首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancer cells become unstable and compromised because several cancer-predisposing mutations affect genes that are responsible for maintaining the genomic instability. Several factors influence the formation of chromosomal rearrangements and consequently of fusion genes and their role in tumorigenesis. Studies over the past decades have revealed that recurring chromosome rearrangements leading to fusion genes have a biological and clinical impact not only on leukemias and lymphomas, but also on certain epithelial tumors. With the implementation of new and powerful cytogenetic and molecular techniques the identification of fusion genes in solid tumors is being facilitated. Overall, the study of chromosomal translocations have revealed several recurring themes, and reached important insights into the process of malignant transformation. However, the mechanisms behind these translocations remain unclear. A more thorough understanding of the mechanisms that cause translocations will be aided by continuing characterization of translocation breakpoints and by developing in vitro and in vivo model systems that can generate chromosome translocation.  相似文献   

2.
3.
4.
Many different chromosomal translocations occur in man at chromosome 11q23 in acute leukaemias. Molecular analyses revealed that the MLL gene (also called ALL-1, HRX or HTRX) is broken by the translocations, causing fusion with genes from other chromosomes. The diversity of MLL fusion partners poses a dilemma about the function of the fusion proteins in tumour development. The consequence of MLL truncation and fusion has been analysed by joining exon 8 of Mll with the bacterial lacZ gene using homologous recombination in mouse embryonic stem cells. We show that this fusion is sufficient to cause embryonic stem cell-derived acute leukaemias in chimeric mice, and these tumours occur with long latency compared with those found in MLL-Af9 chimeric mice. These findings indicate that an MLL fusion protein can contribute to tumorigenesis, even if the fusion partner has no known pathogenic role. Thus, truncation and fusion of MLL can be sufficient for tumorigenesis, regardless of the fusion partner.  相似文献   

5.
All vertebrates possess a series of genes which are homologs of the oncogenic genes of acute transforming retroviruses. Two lines of evidence suggest that these genes may play a role in the development of human malignancy: (1) DNA from a variety of human tumors transforms NIH 3T3 mouse fibroblasts and the transforming genes from a number of carcinomas, sarcomas, and hematological malignancies have been identified as members of a family of genes, the ras family, closely related to the oncogenic genes of the Harvey and Kirsten murine sarcoma viruses; and (2) correlations exist between the chromosomal localizations of certain oncogenes and the chromosomal breakpoints in specific translocations and deletions in certain human malignancies. In three separate hematological malignancies, alterations in more than one oncogenic gene may be involved in the neoplastic process.  相似文献   

6.
Multiple myeloma (MM) is a malignant post-germinal center tumor of somatically-mutated, isotype-switched plasma cells that accumulate in the bone marrow. It often is preceded by a stable pre-malignant tumor called monoclonal gammopathy of undetermined significance (MGUS), which can sporadically progress to MM. Five recurrent primary translocations involving the immunoglobulin heavy chain (IgH) locus on chromosome 14q32 have been identified in MGUS and MM tumors. The five partner loci include 11q13, 6p21, 4p16, 16q23, and 20q12, with corresponding dysregulation of CYCLIN D1, CYCLIN D3, FGFR3/MMSET, c-MAF, and MAFB, respectively, by strong enhancers in the IgH locus. The five recurrent translocations, which are present in 40% of MM tumors, typically are simple reciprocal translocations, mostly having breakpoints within or near IgH switch regions but sometimes within or near VDJ or JH sequences. It is thought that these translocations are caused by aberrant IgH switch recombination, and possibly by aberrant somatic hypermutation in germinal center B cells, thus providing an early and perhaps initiating event in transformation. A MYC gene is dysregulated by complex translocations and insertions as a very late event during the progression of MM tumors. Since the IgH switch recombination and somatic hypermutation mechanism are turned off in plasma cells and plasma cell tumors, the MYC rearrangements are thought to be mediated by unknown mechanisms that contribute to structural genomic instability in all kinds of tumors. These rearrangements, which often but not always juxtapose MYC near one of the strong immunoglobulin enhancers, provide a paradigm for secondary translocations. It is hypothesized that secondary translocations not involving a MYC gene can occur at any stage of tumorigenesis, including in pre-malignant MGUS tumor cells.  相似文献   

7.
8.
Lymphoid tumours comprise the acute and chronic leukaemias, the broad spectrum of lymphomas, including Hodgkin's disease, and multiple myeloma. The subdivision of the acute leukaemias according to the proliferating type of white blood cells has had a major impact on the care of these patients. More recently, specific chromosomal translocations have been used to identify patients who may benefit from more intensive therapies. The novel high-throughput genomic technologies, such as microarrays, provide new avenues for the molecular diagnosis of the haematological malignancies. Rapid advances in genome sequencing and gene expression profiling provide unprecedented opportunities to identify specific genes involved in complex biological processes, including tumorigenesis. The features of microarray technology and the variety of experimental approaches to elucidate lymphoid malignancies are discussed. Microarray technology has the potential to lead to more accurate prognostic assessment for patients and is expected to ultimately allow the clinician to select therapies optimally suited to each patient.  相似文献   

9.
10.
Chromosome size variation in Plasmodium falciparum has been examined using a double heterogenous pulse field gradient electrophoresis apparatus and a series of chromosome-specific probes. In the 11 different isolates analyzed the chromosomal markers always hybridized to the corresponding chromosome, indicating that translocations do not significantly contribute to chromosome size variations. Furthermore, despite probes specific for chromosomes 5 and 6 no evidence was obtained to support the hypothesis of a chromosome duplication involving these chromosomes. The double heterogenous electric field combined with longer pulse times allowed the genome to be resolved into a larger number of chromosomal bands and as a result permitted the more precise mapping of cloned genes.  相似文献   

11.
Over the past few decades, the knowledge on genetic defects causing mental retardation has dramatically increased. In this review, we discuss the importance of balanced chromosomal translocations in the identification of genes responsible for mental retardation. We present a database-search guided overview of balanced translocations identified in patients with mental retardation. We divide those in four categories: (1) balanced translocations that helped to identify a causative gene within a contiguous gene syndrome, (2) balanced translocations that led to the identification of a mental retardation gene confirmed by independent methods, (3) balanced translocations disrupting candidate genes that have not been confirmed by independent methods and (4) balanced translocations not reported to disrupt protein coding sequences. It can safely be concluded that balanced translocations have been instrumental in the identification of multiple genes that are involved in mental retardation. In addition, many more candidate genes were identified with a suspected but (as yet?) unconfirmed role in mental retardation. Some balanced translocations do not disrupt a protein coding gene and it can be speculated that in the light of recent findings concerning ncRNA’s and ultra-conserved regions, such findings are worth further investigation as these potentially may lead us to the discovery of novel disease mechanisms.  相似文献   

12.
Chromosomal translocations in cancer   总被引:1,自引:0,他引:1  
Genetic alterations in DNA can lead to cancer when it is present in proto-oncogenes, tumor suppressor genes, DNA repair genes etc. Examples of such alterations include deletions, inversions and chromosomal translocations. Among these rearrangements chromosomal translocations are considered as the primary cause for many cancers including lymphoma, leukemia and some solid tumors. Chromosomal translocations in certain cases can result either in the fusion of genes or in bringing genes close to enhancer or promoter elements, hence leading to their altered expression. Moreover, chromosomal translocations are used as diagnostic markers for cancer and its therapeutics. In the first part of this review, we summarize the well-studied chromosomal translocations in cancer. Although the mechanism of formation of most of these translocations is still unclear, in the second part we discuss the recent advances in this area of research.  相似文献   

13.
Atm-deficient mice die of malignant thymic lymphomas characterized by translocations within the Tcr alpha/delta locus, suggesting that tumorigenesis is secondary to aberrant responses to double-stranded DNA (dsDNA) breaks that occur during RAG-dependent V(D)J recombination. We recently demonstrated that development of thymic lymphoma in Atm(-/-) mice was not prevented by loss of RAG-2. Thymic lymphomas that developed in Rag2(-/-) Atm(-/-) mice contained multiple chromosomal abnormalities, but none of these involved the Tcr alpha/delta locus. These findings indicated that tumorigenesis in Atm(-/-) mice is mediated by chromosomal translocations secondary to aberrant responses to dsDNA breaks and that V(D)J recombination is an important, but not essential, event in susceptibility. In contrast to these findings, it was recently reported that Rag1(-/-) Atm(-/-) mice do not develop thymic lymphomas, a finding that was interpreted as demonstrating a requirement for RAG-dependent recombination in the susceptibility to tumors in Atm-deficient mice. To test the possibility that RAG-1 and RAG-2 differ in their roles in tumorigenesis, we studied Rag1(-/-) Atm(-/-) mice in parallel to our previous Rag2(-/-) Atm(-/-) study. We found that thymic lymphomas occur at high frequency in Rag1(-/-) Atm(-/-) mice and resemble those that occur in Rag2(-/-) Atm(-/-) mice. These results indicate that both RAG-1 and RAG-2 are necessary for tumorigenesis involving translocation in the Tcr alpha/delta locus but that Atm deficiency leads to tumors through a broader RAG-independent predisposition to translocation, related to a generalized defect in dsDNA break repair.  相似文献   

14.

Background  

Chromosomal aneuploidy, that is to say the gain or loss of chromosomes, is the most common abnormality in cancer. While certain aberrations, most commonly translocations, are known to be strongly associated with specific cancers and contribute to their formation, most aberrations appear to be non-specific and arbitrary, and do not have a clear effect. The understanding of chromosomal aneuploidy and its role in tumorigenesis is a fundamental open problem in cancer biology.  相似文献   

15.
Translocations in chromosomes alter genetic information. Although the frequent translocations observed in many tumors suggest the altered genetic information by translocation could promote tumorigenesis, the mechanisms for how translocations are suppressed and produced are poorly understood. The smc6-9 mutation increased the translocation class gross chromosomal rearrangement (GCR). Translocations produced in the smc6-9 strain are unique because they are non-reciprocal and dependent on break-induced replication (BIR) and independent of non-homologous end joining. The high incidence of translocations near repetitive sequences such as delta sequences, ARS, tRNA genes, and telomeres in the smc6-9 strain indicates that Smc5-Smc6 suppresses translocations by reducing DNA damage at repetitive sequences. Synergistic enhancements of translocations in strains defective in DNA damage checkpoints by the smc6-9 mutation without affecting de novo telomere addition class GCR suggest that Smc5-Smc6 defines a new pathway to suppress GCR formation.  相似文献   

16.
This article provides a broad overview of our earlier studies on the induction of tumors and congenital anomalies in the progeny of X-irradiated or chemically treated mice and our subsequent (published, hitherto unpublished and on-going) investigations aimed at identifying potential relationships between genetic changes induced in germ cells and the adverse effects manifest as tumors and congenital anomalies using cytogenetic and molecular approaches. The earlier studies document the fact that tumors and congenital anomalies can be induced by irradiation or treatment with certain chemicals such as urethane and that these phenotypes are heritable i.e., transmitted to generations beyond the first generation. These findings support the view that transmissible induced genetic changes are involved. The induced rates of congenital abnormalities and tumors are about two orders of magnitude higher than those recorded in the literature from classical mutation studies with specific locus mutations. The cytogenetic studies addressed the question of whether there were any relationships between induced translocations and induced tumors. The available data permit the inference that gross chromosomal changes may not be involved but do not exclude smaller induced genetic changes that are beyond the resolution of the techniques used in these studies. Other work on possible relationship between visible chromosomal anomalies (in bone marrow preparations) and tumors were likewise negative. However, there were indications that some induced cytogenetic changes might underlie induced congenital anomalies, i.e., trisomies, deletions and inversions were observed in induced and transmissible congenital anomalies (such as dwarfs, tail anomalies). Studies that explored possible relationships between induction of minisatellite mutations at the Pc-3 locus and tumors were negative. However, gene expression analysis of tumor (hepatoma)-susceptible offspring of progeny descended from irradiated male mice showed abnormal expression of many genes. Of these, only very few were oncogenes. This lends some support to our hypothesis that cumulative changes in gene expression of many genes, which perform normal cellular functions, may contribute to the occurrence of tumors in the offspring of irradiated or chemically treated mice.  相似文献   

17.
18.
MLL is a promiscuous gene involved in a diversity of chromosomal fusions in haematological malignancies, usually resulting from chromosomal translocations. MLL-associated chromosomal rearrangements usually occur in tumours of specific haematological lineages, suggesting a crucial role for the MLL fusion partner in determining disease phenotype (or tumour tropism). The MLL gene is homologous to Drosophila trithorax, and is likewise involved in embryo pattern formation. Common themes linking several of the MLL partners include a possible involvement in embryo patterning via Hox gene regulation and chromatin remodelling. These findings reinforce the link between developmental regulation and chromosomal translocations, and indicate the role of chromosomal translocation in activating genes capable of determining tumour phenotype in leukaemias and sarcomas.  相似文献   

19.
Gene targeting technology in mice by homologous recombination has become an important method to generate loss-of-function of genes in a predetermined locus. Although the inactivation is limited to irreversible alteration of chromosomal DNA and a surprising variety of genes have given unexpected and disappointing results, modification of the basic technology now provides additional choices for a more specific and variety of manipulations of the mouse genome. This includes conditional cell-type specific gene targeting, knockin technique and the induction of the specific balanced chromosomal translocations. In the past decade this technique not only generated a wealth of knowledge concerning the roles of growth factors, oncogenes, hormone receptors and Hox genes but also helped to produce animal models for several human genetic disorders. In the future it may provide more powerful and necessary tools to dissect the psychiatric disorders, understanding the complex central nervous system and to correct the inherited disorders.  相似文献   

20.
Joost H.A. Martens 《FEBS letters》2010,584(12):2662-2669
Acute myeloid leukemia (AML) associated translocations often cause gene fusions that encode oncofusion proteins. Although many of the breakpoints involved in chromosomal translocations have been cloned, in most cases the role of the chimeric proteins in tumorigenesis is not elucidated. Here we will discuss the fusion proteins of the 4 most common translocations associated with AML as well as the common molecular mechanisms that these four and other fusion proteins utilize to transform progenitor cells. Intriguingly, although the individual partners within the fusion proteins represent a wide variety of cellular functions, at the molecular level many commodities can be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号