首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of desmosomal cadherin desmocollin-2 (Dsc2) in regulating barrier function in intestinal epithelial cells (IECs) is not well understood. Here, we report the consequences of silencing Dsc2 on IEC barrier function in vivo using mice with inducible intestinal–epithelial-specific Dsc2 knockdown (KD) (Dsc2ERΔIEC). While the small intestinal gross architecture was maintained, loss of epithelial Dsc2 influenced desmosomal plaque structure, which was smaller in size and had increased intermembrane space between adjacent epithelial cells. Functional analysis revealed that loss of Dsc2 increased intestinal permeability in vivo, supporting a role for Dsc2 in the regulation of intestinal epithelial barrier function. These results were corroborated in model human IECs in which Dsc2 KD resulted in decreased cell–cell adhesion and impaired barrier function. It is noteworthy that Dsc2 KD cells exhibited delayed recruitment of desmoglein-2 (Dsg2) to the plasma membrane after calcium switch-induced intercellular junction reassembly, while E-cadherin accumulation was unaffected. Mechanistically, loss of Dsc2 increased desmoplakin (DP I/II) protein expression and promoted intermediate filament interaction with DP I/II and was associated with enhanced tension on desmosomes as measured by a Dsg2-tension sensor. In conclusion, we provide new insights on Dsc2 regulation of mechanical tension, adhesion, and barrier function in IECs.  相似文献   

2.
Objectives: Desmoglein 3 (Dsg3) is a desmosomal adhesion protein expressed in basal and immediate suprabasal layers of skin. Importance of Dsg3 in cell-cell adhesion and maintenance of tissue integrity is illustrated by findings of keratinocyte dissociation in the autoimmune disease, pemphigus vulgaris, where autoantibodies target Dsg3 on keratinocyte surfaces and cause Dsg3 depletion from desmosomes. However, recognition of possible participation of involvement of Dsg3 in cell proliferation remains controversial. Currently, available evidence suggests that Dsg3 may have both anti- and pro-proliferative roles in keratinocytes. The aim of this study was to use RNA interference (RNAi) strategy to investigate effects of silencing Dsg3 in cell-cell adhesion and cell proliferation in two cell lines, HaCaT and MDCK. Materials and methods: Cells were transfected with siRNA, and knockdown of Dsg3 was assessed by western blotting, fluorescence-activated cell sorting and confocal microscopy. Cell-cell adhesion was analysed using the hanging drop/fragmentation assay, and cell proliferation by colony forming efficiency, BrdU incorporation, cell counts and organotypic culture. Results: Silencing Dsg3 caused defects in cell-cell adhesion and concomitant reduction in cell proliferation in both HaCaT and MDCK cells. Conclusion: These findings suggest that Dsg3 depletion by RNAi reduces cell proliferation, which is likely to be secondary to a defect in cell-cell adhesion, an essential function required for cell differentiation and morphogenesis.  相似文献   

3.
4.
5.
HB2 is a cell line originated by subcloning of MTSV1-7 mammary luminal epithelial cells isolated from human milk and immortalization via introduction of the gene encoding simian virus 40 (SV40) large T antigen. Despite its wide utilization as non-neoplastic counterpart in assays aimed to elucidating various biochemical and genetical aspects of normal and tumoral breast cells, to our knowledge no literature data have so far appeared concerning the chromosomal characterization of the HB2 cells. Here, we report the cytogenetic characterization of the karyotype of HB2 cells, which puts in evidence the occurrence of changes in chromosomal number and structure and the presence of unidentified chromosomal markers in variable amount. Our results do not detract from the utility of HB2 cells in illustrating fundamental aspects of breast cell biology, but rather interject a note of caution into generalizing results obtained with this cell line to other non-immortalized epithelial cell populations from the human breast. Therefore, this work represents a useful resource for all who want to perform appropriate and focused future studies on this cell line and proposes precise indications for a knowledgeable use of HB2 cells.  相似文献   

6.
Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cell-cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically.  相似文献   

7.
Food allergies of type-I-allergy are immunoglobulin E (IgE) mediated and caused by certain proteins or glycoproteins, which are called food allergens. An analytical marker of allergens is the IgE-reactivity to these substances. Normally food allergens are minor components in allergenic source material, which consist of a huge number of chemical different substances. Thus allergen extraction, separation and immunological detection methods are described which identify and characterize individual food allergens by a minimum of manipulation. Favoured separation methods of allergenic extracts are electrophoretic ones allowing the combination of highly resolved protein separations with immunological detection methods subsumed by the term immunoblotting. These techniques are a useful basis to characterize allergens by chemical methods. Once the primary protein structure of a food allergen is established, the way is cleared for the identification of epitopes. Epitopes are immunological detectable parts of a protein or glycoprotein generating the interface between chemical structure and immune-system. The nature of epitopes may differ, for instance, can be conformational, continuous, or built up by glycoconjugates, which determine the stability of food allergens, especially in the case of food processing. Progress in identification and characterization of food allergens will improve diagnostics and therapy of food allergy.  相似文献   

8.
Rabbit antiserum produced against rat liver cytochrome H-450 was specific for cytochrome H-450. The antiserum did not react with hemolysate, microsomal and mitochondrial fractions of liver, and tissue extracts from heart, lung skeletal muscle, and testis of rat. With the monospecific antiserum, a rocket immunoelectrophoretic assay method was developed for the quantitation of the antigen with a sensitivity of 25 ng. By using rocket immunoelectrophoresis, the total amounts of the antigen found in liver, kidney, and brain of 20 rats were 33.6, 3.6, and 1.3 mg, respectively. It appears that the antigens in liver, kidney, and brain are immunologically identical. From immunological studies with subcellular fractions of rat liver, the antigen was found only in the postmicrosomal fraction. This indicates that the antigen is not a precursor or a proteolytic product of known cytochromes in mitochondria or microsomes. Therefore, cytochrome H-450 is a unique cytosolic protein found in brain, kidney, and liver.  相似文献   

9.
Epithelial‐mesenchymal transition (EMT) and renal fibrosis are closely involved in chronic kidney disease. Inhibition of histone deacetylase (HDAC) has an anti‐fibrotic effect in various diseases. However, the pathophysiological role of isoform‐specific HDACs or class‐selective HDACs in renal fibrosis remains unknown. Here, we investigated EMT markers and extracellular matrix (ECM) proteins in a human proximal tubular cell line (HK‐2) by using HDAC inhibitors or by knockdown of class I HDACs (HDAC1, 2, 3 and 8). Trichostatin A (TSA), MS275, PCI34051 and LMK235 inhibited ECM proteins such as collagen type I or fibronectin in transforming growth factor β1 (TGF‐β1)‐induced HK2 cells. However, restoration of TGF‐β1‐induced E‐cadherin down‐regulation was only seen in HK‐2 cells treated with TSA or MS275, but not with PCI34051, whereas TGF‐β1‐induced N‐cadherin expression was not affected by the inhibitors. ECM protein and EMT marker levels were prevented or restored by small interfering RNA transfection against HDAC8, but not against other class I HDACs (HDAC1, 2 and 3). E‐cadherin regulation is mediated by HDAC8 expression, but not by HDAC8 enzyme activity. Thus, class I HDACs (HDAC1, 2, 3 and 8) play a major role in regulating ECM and EMT, whereas class IIa HDACs (HDAC4 and 5) are less effective.  相似文献   

10.
11.
Human epithelial cell cultures were examined for expression of plasminogen activator and fibronectin matrix. All of the cells examined showed ultrastructural evidence suggesting their epithelial origin, including microvilli and specialized junctions. The nonmalignant cells were also negative for endothelial cell markers (ie, they lacked factor VIII antigen, a nonthrombogenic surface and Weibel-Palade bodies). The nonmalignant lines all produced large amounts of plasminogen activator, whereas the tumor-derived lines showed a gradation of activities, ranging from lines having as much activity as the nonmalignant lines to lines having little or no activity above background. For both normal and malignant cells, addition of dexamethesone only slightly decreased the levels of plasminogen activator. By immunofluorescence microscopy, normal bladder and fetal intestine epithelial cells showed fibronectin in a globular and fibrillar matrix. In contrast, normal mammary epithelial cells had a much diminished amount of fibronectin with a punctate distribution.  相似文献   

12.
13.
Distribution of ClC-2 chloride channel in rat and human epithelial tissues   总被引:4,自引:0,他引:4  
The ubiquitous ClC-2 Clchannel is thought to contribute to epithelial Clsecretion, but the distribution of the ClC-2 protein in human epitheliahas not been investigated. We have studied the distribution of ClC-2 inadult human and rat intestine and airways by immunoblotting andconfocal microscopy. In the rat, ClC-2 was present in the lateralmembranes of villus enterocytes and was predominant at the basolateralmembranes of luminal colon enterocytes. The expression pattern of ClC-2in the human intestine differed significantly, because ClC-2 was mainlydetected in a supranuclear compartment of colon cells. We foundsignificant expression of ClC-2 at the apex of ciliated cells in bothrat and human airways. These results show that the distribution ofClC-2 in airways is consistent with participation of ClC-2 channels inCl secretion and indicate that extrapolation of resultsfrom studies of ClC-2 function in rat intestine to human intestine isnot straightforward.

  相似文献   

14.
Antibodies to the purified cytochalasin B binding component of the human erythrocyte glucose transporter were prepared in rabbits. They precipitated detergent-solubilized transporter, and partially inhibited its binding of cytochalasin B. The antibodies were used to locate the transporter polypeptide in SDS-polyacrylamide gels of erythrocyte membranes prepared from freshly drawn blood in the presence of protease inhibitors. They labelled only the region of the gel corresponding to that occupied by the purified transporter, with an apparent molecular weight range of 45,000–75,000. These findings indicate that the isolated transporter does not arise by proteolytic degradation of a larger polypeptide, either during the storage of blood or during purification of the transporter.  相似文献   

15.
《The Journal of cell biology》1994,125(6):1341-1352
The cadherin/catenin complex plays important roles in cell adhesion, signal transduction, as well as the initiation and maintenance of structural and functional organization of cells and tissues. In the preceding study, we showed that the assembly of the cadherin/catenin complex is temporally regulated, and that novel combinations of catenin and cadherin complexes are formed in both Triton X-100-soluble and - insoluble fractions; we proposed a model in which pools of catenins are important in regulating assembly of E-cadherin/catenin and catenin complexes. Here, we sought to determine the spatial distributions of E- cadherin, alpha-catenin, beta-catenin, and plakoglobin, and whether different complexes of these proteins accumulate at steady state in polarized Madin-Darby canine kidney cells. Protein distributions were visualized by wide field, optical sectioning, and double immunofluorescence microscopy, followed by reconstruction of three- dimensional images. In cells that were extracted with Triton X-100 and then fixed (Triton X-100-insoluble fraction), more E-cadherin was concentrated at the apical junction relative to other areas of the lateral membrane. alpha-Catenin and beta-catenin colocalize with E- cadherin at the apical junctional complex. There is some overlap in the distribution of these proteins in the lateral membrane, but there are also areas where the distributions are distinct. Plakoglobin is excluded from the apical junctional complex, and its distribution in the lateral membrane is different from that of E-cadherin. Cells were also fixed and then permeabilized to reveal the total cellular pool of each protein (Triton X-100-soluble and -insoluble fractions). This analysis showed lateral membrane localization of alpha-catenin, beta- catenin, and plakoglobin, and it also revealed that they are distributed throughout the cell. Chemical cross-linking of proteins and analysis with specific antibodies confirmed the presence at steady state of E-cadherin/catenin complexes containing either beta-catenin or plakoglobin, and catenin complexes devoid of E-cadherin. Complexes containing E-cadherin/beta-catenin and E-cadherin/alpha-catenin are present in both the Triton X-100-soluble and -insoluble fractions, but E-cadherin/plakoglobin complexes are not detected in the Triton X-100- insoluble fraction. Taken together, these results show that different complexes of cadherin and catenins accumulate in fully polarized epithelial cells, and that they distribute to different sites. We suggest that cadherin/catenin and catenin complexes at different sites have specialized roles in establishing and maintaining the structural and functional organization of polarized epithelial cells.  相似文献   

16.
The immunological properties of gamma-glutamyltransferases (gamma-GTs) from human serum, liver and tonsil were studied by using a monospecific antibody to human kidney gamma-GT for the purpose of elucidating their isozymic relationships. gamma-GTs partially purified from liver and tonsil were indistinguishable in this respect from kidney gamma-GT. gamma-GT in sera from patients with hepato-biliary diseases, on the other hand, was heterogeneous in molecular size as revealed by sucrose density gradient centrifugation and Sephadex G-150 gel filtration, and was inhibited and precipitated by the above antibody relatively poorly as compared with the kidney enzyme. When these sera were treated with bromelain, however, the molecular size of gamma-GT was reduced and the enzyme now reacted with the antibody as strongly as kidney gamma-GT. gamma-GT from bromelain-treated sera also exhibited a single immunoprecipitin line smoothly fusible with that from kidney gamma-GT; the enzyme-antibody complex still exhibited gamma-GT activity. The major form of gamma-GT partially purified from papain-treated sera, even though indistinguishable from kidney gamma-GT immunologically and in molecular size, exhibited a mobility on polyacrylamide gel electrophoresis which was higher than that of kidney gamma-GT but similar to that of liver gamma-GT. It is suggested that gamma-GT in human sera is heterogeneous in molecular size and electric charge but is composed of common peptide chains, probably identical to those of kidney gamma-GT.  相似文献   

17.
The desmosomal cadherins comprise the desmocollins and desmogleins and are involved in epithelial cell-cell adhesion. There are three desmocollins (DSC 1-3) and three desmogleins (DSG 1-3) that are expressed in a tissue- and development-specific manner. Desmosomal proteins have been implicated in a number of disorders characterized by loss of cell-cell adhesion and trauma-induced skin fragility. Therefore, the desmocollins are potential candidates for genodermatoses involving epithelial tissues. In order to screen the entire DSC1 and DSC3 genes, we have characterized their intron-exon organization. The DSC1 gene comprises 17 exons spanning approximately 33 kb on 18q12.1, and the DSC3 gene comprises 17 exons spanning approximately 49 kb on 18q12.1. We have also developed a comprehensive PCR-based mutation detection strategy for desmocollins 1, 2, and 3 using primers placed on flanking introns followed by direct sequencing of the PCR products.  相似文献   

18.
Prasad A  Pedigo S 《Biochemistry》2005,44(42):13692-13701
Epithelial cadherin is important in establishing and maintaining cell to cell interactions in epithelial cells, thereby playing an important role during morphogenesis. The epithelial cadherin molecules have three main regions: the N-terminal extracellular region, the transmembrane region that spans the cell membrane once, and the C-terminal cytoplasmic region that communicates with the cytoskeletal actin filaments through catenins. We report studies of the calcium-dependent stability of extracellular domains 1 and 2 of epithelial cadherin as a two-domain construct (MECAD12). Circular dichroism (CD) spectra of MECAD12 indicated a typical beta-sheet conformation in all solution conditions. Thermal- and denaturant-induced unfolding was monitored by CD. Distinct calcium stabilization was observed as a shift in T(m) from 40 (apo) to 65 degrees C (10 mM Ca2+). Spectroscopic experiments agreed well with calorimetric (DSC). In the absence of calcium, the unfolding transition was shallow (deltaH(m) = 40 kcal/mol) but not obviously three state. Model-dependent analysis indicated that a second transition could be assigned to the unfolding of domain 2. A calcium-binding constant was derived from the calcium-dependent shift in temperature denaturation profiles. The Kd that was obtained (55 microM) was consistent with literature values. Thus, the modular domains of epithelial cadherin exhibit context-dependent behavior in both the apo and calcium-bound states. This cooperativity between the modules is consistent with the physiological role of epithelial cadherin in signal transduction through cell-adhesive contacts.  相似文献   

19.
20.
Barrett MT  Glogovac J  Prevo LJ  Reid BJ  Porter P  Rabinovitch PS 《BioTechniques》2002,32(4):888-90, 892, 894, 896
Microarray technologies have made possible comprehensive analyses of nucleic acid sequence and expression. However, the technology to obtain efficiently high-quality RNA and DNA suitable for array analysis from purified populations of neoplastic cells from human tissues has not been well addressed. Microdissection can enrich for populations of cells present in various tumor tissues, but it is not easily automated or performed rapidly, and there are tissues in which cells of interest cannot be readily isolated based on morphologic criteria alone. Here we describe a protocol for efficient RNA and DNA isolation from flow cytometrically purified whole epithelial cells from primary tissue. The aqueous reagent, RNAlater, which preserves RNA, allows immunolabeling and purification of whole epithelial cells by flow sorting without special instrument preparation to reduce RNase activity. We used real-time PCR to determine RNA quality afterflow sorting. High-quality RNA and DNA suitable for expression and genotype analysis can be readily obtained from flow cytometrically purified populations of neoplastic cells from human tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号