首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: All fluorescence slide-based cytometry detections systems basically include the following components: (1) an excitation light source, (2) intermediate optics, and (3) a detection device consisting of a CCD camera or a PMT. The optical principles employed is slide-based systems are similar to those of confocal microscopes (CLSM). METHODS: The following tests evaluated confocal equipment performance: dichroic reflectivity, field illumination, lens performance, laser power output, spectral registration, axial resolution, PMT reliability, and system noise. RESULTS: Quality assurance tests provide a basis to determine if the equipment is operating correctly. Laser power, PMTs function, dichroic reflection, spectral registration, axial registration, system noise and sensitivity, lens performance and laser stability were tested colocalization of UV and visible peaks of a bead should be less than 210 nm. Interference contrast optics decrease fluorescence resolution. CONCLUSIONS: QA tests that assess CLSM system performance are also applicable to other slide-based systems. By utilization this type of testing approach, the subjective nature of assessing the CLSM may be eliminated. These tests serve as guidelines for other investigators to ensure that their machines are providing data that is accurate with the necessary resolution, sensitivity and precision.  相似文献   

2.
The laser scanning confocal microscope has enormous potential in many fields of biology. Currently there is a subjective nature in the assessment of a confocal microscope's performance by primarily evaluating the system with a specific test slide provided by the user's laboratory. To achieve better performance from the equipment, it is necessary to run a series of tests to ensure that the optical machine is functioning properly. We have devised these methods on the Leica TCS-SP and TCS-4D systems. Tests measuring field illumination, lens clarity, laser power output, dichroic functioning, spectral alignment, axial resolution, laser power stability, machine performance, and system noise were derived to test the Leica laser scanning confocal microscopy system. These tests should be applicable to other manufacturers' systems as well. The relationship between photomultiplier tube (PMT) voltage, laser power, and averaging using a 10-microm-diameter test bead has shown that the noise (coefficient of variation of bead intensity, CV) in an image increases as the PMT increases. Therefore increasing the PMT setting results in increased noise. For ideal image quality, it appears that it is better to decrease the PMT setting and increase laser power, as noise generated by high PMT settings will reduce the image quality far more than the bleaching caused by higher laser power. Averaging can be used to improve the image at high PMT values, provided the sample is not bleached by repeated passes of the laser.  相似文献   

3.
Evaluation of confocal microscopy system performance   总被引:3,自引:0,他引:3  
Zucker RM  Price O 《Cytometry》2001,44(4):273-294
BACKGROUND: The confocal laser scanning microscope (CLSM) has been used by scientists to visualize three-dimensional (3D) biological samples. Although this system involves lasers, electronics, optics, and microscopes, there are few published tests that can be used to assess the performance of this equipment. Usually the CLSM is assessed by subjectively evaluating a biological/histological test slide for image quality. Although there is a use for the test slide, there are many other components in the CLSM that need to be assessed. It would be useful if tests existed that produced reference values for machine performance. The aim of this research was to develop quality assurance tests to ensure that the CLSM was stable while delivering reproducible intensity measurements with excellent image quality. METHODS: Our ultimate research objective was to quantify fluorescence using a CLSM. To achieve this goal, it is essential that the CLSM be stable while delivering known parameters of performance. Using Leica TCS-SP1 and TCS-4D systems, a number of tests have been devised to evaluate equipment performance. Tests measuring dichroic reflectivity, field illumination, lens performance, laser power output, spectral registration, axial resolution, laser stability, photomultiplier tube (PMT) reliability, and system noise were either incorporated from the literature or derived in our laboratory to measure performance. These tests are also applicable to other manufacturer's systems with minor modifications. RESULTS: A preliminary report from our laboratory has addressed a number of the QA issues necessary to achieve CLSM performance. This report extends our initial work on the evaluation of CLSM system performance. Tests that were described previously have been modified and new tests involved in laser stability and sensitivity are described. The QA tests on the CLSM measured laser power, PMT function, dichroic reflection, spectral registration, axial registration, system noise and sensitivity, lens performance, and laser stability. Laser power stability varied between 3% and 30% due to various factors, which may include incompatibility of the fiber-optic polarization with laser polarization, thermal instability of the acoustical optical transmission filter (AOTF), and laser noise. The sensitivity of the system was measured using a 10-microm Spherotech bead and the PMTs were assessed with the CV concept (image noise). The maximum sensitivity obtainable on our TCS-SP1 system measured on the 10-microm Spherotech beads was approximately 4% for 488 nm, 2.5% for 568 nm, 20% for 647 nm, and 19% for 365 nm laser light. The values serve as a comparison to test machine sensitivity from the same or different manufacturers. CONCLUSIONS: QA tests are described on the CLSM to assess performance and ensure that reproducing data are obtained. It is suggested strongly that these tests be used in place of a biological/histological sample to evaluate system performance. The tests are more specific and can recognize instrument functionality and problems better than a biological/histological sample. Utilization of this testing approach will eliminate the subjective assessment of the CLSM and may allow the data from different machines to be compared. These tests are essential if one is interested in making intensity measurements on experimental samples as well as obtaining the best signal detection and image resolution from a CLSM. Published 2001 Wiley-Liss, Inc.  相似文献   

4.
Statistical evaluation of confocal microscopy images   总被引:1,自引:0,他引:1  
Zucker RM  Price OT 《Cytometry》2001,44(4):295-308
BACKGROUND: The coefficient of variation (CV) is defined as the standard deviation (sigma) of the fluorescent intensity of a population of beads or pixels expressed as a proportion or percentage of the mean (mu) intensity (CV = sigma/mu). The field of flow cytometry has used the CV of a population of bead intensities to determine if the flow cytometer is aligned correctly and performing properly. In a similar manner, the analysis of CV has been applied to the confocal laser scanning microscope (CLSM) to determine machine performance and sensitivity. METHODS: Instead of measuring 10,000 beads using a flow cytometer and determining the CV of this distribution of intensities, thousands of pixels are measured from within one homogeneous Spherotech 10-microm bead. Similar to a typical flow cytometry population that consists of 10,000 beads, a CLSM scanned image consists of a distribution of pixel intensities representing a population of approximately 100,000 pixels. In order to perform this test properly, it is important to have a population of homogeneous particles. A biological particle usually has heterogeneous pixel intensities that correspond to the details in the biological image and thus shows more variability as a test particle. RESULTS: The bead CV consisting of a population of pixel intensities is dependent on a number of machine variables that include frame averaging, photomultiplier tube (PMT) voltage, PMT noise, and laser power. The relationship among these variables suggests that the machine should be operated with lower PMT values in order to generate superior image quality. If this cannot be achieved, frame averaging will be necessary to reduce the CV and improve image quality. There is more image noise at higher PMT settings, making it is necessary to average more frames to reduce the CV values and improve image quality. The sensitivity of a system is related to system noise, laser light efficiency, and proper system alignment. It is possible to compare different systems for system performance and sensitivity if the laser power is maintained at a constant value. Using this bead CV test, 1 mW of 488 nm laser light measured on the scan head yielded a CV value of 4% with a Leica TCS-SP1 (75-mW argon-krypton laser) and a CV value of 1.3% with a Zeiss 510 (25-mW argon laser). A biological particle shows the same relationship between laser power, averaging, PMT voltage, and CV as do the beads. However, because the biological particle has heterogeneous pixel intensities, there is more particle variability, which does not make as useful as a test particle. CONCLUSIONS: This CV analysis of a 10-microm Spherotech fluorescent bead can help determine the sensitivity in a confocal microscope and the system performance. The relationship among the factors that influence image quality is explained from a statistical endpoint. The data obtained from this test provides a systematic method of reducing noise and increasing image clarity. Many components of a CLSM, including laser power, laser stability, PMT functionality, and alignment, influence the CV and determine if the equipment is performing properly. Preliminary results have shown that the bead CV can be used to compare different confocal microscopy systems with regard to performance and sensitivity. The test appears to be analogous to CV tests made on the flow cytometer to assess instrument performance and sensitivity. Published 2001 Wiley-Liss, Inc.  相似文献   

5.
We describe here the use of a confocal laser scanning microscope for imaging fast dynamic changes of the intracellular calcium ion concentration ([Ca2+]i) in isolated ventricular cell pairs. The scanning apparatus of our system, paired galvanometer mirrors, can perform narrow band scanning of an area of interest at a high temporal resolution of less than 70 msec per image. The actual [Ca2+]i is obtained directly through the fluorescence intensity of injected fluo-3, which responds to changes of [Ca2+]i in optically sectioned unit volumes of the cell. Images of the calcium wave obtained during propagation between paired cells revealed that the wavefront is constant in shape and propagates at constant velocity without any delay at the cell-to-cell junction. The confocal laser scanning microscope with depth-discriminating ability is a valuable tool for taking pictures of the sequence of biological events in living cells.  相似文献   

6.
Construction of a confocal microscope for real-time x-y and x-z imaging   总被引:1,自引:0,他引:1  
We describe the construction of a simple 'real-time' laser-scanning confocal microscope, and illustrate its use for rapid imaging of elementary intracellular calcium signaling events. A resonant scanning galvanometer (8 kHz) allows x-y frame acquisition rates of 15 or 30 Hz, and the use of mirrors to scan the laser beam permits use of true, pin-hole confocal detection to provide diffraction-limited spatial resolution. Furthermore, use of a piezoelectric device to rapidly focus the objective lens allows axial (x-z) images to be obtained from thick specimens at similar frame rates. A computer with image acquisition and graphics cards converts the output from the microscope to a standard video signal, which can then be recorded on videotape and analyzed by regular image processing systems. The system is largely made from commercially available components and requires little custom construction of mechanical parts or electronic circuitry. It costs only a small fraction of that of comparable commercial instruments, yet offers greater versatility and similar or better performance.  相似文献   

7.
The relative slow scanning speed of a galvanometer commonly used in a confocal laser scanning microscopy system can dramatically limit the system performance in scanning speed and image quality, if the data collection is simply synchronized with the galvanometric scanning. Several algorithms for the optimization of the galvanometric CLSM system performance are discussed in this work, with various hardware controlling techniques for the image distortion correction such as pixel delay and interlace line switching; increasing signal-to-noise ratio with data binning; or enhancing the imaging speed with region of interest imaging. Moreover, the pixel number can be effectively increased with Acquire-On-Fly scan, which can be used for the imaging of a large field-of-view with a high resolution.  相似文献   

8.
We describe a compact form of confocal scanning microscope using a semiconductor laser. Confocal operation is ensured by the use of a single mode optical fibre for both launching the light into the microscope and collecting the signal from the object. The collected light is allowed to re-enter the laser and the image is detected as a modulation on the signal from the laser power monitor diode. Images are compared with those obtained from traditional point detectors. The alignment tolerances of the reciprocal scheme are found to be greatly reduced over conventional confocal systems.  相似文献   

9.
The influence of instability of an image presented by means of a monitor on the efficiency of reading and information retrieval was studied. Jitter was caused by the weak external magnetic field. Additionally, the influence of the image quality on the memory processes, spatial attention, and automatic processing of verbal information assessed by means of tests performed by the subjects after 1.5 h of work with an unstable image was studied. A significant deterioration in information retrieval under image instability conditions was shown. Work at the subthreshold level of image jitter is accompanied by a decelerated heart rate. No effect of work with an unstable image on long-term memory tests, spatial attention, and Strup’s test was found.  相似文献   

10.
A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented.  相似文献   

11.
Scanning microphotolysis (SCAMP) is a combination of fluorescence microphotolysis and confocal laser scanning microscopy. A laser scanning microscope is equipped with an optical switch able to modulate the power or/and wavelength of the laser beam in less than a microsecond while a dedicated computer program is employed to precisely coordinate scanning process and laser beam modulation. By these means it becomes possible to vary the power or/and wavelength of the laser beam during scanning at a precision of one resolution element. Patterns of almost arbitrary design can be written into the object by photolysis, e.g., photobleaching or photoactivation. The dissipation of the photolysis pattern by diffusion or other types of molecular transport can be followed at confocal resolution and used to characterize the transport process. SCAMP can be employed in conjunction with single-photon or multiphoton excitation. Furthermore, it can be easily installed on virtually any confocal laser scanning microscope. We summarize at first the conceptual and practical basis of SCAMP. Then, two novel applications are discussed: (i) measurements of translational diffusion coefficients in truly three-dimensional systems at diffraction-limited resolution, and (ii) optical recording of single transporters in membrane patches.  相似文献   

12.
《Biophysical journal》2020,118(10):2354-2365
We expand the standard fluorescence recovery after photobleaching (FRAP) model introduced by Axelrod et al. in 1976. Our goal is to capture some of the following common artifacts observed in the fluorescence measurements obtained with a confocal laser scanning microscope in biofilms: 1) linear drift, 2) exponential decrease (due to bleaching during the measurements), 3) stochastic Gaussian noise, and 4) uncertainty in the exact time point of the onset of fluorescence recovery. To fit the resulting stochastic model to data from FRAP measurements and to estimate all unknown model parameters, we apply a suitably adapted Metropolis-Hastings algorithm. In this way, a more accurate estimation of the diffusion coefficient of the fluorophore is achieved. The method was tested on data obtained from FRAP measurements on a cultivated biofilm.  相似文献   

13.
This report compares the application of confocal laser scanning fluorescence microscopy with standard epifluorescence microscopy for the simultaneous localization of the neurotransmitters gamma-aminobutyric acid and glutamate in rat cerebral cortex. With this approach, sections of fixed rat brain are treated with primary antibodies against gamma-aminobutyric acid (rabbit-derived) and glutamate (mouse-derived), followed by treatment with fluorescein isothiocyanate-tagged donkey anti-rabbit and rhodamine-tagged goat anti-mouse secondary antibodies, respectively. The results demonstrate that images from immunofluorescence localizations with a confocal laser scanning microscope have superior resolution and contrast as a result of significant reductions of background flare caused by emission from out-of-focus structures in the field of view. The confocal microscope achieves this improved image quality by optically sectioning through a specimen at narrow planes of focus and then compiling a composite image of an object of interest. The composite image can be further enhanced by using various image processing options. The combined use of double immunofluorescence and confocal laser scanning microscopy provides an important means to simultaneously study the anatomical relationships of pre- and post-synaptic elements in a complex neural system.  相似文献   

14.
光声成像技术是近年来发展的一种新型的无损医学成像技术,它是以脉冲激光作为激发源,以检测的声信号为信息载体,通过相应的图像重建算法重建组织内部结构和功能信息的成像方法。该方法结合了光学成像和声学成像的特点,可提供深层组织高分辨率和高对比度的组织层析图像,在生物医学临床诊断以及在体成像领域具有广泛的应用前景。目前光声成像的扫描方式主要有基于步进电机扫描方式和基于振镜的扫描方式,本文针对目前步进电机扫描速度慢(10 mm×10 mm;0.001帧/s),振镜扫描范围小(1 mm2)的不足,发展了基于直线电机扫描的大视场快速光声显微成像系统。同一条扫描线过程中直线电机速度最高可达200 mm/s。该技术采用逐线采集光声信号的方式,比逐点采集光声信号的步进电机快800倍。该系统对10 mm×10 mm全场扫描的扫描速度为0.8帧/s。最大可扫描视场范围可以达到50 mm×50 mm。大视场快速光声显微成像系统的发展将为生物医学提供新的成像工具。  相似文献   

15.
BACKGROUND: Because different spectral sensitivities of human eye and image sensor lead to different perception of fluorescence signals, data generation is an important step in image analysis, because following work steps depend on it. METHODS: We developed a method to determine image parameters allowing an objective appraisal of quality of image data as well as a separation of object and background. RESULTS: Calculated parameters can be used for an automated adjustment of camera parameters in image analysis systems. DISCUSSION: Our approach for objective adjusted data generation achieves an improvement of analysis quality.  相似文献   

16.
目前主要使用激光共聚焦扫描显微镜观察绿色荧光蛋白的表达,但需要昂贵的仪器并耗费大量时间。本研究开发了一种新型激光诱导的微流芯片检测系统来监测绿色荧光蛋白在枯草芽孢杆菌中的表达。该系统主要由激光装置、光路系统、微流控芯片、光电倍增管和计算机处理系统等5部分组成。对该系统的测试结果显示,随着诱导强度的增强监测信号峰也随之增强,并且与激光共聚焦显微镜观察的结果一致。利用该芯片系统能够快速准确地筛选和鉴定用绿色荧光蛋白作为标记的细胞克隆,可以替代PCR鉴定方法。但该系统仅仅能够监测表达强度,不能够满足蛋白定位等高水平研究,因此,该系统适合应用于环境的微生物监测、药物筛选和其他无需观察蛋白定位等研究。  相似文献   

17.
Several years ago our research program developed a video-rate confocal microscope with no moving parts, based on synchronizing and aligning the scan of an image dissector tube (IDT) with the light returning from a microscope stage that has been acousto-optically scanned by a laser beam. Improvements on the original system have recently been completed. The laser power has been substantially increased and the laser scan is now brought into the Nikon Diaphot inverted microscope through the epi-illumination port. Aberrations in the scanned beam have been reduced by performing the beam shaping required by the acousto-optic deflectors using prisms instead of cylindrical lenses. The IDT is located at the side camera output port at the end of a simple, efficient light path. The new system is described in detail and results obtained using the microscope in reflection and fluorescence mode are presented.  相似文献   

18.
Summary— Confocal scanning optical microscopy has significant advantages over conventional fluorescence microscopy: it rejects the out-of-locus light and provides a greater resolution than the wide-field microscope. In laser scanning optical microscopy, the specimen is scanned by a diffraction-limited spot of laser light and the fluorescence emission (or the reflected light) is focused onto a photodetector. The imaged point is then digitized, stored into the memory of a computer and displayed at the appropriate spatial position on a graphic device as a part of a two-dimensional image. Thus, confocal scanning optical microscopy allows accurate non-invasive optical sectioning and further three-dimensional reconstruction of biological specimens. Here we review the recent technological aspects of the principles and uses of the confocal microscope, and we introduce the different methods of three-dimensional imaging.  相似文献   

19.
本文介绍一种目视激光显微镜。该装置采用白炽灯和激光做光源。通过调压器衬底亮度可以调整到零。由于激光的高亮度和强相干性,与普通显微镜相比,该显微镜具有景深长,分辨率高,层次丰富的特点。使用该显微镜时能实现镜象的假色彩编码,且镜象具有立体感。文中报导了该显微镜的原理和使用效果。  相似文献   

20.
This protocol outlines a procedure for collecting and analyzing point spread functions (PSFs). It describes how to prepare fluorescent microsphere samples, set up a confocal microscope to properly collect 3D confocal image data of the microspheres and perform PSF measurements. The analysis of the PSF is used to determine the resolution of the microscope and to identify any problems with the quality of the microscope's images. The PSF geometry is used as an indicator to identify problems with the objective lens, confocal laser scanning components and other relay optics. Identification of possible causes of PSF abnormalities and solutions to improve microscope performance are provided. The microsphere sample preparation requires 2-3 h plus an overnight drying period. The microscope setup requires 2 h (1 h for laser warm up), whereas collecting and analyzing the PSF images require an additional 2-3 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号