似文献   

5.
Central effects of naloxone on the cardiovascular responses of centrally administered clonidine were studied in anaesthetised normotensive, renal DOCA-salt hypertensive and morphine dependent rats. Clonidine (5 micrograms/ICV) produced significant decrease in blood pressure and heart rate in all the groups of rats in a dose dependent manner. Naloxone (2 micrograms/ICV) failed to reverse the responses of clonidine in all the rat groups. In morphine dependent normotensive and morphine dependent renal DOCA-salt hypertensive rats, the responses of clonidine were further enhanced in the presence of naloxone. Our observations clearly indicate that clonidine does not influence endogenous opioid system for producing cardiovascular effects.  相似文献   

6.
Pure narcotic antagonists such as naloxone and naltrexone have consistently been shown to attenuate drinking in the rat after periods of water deprivation. One objective of this study was to extend observations to a primate species, the squirrel monkey. Whereas naloxone and naltrexone have a greater relative affinity for opiate receptors preferentially binding morphine and other opiate alkaloids than for those with high affinity for the endogenous opioid peptides, diprenorphine, another pure opiate antagonist, binds with equally high affinity to both receptor subtypes. Therefore, a second objective was to determine the actions of diprenorphine on drinking in water-deprived rats and squirrel monkeys and to compare the effects of this drug to those of naloxone and naltrexone. All three narcotic antagonists suppressed water consumption of monkeys and rats deprived of water for 18 and 24 hr, respectively. Diprenorphine was the most potent compound tested in both species, producing significant reductions in water consumption of monkeys and rats at systemic doses as low as 0.01 and 0.1 mg/kg respectively. Moreover, diprenorphine was the longest acting of the three drugs in the monkey. These results demonstrate that the narcotic antagonists attenuate drinking in primates as well as in rodents and support the hypothesis that these drugs reduce water intake by interrupting the activity of endogenous opioid pathways mediating drinking behavior.  相似文献   

7.
K Ramabadran 《Life sciences》1982,31(12-13):1253-1256
Subcutaneous administrations of naloxone and naltrexone have already been shown to enhance nociceptive reactions in mice. The present study was undertaken to examine the effects of N-methyl-naloxone and N-methylnaltrexone on nociception using the hot plate test (dose range: 0.3 to 30 mg kg-1s.c.). The latter compounds were selected to differentiate the central and peripheral components of hyperalgesia. Unlike naloxone, N-methyl-naloxone did not produce hyperalgesia. Similarly low doses of N-methylnaltrexone did not enhance the jumping response. However, a high dose of N-methylnaltrexone (30 mg kg-1 s.c.) significantly reduced the jumping latencies 2 h after its administration. This phenomenon indicated that it might be converted to an active metabolite. Further, N-methylnaloxone and N-methylnaltrexone were very weak in precipitating the signs of abstinence in mice rendered acutely dependent on morphine. Two factors, poorer penetration into the CNS and steric hindrance, might render the N-methylated antagonists weak. Hence, both these factors should be considered when interpreting the effects after quaternary derivatives of opioid antagonists.  相似文献   

8.
Chronic treatment with naloxone (Nx) or naltrexone (Ntx) induces paradoxical analgesia. In the present study, the effects of chronic treatment with opioid receptor antagonists, such as nor-binaltorphimine (nor-BNI) for kappa and naltrindole (NTI) for delta receptors, on analgesic response using the hot plate test and on morphine physical dependence in rats were examined. The hot plate latency was significantly increased by pretreatment with Nx (5 mg/kg, s.c.), nor-BNI (20 mg/kg, i.p.) or NTI (20 mg/kg, i.p.) for 5 days. After chronic pretreatment with these antagonists, the rats were treated with morphine-admixed food (0.5 mg/g of food) for 3 days. Chronic pretreatment with Nx and NTI significantly increased Nx precipitated body weight loss in morphine dependent rats, while chronic pretreatment with nor-BNI produced small increase. These results indicate that chronic treatment with nor-BNI or NTI as well as with Nx induces obviously paradoxical analgesia, and that chronic blockade of mu or delta may enhance the development of physical dependence on morphine.  相似文献   

9.
Although a central site of acute opiate action in regulating luteinizing hormone (LH) secretion has been suggested by the ability of centrally implanted opiate antagonists to increase LH levels, opiate antagonists are lipophilic and could influence the pituitary in situ. Also, the physiological significance of opiate receptor blockade with antagonists rests on the assumed, but untested, stereoselectivity of these receptors. Therefore, a lipophobic quaternized derivative of naltrexone (MRZ 2663-Naltrexone methobromide) and dextro- (+) and levo- (-) stereoisomers of naloxone were used to study the site- and stereoselectivity of gonadotropin responses to opiate antagonists in vivo. Male rats were injected intracerebroventricularly (icv) or intravenously (iv) with the quaternary or tertiary congeners of naltrexone and subcutaneously (sc) with (-) or (+)-naloxone. Rats injected icv with 20 ug of quaternary naltrexone displayed significant increases in serum luteinizing hormone (LH). The onset of the response was rapid with serum LH levels being significantly elevated 15 minutes after the injection and returning to basal levels 30 minutes later. Rats injected iv with 10 mg/kg of quaternary naltrexone failed to show significant LH responses. Rats injected either centrally or periphally with equivalent doses of tertiary naltrexone showed LH responses that were similar to those found in animals injected icv with quaternary naltrexone. As little as 0.5 mg/kg of (-)-naloxone resulted in significant elevations in serum LH that were higher than those elicited by up to 10 mg/kg of (+)-naloxone, indicating that this effect of naloxone is stereoselective. These data support the argument that opioids can acutely modulate LH secretion through actions at stereoselective opioid receptors in the central nervous system.  相似文献   

10.
Nalmefene is an orally active opiate antagonist structurally related to naloxone and naltrexone. In this study using two different strains of mice (Swiss Cox and ICR), the antagonist activity of nalmefene given subcutaneously (sc) was quantified by determination of the apparent pA2 values against the antinociceptive activity (tail flick and hot plate tests) of morphine given sc or intrathecally (lumbar spinal cord). The apparent pA2 values (constrained to a slope of -1) were 8.06 (7.79-8.33) in Swiss Cox mice and 7.81 (7.62-8.00) in ICR mice in the tail flick test with sc morphine. These values were larger than the corresponding value for naloxone in ICR mice, 7.35 (7.10-7.60). The hot plate test provided similar results: the apparent pA2 values for nalmefene with sc morphine were 8.14 (7.89-8.39) in Swiss Cox mice and 7.81 (7.65-7.97) in ICR mice, values which were different from naloxone 7.33 (7.23-7.42) in ICR mice. Apparent pA2 values for nalmefene with intrathecal morphine were not different from those for naloxone in the tail flick test. Thus, these sets of results suggest that it may be worthwhile to further determine whether systemic nalmefene might possibly possess an advantage over naloxone in antagonizing systemic side effects of morphine arising from local spinal morphine administration.  相似文献   

11.
Factors affecting angiotensin II-induced hypothermia in rats   总被引:3,自引:0,他引:3  
K M Wilson  M J Fregly 《Peptides》1985,6(4):695-701
Systemic administration of angiotensin II (AII) to the rat has previously been shown to induce a dose-dependent, hypothermic response manifested by a fall in colonic temperature (CT), a decrease in heat production and an increase in tail skin temperature (TST). The factors mediating AII-induced hypothermia and their site of action were the subjects of the present investigation. To this end, intracerebroventricular administration of 1 microgram of AII induced a 0.4 degrees C reduction in CT and a 2.4 degrees C increase in TST. In contrast, SC administration of 200 micrograms angiotensin III/kg induced a slight increase in CT but had no affect on TST. Pretreatment with the AII-receptor antagonist, saralasin, at either 1 or 10 micrograms/kg, SC did not affect either the fall in CT or the increase in TST induced by administration of 200 micrograms AII/kg, SC. However, the administration of 100 micrograms saralasin/kg, SC attenuated both the fall in CT and the increase in TST induced by either 100 or 200 micrograms AII/kg. Since both the presynaptic alpha adrenoceptor agonist, clonidine, and the opioid antagonist, naloxone, modulate the pressor and dipsogenic responses to AII, their effects on AII-induced hypothermia were tested. Both clonidine (25 micrograms/kg, SC) and naloxone (1 mg/kg, IP) enhanced the fall in CT. Clonidine lengthened the duration of the increase in TST while naloxone had no effect. Pretreatment with the presynaptic adrenoceptor antagonist, yohimbine (300 micrograms/kg, SC), did not alter the hypothermic response to administration of AII. To determine whether vasodilation of the tail of the rat was mediated by AII-induced prostaglandin release, indomethacin (4 and 6 mg/kg) was administered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Previous work from our own and other laboratories has shown that electroshock-induced neurohormonal changes in rodents could modify host-tumor interactions by both increasing the frequency and growth rate of transplanted tumors and decreasing the elimination rate of a radiolabelled natural killer (NK) cell sensitive tumor. To test whether such neurohormonal changes could affect NK activity we subjected mice to tail electrode shock (TES) and examined in vitro splenic NK activity. We found that between 30 and 60 min after TES there is a significant but transient suppression of their splenic NK activity. To determine whether TES-induced endogenous opioids might be involved in this suppression mice were given intraperitoneal injections of the opioid antagonists naloxone or naltrexone before or at the end of the TES session. These drugs prevented NK suppression. In a further test of the hypothesis that opioids alter NK activity mice were given a single intraperitoneal injection of morphine or [D-Ala2-Met5]-beta-endorphin, a relatively stable analogue of beta-endorphin, an endogenous opioid. Contrary to expectations these opioids enhanced splenic NK activity. Our interpretation of these results is that shock-induced NK suppression may not be mediated by endogenous opioids and that the effects of naloxone and naltrexone on NK activity may not be related to their opioid antagonist properties. On the contrary, opioids may participate in a homeostatic rebound from suppression mediated by other neurohormonal mechanisms activated during TES.  相似文献   

13.
Intravenous injection of opioid agonists in rats evokes a vagal reflex resulting in a fall in heart rate and blood pressure. Three opioid antagonists, naloxone, SMS 201-995, and ICI 154,129 were used to assess the nature of the opioid receptors that mediate the vagal reflex. The agonists used were morphine, Tyr-Pro-NMePhe-d-Pro-NH2 (PLO17), and d-Ala2-Leu5-enkephalin (DADL). At challenge doses of morphine, PLO17, and DADL at five times the ED50 for bradycardia, the naloxone ED50 for DADL was nine times greater than that for morphine and PLO17. The pA2 value of naloxone against DADL was significantly less than that for morphine and PLO17. The antagonist properties of SMS 201-995 were similar to those of naloxone. ICI 154,129, a putative delta receptor antagonist, was not, however, selective in its antagonism of opioid bradycardia. Both SMS 201-995 and ICI 154,129, when injected alone, produced changes in heart rate and blood pressure. The cardiovascular actions of the peptide antagonists were not affected by naloxone hydrochloride at doses up to 4 mg/kg i.v.  相似文献   

14.
C A Paronis  S G Holtzman 《Life sciences》1992,50(19):1407-1416
Chronic opioid antagonist administration increases opioid binding sites and potentiates behavioral responses to morphine. Conversely, chronic opioid agonist administration attenuates behavioral responses to morphine, though this is not necessarily accompanied by a parallel loss of binding sites. We examined the possibility that the in vivo affinity of the mu receptors might be altered as a consequence of the continuous administration of either naloxone or morphine. Rats were implanted sc with naloxone- or morphine-filled osmotic pumps; control animals were implanted with sham pumps. One week later, 24 hr after removing the osmotic pumps, cumulative dose-response curves for fentanyl analgesia were generated in the presence of 0.0, 0.03, 0.1, or 0.3 mg/kg naltrexone, using a tail-flick procedure. The analgesic ED50 (with 95% C. L.) of fentanyl in sham implanted animals, following saline pretreatment was 0.027 mg/kg (0.019, 0.039). The potency of fentanyl was decreased in rats infused with morphine, ED50 = 0.051 mg/kg (0.028, 0.093), and increased in rats that received naloxone, ED50 = 0.018 mg/kg (0.015, 0.022). The mean apparent pA2 value for naltrexone (with 95% C.L.) in the control group was 7.7 (7.5, 7.9). No differences were detected in animals that had received either naloxone or morphine for 7 days, pA2 = 7.8 (7.5, 8.1) and 7.4 (7.3, 7.6), respectively. Our results indicate that there is no change in the apparent affinity of the mu-receptor following continuous exposure to either an opioid agonist or antagonist, at a time when the analgesic potency of the agonist is decreased or increased, respectively.  相似文献   

15.
Corticotropin-releasing factor (CRF) participates in development of stress-induced analgesia. Midbrain periaqueductal grey matter (MPAG) is one of crucial structures of the brain antinociceptive system. The aim of the study was to investigate effects of the CRF administration into the MPAG on pain sensitivity in alert rats and contribution of opioid mechanisms to these CRF-induced effects. Somatic pain sensitivity was tested by tail flick response latency following thermal stimuli. The opioid antagonist naltrexone administered systemically or centrally into the MPAG was used to study involvement ofopioid mechanisms in the CRF-induced effects. The CRF administration (0.7 microg/rat) into the MPAG caused analgesic effect. The CRF-induced analgesic effects were eliminated by systemic as well as central naltrexone pretreatment. Effect of central naltrexone on the CRF-induced analgesia manifested itself faster as compared with effect of systemic naltrexone. The data obtained suggest that one of central mechanisms of the CRF-induced analgesic effect on somatic pain sensitivity in alert rats may be mediated by the MPAG neurons and provided by involvement of opioid mechanisms.  相似文献   

16.
《Journal of thermal biology》2001,26(4-5):351-356
(1) Exposure to ambient temperatures outside the thermoneutral zone modifies energy balance in mammals. (2) This study examined the response of acclimated animals to the administration of non-selective and mu-selective opioid agonists and antagonists on body temperature (Tb). (3) Saline had no effect on Tb. (4) In cold-acclimated animals, naloxone alone decreased Tb while morphine produced a biphasic response. (5) In both warm- and cold-acclimated animals, PL-017 induced hyperthermia. (6) CTAP, had no effect alone and blocked PL-017-induced hyperthermia in both groups of animals. (7) The data shows that acclimation modifies the response of the animals to administration of opioid agonists and antagonists.  相似文献   

17.
Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs) by the mu opioid receptor (MOR), although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a pentapeptide segment of the scaffolding protein filamin A, known to interact with the mu opioid receptor, to disrupt its chronic opioid-induced Gs coupling. Naloxone binding to filamin A is demonstrated by the absence of [(3)H]-and FITC-naloxone binding in the melanoma M2 cell line that does not contain filamin or MOR, contrasting with strong [(3)H]naloxone binding to its filamin A-transfected subclone A7 or to immunopurified filamin A. Naloxone binding to A7 cells was displaced by naltrexone but not by morphine, indicating a target distinct from opioid receptors and perhaps unique to naloxone and its analogs. The intracellular location of this binding site was confirmed by FITC-NLX binding in intact A7 cells. Overlapping peptide fragments from c-terminal filamin A revealed filamin A(2561-2565) as the binding site, and an alanine scan of this pentapeptide revealed an essential mid-point lysine. Finally, in organotypic striatal slice cultures, peptide fragments containing filamin A(2561-2565) abolished the prevention by 10 pM naloxone of both the chronic morphine-induced mu opioid receptor-Gs coupling and the downstream cAMP excitatory signal. These results establish filamin A as the target for ultra-low-dose opioid antagonists previously shown to enhance opioid analgesia and to prevent opioid tolerance and dependence.  相似文献   

18.
Opioid peptides injected into the circulation of rats evoke a vagally mediated bradycardia. The intravenous ED50 of morphine for producing a greater than or equal to 10% fall in heart rate was determined in urethane-anesthetized rats. Hypophysectomy, or adrenalectomy plus treatment with dexamethasone (0.5 microgram/h, s.c., 1 day), procedures that remove endogenous sources of opioid peptides, increased the sensitivity of the animal to morphine bradycardia by 6-10-fold. Conversely, stressing the animals by exposure to cold (4-6 degrees C for two days) elevated the ED50 for morphine sulfate and for beta h-endorphin by about 5-fold. Dexamethasone infusions prevented the cold-induced desensitization to morphine. Intravenous administration of rat corticotropin-releasing factor (CRF) also desensitized the animals to morphine. CRF alone produced a fall in blood pressure and heart rate. The bradycardia was prevented by pretreatment with naloxone. These results indicate that the sensitivity of vagal opioid chemoreceptors is influenced by endogenous sources of opioid peptides. This phenomenon can be called 'endogenous tolerance'.  相似文献   

19.
Opioid peptides serve as tonically active negative growth regulators in renewing and regenerating epithelia. To examine the involvement of opioids in renewal of the stratum corneum after tape stripping of tail skin, C57BL/6 J mice were given systemic injections of the potent opioid antagonist, naltrexone (NTX, 20 mg/kg i.p.) following injury. Blockade of opioidreceptor interaction by NTX for 4 h resulted in an elevation of 36–;66% in basal cell DNA synthesis measured 24 h after injury. Injection of the endogenous opioid peptide, [Met5]-enkephalin (OGF, 10 mg/kg i.p.) 4 h before termination, suppressed radiolabelled thymidine incorporation in the basal cell layer by 37–46%at 24 h after wounding. The magnitude of the effects on DNA synthesis of OGF, but not NTX, depended on the timing of administration with respect to injury. OGF maximally depressed basal cell labelling (72%) when given 16 h after tape stripping. Concomitant administration of naloxone (10 mg/kg) with OGF blocked the inhibition of DNA synthesis; naloxone alone at the dosage utilized had no effect on cell labelling. Both OGF and its receptor, OGFr, were detected by immunocytochemistry in the basal and suprabasal cell layers, but not the cornified layer of tape stripped and uninjured tail skin. These results indicate: (a) a native opioid peptide and its receptor are expressed in epidermal cells of injured and uninjured mouse tail skin; (b) removal of the stratum corneum by tape stripping does not disrupt the function of the endogenous opioid growth system; (c) the proliferative response to wounding of the tail is tonically inhibited by the receptor-mediated action of an endogenous opioid peptide; and (d) DNA synthesis by basal cells can be elevated by disrupting opioid peptidereceptor interactions.  相似文献   

20.
Neurotensin or morphine can each cause hypothermia and an antinocisponsive effect when administered into the liquor spaces of the rat brain. These actions of neurotensin are not blocked by naloxone whereas those of morphine are. The present experiments were carried out to examine the action of each substance following its injection into the subarachnoid space of the spinal cord. Given intrathecally, neurotensin evoked a dose-related fall in the rectal temperature of the rat without exerting an antinocisponsive action. Morphine on the other hand evoked hyperthermia and a dose-related antinocisponsive action. Since neurotensin exerted an effect on rectal temperature opposite to that of morphine and failed to exert an antinocisponsive effect, the data provide further evidence to suggest that neurotensin and morphine exert their effect via different mechanisms. Furthermore, the results also suggest that neurotensin exerts its antinocisponsive action via a supraspinal site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号