首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of recombinant tumor necrosis factor (rTNF alpha) on the immune responses were investigated. A single iv injection of rTNF alpha (6 x 10(3) U) caused regression of sarcoma-180 transplanted into BALB/c nu/+ mice, but failed to regress this tumor in nu/nu mice. A higher dose of rTNF alpha (2 x 10(4) U) was necessary to induce antitumor effect in nu/nu mice. A host-related factor seemed to be involved in mediating tumor regression. Therefore, the effects of rTNF alpha on various T-dependent immune responses, including delayed footpad reaction (DFR), cell mediated cytolysis (CMC), and plaque-forming cells (PFC) were examined in BALB/c mice, immunized ip with chicken erythrocytes (CRBC). A single injection of rTNF alpha, at the time of the antigen administration, induced the augmentation of CMC to CRBC in a dose-dependent manner. DFR and PFC were not affected in optimal immunization procedures. The TNF alpha injection, at or after the time of antigen administration, was more effective in inducing augmentation of CMC. The increase in CMC by TNF alpha was mediated by nonadherent, Thy 1.2, Lyt 2.2 positive cells and neutralization of TNF alpha by the anti-TNF alpha monoclonal antibody abolished the effect on CMC. These results indicated that the human recombinant TNF alpha induced changes in the T-cell-mediated responses.  相似文献   

3.
Two proteins which specifically bind tumor necrosis factor (TNF) were isolated from human urine by ligand (TNF)-affinity purification, followed by reversed phase high performance liquid chromatography. The molecular weights of the two proteins, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were similar (about 30,000). Both proteins provided protection against the cytocidal effect of TNF in vitro and both bound TNF-alpha more effectively than TNF-beta. Antibodies raised against each of the proteins had an inhibitory effect on the binding of TNF to cells, suggesting that both proteins are structurally related to the TNF receptors. However, the two proteins differed in NH2-terminal amino acid sequences: Asp-Ser-Val-Cys-Pro- in one and Val-Ala-Phe-Thr-Pro- in the other. The NH2-terminal sequence of the former protein was invariable, while that of the latter was truncated to varying degrees. The two proteins were also immunologically distinct. The relative efficacy of anti-sera against the two proteins in inhibiting the binding of TNF to cells varied markedly from one line of cells to another. Evidence has been presented recently for the existence of two distinct molecular species of cell surface receptors for TNF and for differential expression of those two receptors by cells of different lines. The findings presented in this study are consistent with the notion that the urinary TNF-binding proteins constitute soluble forms of the two molecular species of the cell surface TNF receptors.  相似文献   

4.
5.
Tumor necrosis factor (TNF)-alpha and TNF receptors in viral pathogenesis   总被引:1,自引:0,他引:1  
Tumor necrosis factor-alpha (TNF-alpha) and TNF receptors (TNFR) are members of the growing TNF ligand and receptor families that are involved in immune regulation. The present report will focus on the role of the prototypic ligand TNF and its two receptors, TNFR1 and TNFR2, in viral pathogenesis. Although TNF was reported years ago to modulate viral infections, recent findings on the molecular pathways involved in TNFR signaling have allowed a better understanding of the molecular interactions between cellular and viral factors within the infected cell. The interactions of viral proteins with intracellular components downstream of the TNFR have highlighted at the molecular level how viruses can manipulate the cellular machinery to escape the immune response and to favor the spread of the infection. We will review here the role of TNF and TNFR in immune response and the role of TNF and TNFR signaling in viral pathogenesis.  相似文献   

6.
The expression of specific tumor necrosis factor (TNF) membrane receptors and biological effects of recombinant TNF (rTNF)-alpha on normal human T lymphocytes were studied. Although resting T cells lacked specific binding capacity for rTNF-alpha, high affinity (Kd 70 pM) TNF receptors were de novo induced upon primary activation of T cells. Comparison of TNF receptor expression with that of high affinity interleukin 2 (IL-2) and interferon-gamma (IFN-gamma) receptors, respectively, revealed similarities to IL 2-receptor expression with respect to kinetics of induction. However, maximum expression of TNF receptors (approximately equal to 5000/cell at day 6) and subsequent decline occurred approximately 3 days after the peak of IL 2-receptor expression. In contrast, no change in the expression of IFN-gamma receptors (Kd 10 pM, 300 to 400 receptors/cell) was found in the course of T cell activation. On activated TNF receptor positive T cells, TNF-alpha exerted multiple stimulatory activities. Thus TNF increased the expression of HLA-DR antigens and high affinity IL 2 receptors. As a consequence, TNF-treated T cells showed an enhanced proliferative response to IL 2. Moreover, TNF-alpha was effective as a co-stimulator of IL 2-dependent IFN-gamma production. These data indicate that TNF-alpha may regulate growth and functional activities of normal T cells.  相似文献   

7.
Interferons are known to potentiate various biological effects of tumor necrosis factor (TNF). Recently, two different types of TNF receptors with molecular masses of 60 kDa (p60) and 80 kDa (p80), primarily expressed by epithelial cells and myeloid cells, respectively, have been identified. In the present report, we examined the effect of interferon-gamma (IFN-gamma) on each type of TNF receptor. Our results indicate that IFN-gamma induces TNF receptors on both myeloid (e.g. HL-60) and epithelial cells (e.g. HeLa). Furthermore, by using antibodies specific to each type of receptor, we demonstrate that both TNF receptors are equally inducible by IFN-alpha, IFN-beta and IFN-gamma. Thus, the increase in TNF receptors by interferons may play a role in their synergistic cellular response.  相似文献   

8.
Ligands of the tumor necrosis factor superfamily (TNFSF) (4-1BBL, APRIL, BAFF, CD27L, CD30L, CD40L, EDA1, EDA2, FasL, GITRL, LIGHT, lymphotoxin alpha, lymphotoxin alphabeta, OX40L, RANKL, TL1A, TNF, TWEAK, and TRAIL) bind members of the TNF receptor superfamily (TNFRSF). A comprehensive survey of ligand-receptor interactions was performed using a flow cytometry-based assay. All ligands engaged between one and five receptors, whereas most receptors only bound one to three ligands. The receptors DR6, RELT, TROY, NGFR, and mouse TNFRH3 did not interact with any of the known TNFSF ligands, suggesting that they either bind other types of ligands, function in a ligand-independent manner, or bind ligands that remain to be identified. The study revealed that ligand-receptor pairs are either cross-reactive between human and mouse (e.g. Tweak/Fn14, RANK/RANKL), strictly species-specific (GITR/GITRL), or partially species-specific (e.g. OX40/OX40L, CD40/CD40L). Interestingly, the receptor binding patterns of lymphotoxin alpha and alphabeta are redundant in the human but not in the mouse system. Ligand oligomerization allowed detection of weak interactions, such as that of human TNF with mouse TNFR2. In addition, mouse APRIL exists as two different splice variants differing by a single amino acid. Although human APRIL does not interact with BAFF-R, the shorter variant of mouse APRIL exhibits weak but detectable binding to mouse BAFF-R.  相似文献   

9.
X Z Su  D D Morris  R A McGraw 《Gene》1991,107(2):319-321
We report the molecular cloning and nucleotide sequence of the equine gene encoding tumor necrosis factor alpha. The 2610-bp genomic sequence was derived from three overlapping polymerase chain reaction products.  相似文献   

10.
Immunological cross-reactivity between tumor necrosis factor (TNF) binding proteins which are present in human urine (designated TBPI and TBPII) and two molecular species of the cell surface receptors for TNF is demonstrated. The two TNF receptors are shown to be immunologically distinct, to differ in molecular weight (58,000 and 73,000), and to be expressed differentially in different cells. It is further shown that polyclonal antibodies against one of the TNF binding proteins (TBPI) display, by virtue of their ability to bind the TNF receptor, activities which are very similar to those of TNF. These antibodies are cytotoxic to cells which are sensitive to TNF toxicity, induce resistance to TNF toxicity, enhance the incorporation of thymidine into normal fibroblasts, inhibit the growth of chlamydiae, and induce the synthesis of prostaglandin E2. Monovalent F(ab) fragments of the polyclonal antibodies lack TNF-like activities, but acquire them upon cross-linking with anti-F(ab)2 antibodies, suggesting that the ability of the anti-TBPI antibodies to mimic TNF correlates with their ability to cross-link the TNF receptors. This notion was further supported by data obtained in a comparative study of the TNF-like cytotoxicity of a panel of monoclonal antibodies against TBPI. The induction of TNF-like effects by antibodies to a TNF receptor suggests that TNF is not directly involved in intracellular signalling. Rather, it is the receptors to this cytokine which, when properly triggered in a process which appears to involve clustering of these receptors, transduce the signal for response to TNF into the cell's interior.  相似文献   

11.
Reverse signaling of transmembrane TNF (mTNF) contributes to the versatility of this cytokine superfamily. Previously, we could demonstrate that mTNF acting as receptor confers resistance to bacterial lipopolysaccharide in monocytes and macrophages (MO/MPhi). Reverse signaling can be induced by incubation with the monoclonal anti-TNF antibody 195F and other TNF antagonists, such as the humanized monoclonal antibody infliximab and the humanized soluble TNF receptor construct etanercept, respectively, all in former or present clinical use. Here, we addressed the question whether there are differences in modulating the LPS response in MO/MPhi among these three antagonists. Whereas 195F and infliximab suppress both, the release of an LPS-induced endothelial cell apoptotic factor and proinflammatory cytokines, etanercept only protected against the LPS-triggered apoptosis activity, but left the LPS-induced cytokine release unchanged. These data could have clinical impact with regard to TNF neutralization strategies.  相似文献   

12.
13.
For chemical synthesis of a gene coding for human tumor necrosis factor alpha (TNF-alpha), DNA sequence predicted by the amino acid sequence of human TNF molecule was prepared. Codons were chosen according to the codon usage in Escherichia coli (E. coli). The 490 bp gene was assembled by enzymic ligation of 42 oligonucleotides and was cloned into a vector (pKK223-3) for high expression of active TNF-alpha in E. coli. With use of site-directed mutagenesis on this DNA, five different muteins of TNF-alpha were synthesized. TNF-M1 and TNF-M4 have deletions of His-73 and Gln-102, respectively. These deletions didn't cause loss of the cytotoxic activity against L929 cells. TNF-M5, which has a substitution of Asp-10 to Arg, had the similar cytotoxic activity to that of TNF-alpha. The cytotoxic spectra against several tumor cells were not changed by this substitution. TNF-M3 has an amino acid substitution of Glu-116 to His which occupies this position in human TNF-beta. This substitution didn't change the cytotoxicity. In addition, evidence was presented that the change of the carboxyl terminal residue doesn't always influence the cytotoxic activity of TNF-alpha. Many different muteins were also isolated by random mutagenesis with hydroxylamine-HCl. One of the muteins, which carries a mutation of His-15 to Tyr, lost the cytotoxic activity almost completely.  相似文献   

14.
In addition to the induction of tumor regression, tumor necrosis factor (TNF) has been implicated as the causative agent in a number of pathologies, including cachexia, septic shock, rheumatoid arthritis, autoimmunity, and induction of HIV expression. We propose that this complex physiology might be manifest by different forms of TNF: the 17 kd secretory component, the 26 kd transmembrane form, or both. To determine whether the 26 kd form of TNF was biologically active and whether its biology differed from that of the secretory component, we generated uncleavable and solely secretable mutants of TNF and studied their biological activities. We found that an uncleavable mutant of the 26 kd cell surface transmembrane form of TNF kills tumor cells and virus-infected cells by cell-to-cell contact, and that TNF need not be internalized by its target to kill. Thus, the 26 kd integral transmembrane form of TNF may function in vivo to kill tumor cells and other targets locally in contrast to the systemic bioactivity of the secretory component.  相似文献   

15.
16.
Pejović V  Soskić V  Pan W  Kastin AJ 《Proteomics》2004,4(5):1461-1464
Tumor necrosis factor alpha (TNF alpha) is involved in regulation of food intake, inflammatory response, and cancer cachexia. Its actions are mediated by at least two receptors: TNFR1 and TNFR2. We show that mice lacking the TNF alpha receptors have altered levels of proteins that take part in signal transduction, stress response, protein folding, glucose and amino acid metabolism, vesicle trafficking, and cytoskeletal arrangements. This is the first time that some of them have been associated with TNF alpha signaling pathways.  相似文献   

17.
18.
19.
20.
We studied the effects of interleukin-1 alpha (IL-1) and tumor necrosis factor-alpha (TNF), alone and in combination, on MCF-7 breast cancer cells to determine whether these cytokines alter cell growth, TNF gene expression, and TNF secretion. We found that IL-1 alone and TNF alone inhibited cell growth in a dose-dependent manner. Each cytokine arrested growth in the G0/G1 phase of the cell cycle, with maximum growth inhibition at 1000 U/ml (P less than 0.05) and 100 U/ml (P less than 0.01), respectively. However, the combination of these two cytokines did not result in greater growth inhibition or a greater percentage of cells arrested in the G0/G1 phase of the cell cycle compared with each cytokine alone. We examined the effect of exogenous IL-1 and TNF on TNF gene expression by Northern blot analysis. In the absence of any cytokine, these cells do not express TNF mRNA. Exposure to IL-1 (1000 U/ml) induced TNF mRNA at 3 h; however, mRNA levels diminished thereafter to barely detectable levels by 24 h. Exposure to TNF (1000 U/ml) also induced TNF mRNA at 3 h, but in contrast to IL-1, the level of enhanced expression persisted at these levels through 72 h of exposure. Secretion of TNF by these cells is induced by exogenous TNF, but not by IL-1. IL-1 and TNF in combination do not produce greater inhibition of growth, greater amounts of TNF mRNA at 3 h, or greater secretion of TNF than that produced by TNF alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号