首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Two distinct tumor necrosis factor (TNF) receptors of 55- and 75-kDa apparent molecular masses previously identified on the cell surface by monoclonal antibodies have been solubilized with Triton X-100 from HL60 cells. A filter-based dot blot assay was developed to monitor specific 125I-TNF alpha binding during fractionation of the cell extract. By a combination of immuno- and ligand affinity chromatography and reverse phase high performance liquid chromatography both receptor proteins were purified to apparent homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed two bands at 55 and 51 kDa for the 55-kDa TNF receptor and a major 75-kDa and a minor 65-kDa band for the 75-kDa TNF receptor. All these bands specifically bound TNF alpha and TNF beta in ligand blot experiments. The exclusive specificity of monoclonal antibodies of the utr series for the 75.65-kDa bands and of the htr series for the 55.51-kDa bands was demonstrated with the purified antigens on Western blots. Both TNF receptor types were found to contain N-linked carbohydrates. N-terminal amino acid sequence analysis of the 55- and 51-kDa bands of the 55-kDa TNF receptor revealed identical sequences suggesting a possible truncation at the C-terminal end. Two different N-terminal sequences were determined for the 65-kDa band. One corresponded to the published sequence of ubiquitin; the other was therefore assumed to be a unique sequence of the 75-kDa TNF receptor. Additional internal sequences of this receptor were determined after proteolytic cleavage.  相似文献   

3.
4.
We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression.  相似文献   

5.
Interferons are known to potentiate various biological effects of tumor necrosis factor (TNF). Recently, two different types of TNF receptors with molecular masses of 60 kDa (p60) and 80 kDa (p80), primarily expressed by epithelial cells and myeloid cells, respectively, have been identified. In the present report, we examined the effect of interferon-gamma (IFN-gamma) on each type of TNF receptor. Our results indicate that IFN-gamma induces TNF receptors on both myeloid (e.g. HL-60) and epithelial cells (e.g. HeLa). Furthermore, by using antibodies specific to each type of receptor, we demonstrate that both TNF receptors are equally inducible by IFN-alpha, IFN-beta and IFN-gamma. Thus, the increase in TNF receptors by interferons may play a role in their synergistic cellular response.  相似文献   

6.
We analyzed the high affinity receptor for IFN-gamma of Raji cells and human placenta by combining Scatchard analysis, cross-linking experiments, and receptor purification. Only one high affinity binding site was found, Kd 2.1 X 10(-10). The receptor is a 90-kDa glycoprotein. However, multiple cross-linked products of 110 kDa to about 250 kDa could be generated and proteins of 90, 70, and 50 kDa could be obtained upon purification. These proteins all contained the same 90-kDa receptor, or part of it. We suggest that extensive cross-linking and/or proteolysis may explain many of the conflicting results published thus far. The extracellular domain of the 90-kDa receptor protein was highly resistant to digestion with trypsin or proteinase K. Trypsin digestion neither affected the number of binding sites per cell, nor the Kd for IFN-gamma. A cluster of sites for different proteases was found in the intracellular domain. The 50-kDa fragment created by trypsin digestion had the same characteristics as the isolated 50-kDa receptor fragment. It contained the IFN-gamma binding site and the receptor's extracellular and amino-terminal domain. N-linked glycosylation contributed about 15 kDa to its molecular mass, of which 4 kDa were attributable to sialic acid residues. O-Linked glycosylation was not detected. The number of binding sites per cell and the Kd for IFN-gamma were not affected by the presence or absence of N-linked glycosylation. The receptor contained at least one critical disulfide bridge and the reduced receptor could be reactivated in vitro.  相似文献   

7.
TNF alpha and TNF beta were compared regarding their binding to different types of target cells, cytotoxic/cytostatic activity against murine and human tumor cell lines as well as human capillary endothelial cells, their ability to induce differentiation in myeloid leukemia cell lines, and induction of hemorrhagic tumor necrosis and tumor regression as well as lethal toxicity in tumor-bearing mice. The results show considerable quantitative differences in the biological activity between TNF alpha and TNF beta depending on the type of target cell which has been used. TNF beta was 3 fold more cytotoxic than TNF alpha against murine L929 fibroblasts and 3-5 times more active concerning the induction of hemorrhagic tumor necrosis, complete tumor regression and more toxic in tumor-bearing mice. In contrast to this, TNF beta was markedly less cytotoxic against human capillary endothelial cells and the human mammary carcinoma cell line MCF7 and much less cytostatic against the human myeloid leukemia cell lines HL60 and U937. The lesser antiproliferative effect of TNF beta correlated with a lower ability for induction of differentiation in these cell lines. Competitive radioligand binding assays showed that TNF beta was about 4 fold more effective than TNF alpha in competing with 125I-labeled TNF alpha for the binding to murine L929 fibroblasts. But it was 15-20 times less effective in binding to the human MCF7 cells and the human myeloid leukemia cell lines HL60 and U937. This revealed that, at least for these targets, the differences in the biological activity between TNF alpha and TNF beta are due to different abilities for binding to the target cells. Possible mechanisms for these different binding abilities are discussed.  相似文献   

8.
Formyl peptide chemotactic receptors affinity-labeled with N-formyl-Nle-Leu-Phe-Nle-[125I]iodo-Tyr-Lys (where Nle represents norleucine) and ethylene glycol bis(succinimidyl succinate) consist of two isoelectric forms with cell type differences in both apparent size and charge (neutrophils: 55-70 kDa, pI 5.8, and 6.2.; monocytes: 60-75 kDa, pI 5.6 and 6.0; differentiated HL-60 cells: 62-85 kDa, pI 5.6 and 6.0). Endo-beta-N-acetylglucosaminidase F (endo F) cleavage of N-linked oligosaccharides from formyl peptide receptor generates 40-50- and 33-kDa products that can be affinity-labeled. Whereas both pI forms of this receptor from neutrophils are cleaved by endo F to 33-kDa final products, this cleavage does not eliminate pI differences. Tunicamycin decreases expression of formyl peptide receptor on differentiating HL-60 and causes a dose-dependent decrease in size of the major product seen after affinity labeling (0.5 micrograms/ml: 38-48 kDa; 2 micrograms/ml: 32 kDa). Thus, the formyl peptide receptor polypeptide backbone from all three cell types contains at least two N-linked oligosaccharide side chains which contribute to the cell type differences in Mr and are not required for ligand binding. Papain treatment of intact cells generates a membrane-bound formyl peptide receptor fragment that can be affinity-labeled and is of similar size (29-31 kDa) in all three cell types. Endo F treatment of the affinity-labeled papain fragment of formyl peptide receptor does not alter its size, suggesting that this fragment does not contain the N-linked oligosaccharide cleaved by endo F from intact receptor. The results indicate that at least two N-linked oligosaccharide chains are located on the distal 1-3-kDa portion of the receptor polypeptide backbone.  相似文献   

9.
The murine interleukin 2 (IL-2) receptor is a 55- to 60-kDa glycoprotein (p58) that binds IL-2 at a high and low affinity. In this investigation, we have identified sublines of EL4 that vary in their capacity to express high affinity IL-2 receptors after transfection of the IL-2 receptor cDNA. These and other cell populations were used to determine whether unique membrane molecules were specifically associated with the high affinity IL-2 receptor. Irreversible chemical cross-linking of [125I]IL-2 to only high affinity IL-2 receptors resulted in detection of IL-2 cross-linked to p58 as a 70- to 75-kDa band and other complexes of 90 to 95 kDa, 115 kDa, 150 kDa, 170 to 190 kDa, and 245 kDa. Antibodies specific for p58 resulted in precipitation of each of these complexes. However, disruption of noncovalent interactions prior to immunoprecipitation resulted in an inability to detect the material at 90 to 95 kDa. Therefore, we conclude that this complex most likely represented IL-2 cross-linked to a 75- to 80-kDa subunit that was noncovalently associated with p58. The other complexes greater than 150 kDa may represent these subunits cross-linked to each other. The detection of all the cross-linked complexes larger than 75 kDa appeared to be directly related to formation of high affinity IL-2 receptors because IL-2 was cross-linked only to p58 for three cell lines that exclusively expressed low affinity IL-2 receptors. Thus, high affinity murine IL-2 receptors are comprised of at least one alpha (p58)- and beta (p75)-subunit. Our data also raise the possibility of a more complex subunit structure.  相似文献   

10.
Fc alpha receptors (Fc alpha R) were isolated from a human monocytic cell line and used to raise four mAb with receptor specificity. The antibodies were used to identify the types of white blood cells that express Fc alpha R and the molecular heterogeneity of the receptor molecules. Nonpolymorphic epitopes, outside of the Fc alpha-binding site, were recognized only on blood cells of granulocyte and monocyte/macrophage lineages. The molecules identified, both by the antibodies and by the IgA ligand, were glycoproteins ranging in relative molecular mass from 55 to 75 kDa. However, one antibody detected a subpopulation of Fc alpha R molecules characterized by relatively restricted size heterogeneity. A complex glycosylation pattern was revealed by the resolution of discrete 32- and 36-kDa molecular species after removal of N-linked oligosaccharides and by evidence for O-linked carbohydrate moieties on at least a portion of the Fc alpha R molecules. In biosynthetic studies, all four anti-Fc alpha R antibodies and the IgA ligand bound a single 32-kDa core protein present in tunicamycin-treated cells, and the exceptional antibody again recognized molecules with relatively restricted glycosylation in the nontreated cells. These antibodies and native IgA ligands thus provide complementary reagents for definition of the complex structure and function of Fc alpha R in systemic IgA antibody responses.  相似文献   

11.
Expression of the two known receptors for TNF was studied in the promyelocytic leukemia cell line HL-60 before and after differentiation of the cells along the granulocyte lineage (induced by incubation with retinoic acid), or along the macrophage lineage (induced by incubation with the phorbol diester, PMA). The extent of inhibition of TNF binding by receptor-specific antisera, as well as the size of the complexes formed after cross-linking TNF to its receptors on intact cells, indicated that both receptor species were expressed on the surface of the undifferentiated HL60 cells. Differentiation into granulocyte-like cells resulted in some increase in TNF binding. The increase was apparently due to enhanced expression of the 75-kDa TNF-R, whereas the amounts of the 55-kDa TNF-R did not change significantly. In contrast, in HL-60 cells induced to differentiate into macrophage-like cells, expression of the 55-kDa TNF-R species was completely abolished. The pattern of TNF-R expression in the differentiated HL-60 cells was similar to that observed in leukocytes isolated from peripheral blood: on granulocytes, there were about equal amounts of both receptor species, whereas on monocytes the 75-kDa receptor was predominant. The loss of 55-kDa receptors during differentiation of HL-60 cells into macrophage-like cells was accompanied by a pronounced decrease in the level of the mRNA for that receptor, suggesting that at least part of the change in TNF-R expression is due to mechanisms that control the amounts of receptor mRNA. Although little is yet known regarding the functional differences between the two receptor species, marked changes in the pattern of their expression, as observed during HL-60 cell differentiation, are likely to alter the kind of response of the cells to TNF and may therefore play an important role in the coordination of TNF effects in the organism.  相似文献   

12.
When transferrin receptors of human erythroleukemic cells were pulse-labeled with [35S]methionine and then chased in the absence of radioactive precursor, the first detectable immunoprecipitable form of the receptor had a molecular mass of 85 kDa. This form of the receptor was converted to the mature form of 93 kDa with a half-time of about 40-60 min. Both the immature (85 kDa) and mature (93 kDa) receptors associated as dimers, the native form of the receptor. The 85-kDa, as well as the 93-kDa, receptors bound to a monoclonal antibody raised against the transferrin receptor or to transferrin-Sepharose. In order to determine whether glycosylation was necessary for ligand binding, purified receptors were isolated from cells grown in the presence of tunicamycin. When K562 cells were grown in the presence of tunicamycin, an 80-kDa nonglycosylated form of the receptor was synthesized. This nonglycosylated receptor was also capable of dimer formation; however, much less of it reached the cell surface than the fully glycosylated form, although both untreated and tunicamycin-grown cells appeared to synthesize transferrin receptors at similar rates. Although the number of receptor molecules/cell was similar in control and tunicamycin-treated cells, the nonglycosylated receptors exhibited a much lower affinity for transferrin than those of untreated cells; in contrast, when receptors were purified by immunoprecipitation and digested with bacterial alkaline phosphatase, no difference was observed between the affinity of these receptors and undigested immunoprecipitated receptors. These results suggest that glycosylation is not necessary for specific binding of transferrin to its receptor, but the affinity of this binding can be influenced greatly by the presence or absence of carbohydrate residues.  相似文献   

13.
We have isolated the major GTP-binding proteins from myeloid HL-60 cell plasma membranes. Two pertussis toxin substrates with similar apparent molecular masses of 40 and 41 kDa, respectively, are contained in these preparations, with both proteins being ADP-ribosylated to a similar extent. Partial chymotryptic proteolysis of fractions containing the [32P]ADP-ribosylated 40-kDa GTP-binding protein alpha subunit demonstrated production of 32P-labeled peptides of 28 and 16 kDa which were not observed after partial proteolysis of fractions containing solely the 41-kDa protein. Similarly, mild acid hydrolysis produced an additional 28-kDa fragment only from fractions containing the 40-kDa protein. The results presented here indicate the presence of two distinct pertussis toxin substrates in myeloid cells. The 41-kDa pertussis toxin substrate is likely to represent the alpha subunit of the inhibitory GTP-binding regulatory protein of adenylate cyclase, whereas the 40-kDa substrate may represent the alpha subunit of the GTP-binding protein which is coupled to chemoattractant receptors. In addition to the pertussis toxin substrates, an additional major peak of guanosine 5'-(3-O-thio)triphosphate-binding activity closely corresponded to the appearance of a 23-kDa protein.  相似文献   

14.
Glycosylation of the murine erythropoietin receptor   总被引:1,自引:0,他引:1  
Murine erythropoietin-responsive Rauscher Red 5-1.5 cells were used to determine the contribution of glycosylation to the size and function of the erythropoietin receptor. The half life of the receptors was determined to be 4 h. The number of receptors was not significantly decreased in cells treated for 48 h with inhibitors of glycosylation (tunicamycin, glucosamine or swainsonine) and their affinity was slightly enhanced in tunicamycin- or glucosamine-treated cells. Erythropoietin was cross-linked with two proteins of 104 and 86 kDa. Their molecular masses were not significantly reduced in cells treated with the glycosylation inhibitors. When immunoprecipitated cross-linked receptors were digested with endoglycosidases, the molecular masses of both proteins were only slightly modified giving values of 100 and 82 kDa. Thus we can conclude that the proteins cross-linked to erythropoietin are very weakly glycosylated.  相似文献   

15.
Radioiodinated human choriogonadotropin was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to the hormone receptor on porcine granulosa cells and the solubilized sample was electrophoresed. Cross-linked samples revealed four additional bands of slower electrophoretic mobility in addition to the hormone alpha, beta, and alpha beta dimer bands. The four bands corresponded to masses of 68, 74, 102, and 136 kDa whereas the alpha beta dimer band corresponded to 50 kDa. Formation of the four bands requires the 125I-hormone to bind specifically to the receptor with subsequent cross-linking. Binding can be prevented by excess of native hormone but not by follitropin. A monofunctional analog of the cross-linking reagent failed to produce the four bands. They were also produced by cross-linking Triton X-100-solubilized hormone-receptor complexes. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of the cross-linked sample were treated with reagents that cleave covalent cross-links and then electrophoresed in a second dimension gel, 18-, 24-, 28-, and 34-kDa components were released, in addition to the alpha and beta subunits of the native hormone. Simultaneous peptide mapping of the cross-linked complexes in the gel matrix with Staphylococcus V8 protease or papain revealed progressive proteolysis to generate terminal fragments of 30 or 27 kDa, respectively. These fragments were unique to and commonly present in the 74-, 102-, and 136-kDa hormone-receptor complexes but were not produced by proteolysis of the cross-linked human choriogonadotropin (hCG) alpha beta dimer or the hCG alpha subunit. Apparently, the radioactively labeled segment(s) of the alpha subunit of 125I-hCG was cross-linked to the 24-kDa component. The results demonstrate the protein nature of the receptor and suggest that 125I-hCG was initially cross-linked to the 24-kDa component to generate the 74-kDa complex, then the 28- and 34-kDa components were sequentially cross-linked to the 24-kDa component in the 74-kDa complex to generate the 102- and 134-kDa complexes.  相似文献   

16.
alpha 2-Macroglobulin-trypsin complex (alpha 2M.T) and alpha 2M-methylamine bind in a Ca2+-dependent way to a 400- to 500-kDa receptor in rat and human liver membranes (Gliemann, J., Davidsen, O., and Moestrup, S. K. (1989) Biochim. Biophys. Acta 980, 326-332). Here we report the preparation of alpha 2M receptors from rat liver membranes solubilized in 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonic acid (CHAPS) dihydrate and incubated with Sepharose-immobilized alpha 2M-methylamine. The receptor preparation eluted with EDTA (pH 6.0) contained a protein larger than the 360-kDa alpha 2M (nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and some minor contaminants. The reduced large protein was about 440 kDa using reduced laminin (heavy chain: 400 kDa) as a standard. About 10 micrograms of receptor protein was obtained from 100 mg of liver membranes. The receptor preparation immobilized on nitrocellulose sheets bound 125I-alpha 2M.T, and the binding activity co-eluted with the 440-kDa protein. 125I-Labeled rat alpha 1-inhibitor-3 (alpha 1I3), a 200-kDa analogue of the alpha 2M subunit which binds to the alpha 2M receptors, was cross-linked to the 440-kDa protein. The receptor preparation was iodinated, and the 125I-labeled 440-kDa protein was isolated. It showed Ca2+-dependent saturable binding to alpha 2M-methylamine. In conclusion, we have purified the major hepatic alpha 2M receptor as an approximately 440-kDa single chain protein.  相似文献   

17.
The addition and endoplasmic reticulum (ER) glucosidase processing of N-linked glycans is essential for the secretion of rat hepatic lipase (HL). Human HL is distinct from rat HL by the presence of four as opposed to two N-linked carbohydrate side chains. We examined the role of N-linked glycosylation and calnexin interaction in human HL secretion from Chinese hamster ovary (CHO) cells stably expressing a human HL cDNA. Steady-state and pulse-chase labeling experiments established that human HL was synthesized as an ER-associated precursor containing high mannose N-linked glycans. Secreted HL had a molecular mass of approximately 65 kDa and contained mature N-linked sugars. Inhibition of N-linked glycosylation with tunicamycin (TM) prevented secretion of HL enzyme activity and protein mass. In contrast, incubation of cells with the ER glucosidase inhibitor, castanospermine (CST), decreased human HL protein secretion by 60%, but allowed 40% of fully active HL to be secreted. HL protein mass and enzyme activity were also recovered from the media of a CHO-derivative cell line genetically deficient in ER glucosidase I activity (Lec23) that was transiently transfected with a human HL cDNA. Co-immunoprecipitation experiments demonstrated that newly synthesized human HL bound to the lectin-like ER chaperone, calnexin, and that this interaction was inhibited by TM and CST. These results suggest that under normal conditions calnexin may increase the efficiency of HL export from the ER. Whereas a significant proportion of human HL can attain activity and become secreted in the absence of glucose trimming and calnexin association, these interrelated processes are nevertheless essential for the expression of full HL activity.  相似文献   

18.
Cultured myeloid leukemia cells display transferrin receptors but decrease receptor display after differentiation induction or accumulation of intracellular iron. To determine whether regulation of transferrin receptors and ferritin were linked under these disparate conditions, serum-free and fetal bovine serum (FBS) cultures of HL60 promyelocytic leukemia cells were used to investigate relationships between transferrin receptor display and intracellular ferritin. Using 125I-transferrin binding and immunofluorescence staining for transferrin receptors, HL60 cells cultured in serum-free, transferrin-free medium expressed fewer transferrin receptors and contained increased ferritin when compared to cells cultured with FBS or transferrin supplemented, serum-free medium. When placed in medium containing transferrin, cells previously grown in transferrin-free medium rapidly re-expressed transferrin receptors and decreased their ferritin content. HL60 cells induced to differentiate into granulocytes or macrophages also decreased transferrin receptor display and increased their ferritin content. Transferrin receptor display and ferritin content in both proliferating and differentiating myeloid leukemia cells are inversely related and their regulation is closely linked. Regulation of transferrin receptor display and ferritin synthesis may be important events regulating myeloid cell growth and differentiation.  相似文献   

19.
Cytochrome b558, an essential component of the respiratory burst of phagocytic cells, is the terminal electron donor to molecular oxygen that results in the formation of superoxide anion (O2-.). It is an integral membrane heterodimer that in neutrophils consists of a 22-kDa small subunit and a highly glycosylated 91-kDa large subunit. Identical core proteins often differ in glycosylation in different cell types and with some membrane glycoproteins, the glycosylation state may markedly affect function. In the present study, antisera reactive with cytochrome b558 large subunit was used for immunoblot analysis of the glycosylation pattern of this subunit from different types of phagocytic cells. Striking variability in the apparent m.w. of this broadly banding subunit was detected in five different phagocytic cell types (neutrophils 78,000 to 93,000; eosinophils 74,000 to 115,000; monocytes 82,000 to 99,000; dibutyryl cyclic AMP-induced HL-60 cells 79,000 to 103,000; dimethyl sulfoxide-induced HL-60 cells 77,000 to 110,000). However, after complete cleavage of N-linked oligosaccharides with endoglycosidase F, the core peptide of cytochrome b558 large subunit from these different cell types had the same Mr (58,000). Inhibition of N-glycosylation with tunicamycin in differentiating HL-60 cells resulted in the synthesis of immunoreactive protein of the same m.w. and banding pattern as seen after endoglycosidase F cleavage. These tunicamycin treated cells retained some capacity to generate superoxide anion when stimulated with PMA. We conclude that the identity of the N-linked oligosaccharides of the cytochrome b558 large subunit differ in various phagocytic cells. All N-linked glycans on cytochrome b558 in all cell types examined were of the complex type as defined by resistance to endoglycosidase H cleavage. N-linked glycosylation of the cytochrome b558 large subunit may not be essential for activation of the respiratory burst.  相似文献   

20.
Effect of N-linked glycosylation on hepatic lipase activity   总被引:2,自引:0,他引:2  
Hepatic lipase (HL) is a secretory protein synthesized in hepatocytes and bound to liver endothelium. Previous studies have suggested that HL N-linked glycans are required for catalytic activity. To directly test this hypothesis, Xenopus laevis oocytes were used to express native rat HL or HL lacking one or both N-linked glycosylation sites. The expressed and secreted native HL had an apparent molecular mass of 53 kDa, consistent with purified rat liver HL. The mutant lacking both glycosylation sites, while poorly secreted, had an apparent molecular mass of 48 kDa, the same size observed for HL after enzymatic removal of N-linked oligosaccharides. Mutants lacking one of the two sites were intermediate in size and showed reduced secretion. Each of these expressed and secreted proteins had full catalytic activity that was inhibited by antisera to rat HL. Thus, N-linked glycosylation of rat HL, while important to lipase secretion, is not essential for the expression of lipase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号