首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A mutant ofZymomonas mobilis deficient in the utilization of fructose for growth and ethanol formation was shown to lack fructokinase activity. When grown in media which contained glucose+fructose or sucrose, both the mutant and wild type produced sorbitol in amounts up to 60 g·l-1, depending on the initial concentrations of sugars. Sorbitol formation was accompanied by an accumulation of acetaldehyde, gluconate, and acetoin. A ferricyanide-dependent sorbitol dehydrogenase could be localized in the cell membrane; it thus resembles the sorbitol dehydrogenase ofGluconobacter suboxydans. Neither a NAD(P)H dependent reduction of fructose nor a NAD(P) dependent dehydrogenation of sorbitol could be detected in cell-free extracts. The use of fructose-negative mutants ofZ. mobilis for the enrichment of fructose in glucose+fructose mixtures is discussed.  相似文献   

2.
Sucrose utilization by Zymomonas mobilis: formation of a levan   总被引:5,自引:1,他引:5       下载免费PDF全文
1. Molar growth-yield coefficients of Zymomonas mobilis for glucose, fructose, glucose plus fructose, and sucrose are reported. Yield coefficients for sucrose are appreciably lower than those for the equivalent concentrations of glucose plus fructose. 2. Only 2.6% of [U-(14)C]glucose supplied in the growth medium is incorporated into cell substance by Z. mobilis utilizing glucose as the energy source. 3. During growth on sucrose a levan is formed. It has been characterized and shown to resemble other bacterial levans. 4. Levan formation from sucrose could be demonstrated with both washed cell suspensions and cell extracts of Z. mobilis. 5. Sucrose phosphorylase could not be demonstrated in extracts of the organism.  相似文献   

3.
AIMS: To examine the potential of Zymomonas mobilis entrapped into polyvinylalcohol (PVA) lens-shaped immobilizates in batch and continuous ethanol production. METHODS AND RESULTS: Cells, free or immobilized in PVA hydrogel-based lens-shaped immobilizates - LentiKats, were cultivated on glucose medium in a 1 l bioreactor. In comparison with free cell cultivation, volumetric productivity of immobilized batch culture was nine times higher (43.6 g l(-1) h(-1)). The continuously operated system did not improve the efficiency (volumetric productivity of the immobilized cells 30.7 g l(-1) h(-1)). CONCLUSIONS: We demonstrated Z. mobilis capability, entrapped into LentiKats, in the cost-efficient batch system of ethanol production. SIGNIFICANCE AND IMPACT OF THE STUDY: The results reported here emphasize the potential of bacteria in combination with suitable fermentation technology in industrial scale. The innovation compared with traditional systems is characterized by excellent long-term stability, high volumetric productivity and other technological advantages.  相似文献   

4.
Summary High resolution 13C Nuclear Magnetic Resonance (NMR) spectroscopy has been employed to determine the chemical composition of the unknown major products in a sucrose or fructose plus glucose fermentation to ethanol by the bacterium Zymmonas mobilis. When grown on these sugars Z.mobilis was found to produce significant amounts of sorbitol, up to 43 g·l-1 for strain ZM31 when grown on 250 g·l-1 sucrose.The production of sorbitol and decrease of glucose, fructose, or sucrose was followed throughout batch fermentations by NMR and HPLC. Sorbitol was shown to be derived only from fructose by [14C]-feeding experiments. Additionally 31P NMR spectroscopy was utilized to determine the concentrations of both glucose 6-phosphate and fructose 6-phosphate relative to their respective concentrations in Z.mobilis cells fermenting glucose or fructose alone.It is suggested that free glucose inside the cell inhibits fructokinase. Free intracellular fructose may then be reduced to sorbitol via a dehydrogenase type enzyme. Attempts to grow Z.mobilis on sorbitol were unsuccessful, as were experiments to induce growth via mutagenesis.This work was supported in part by the National Energy Research, Development and Demonstration Council of Australia  相似文献   

5.
Summary A cellulose hydrolysate from Aspen wood, containing mainly glucose, was fermented into ethanol by a thermotolerant strain MSN77 of Zymomonas mobilis. The effect of the hydrolysate concentration on fermentation parameters was investigated. Growth parameters (specific growth rate and biomass yield) were inhibited at high hydrolysate concentrations. Catabolic parameters (specific glucose uptake rate, specific ethanol productivity and ethanol yield) were not affected. These effects could be explained by the increase in medium osmolality. The results are similar to those described for molasses based media. Strain MSN77 could efficiently ferment glucose from Aspen wood up to a concentration of 60 g/l. At higher concentration, growth was inhibited.Nomenclature S glucose concentration (g/l) - X biomass concentration (g/l) - P ethanol concentration (g/l) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - YINX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

6.
Production of Acetaldehyde by Zymomonas mobilis   总被引:2,自引:1,他引:1       下载免费PDF全文
Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentrations of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for product separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value.  相似文献   

7.
Summary The influence of initial substrate concentration on fermentation kinetics of Zymomonas mobilis on glucose has been studied in batch cultures over the range 50–190 gl-1 glucose. With increasing glucose, parameters relative to growth ( and RGX) are more rapidly and more noticeably affected than those connected with ethanol production (p and RGP). The water content of the cells is also affected.  相似文献   

8.
Summary The anaerobic aerotolerant bacterium Zymomonas mobilis 113 produced superoxide (O 2 - ) and hydrogen peroxide (H2O2) under aerobic conditions. The main generators of H2O2 were glucose oxidase and superoxide dismutase (SOD). The O 2 - generation was probably related to minor alternative reduced nicotinamide adenine zinucleotide (NADH)-oxidation reactions in the electron transport chain. An increase in medium pO2 was observed during growth of Z. mobilis 113 in a batch culture. The maximum pO2 increase correlated with glucose oxidase and SOD activities. An decrease in medium pO2 value coincided with an increase in catalase activity in batch culture. Medium deoxygenation reduced the pO2 effect, yet the culture still responded with a pO2 increase after inoculation and addition of the feeding medium. We conclude that the apparent pO2 effects are related to changes in H2O2 concentration in the culture liquid.  相似文献   

9.
Summary Sorbitol is formed as the major by-product in ethanol fermentations by Zymomonas mobilis when both glucose and fructose are present in the fermentation medium. The amount of sorbitol produced was equivalent to as much as 11% of the original carbon source, decreasing the ethanol yield correspondingly. Only minor amounts of sorbitol were formed from glucose or fructose alone. The formation of sorbitol is apparently a consequence of the inhibition of fructokinase by glucose.  相似文献   

10.
Summary In the metabolism of fructose by Zymomonas, the ethanol yield is decreased due to the formation of dihydroxyacetone, mannitol and glycerol. The reduction of fructose to mannitol by an NADPH-dependent mannitol dehydrogenase is apparently coupled to the oxidation of glucose-6-phosphate by glucose-6-phosphate dehydrogenase, which exhibits higher activity with NADP than with NAD as cofactor. The relatively low cell yield on fructose can partly be explained by the loss of ATP in the formation of dihydroxyacetone and glycerol and partly by the toxic effect of dihydroxyacetone and acetaldehyde on the growth of the organism.  相似文献   

11.
R-Plasmid Transfer in Zymomonas mobilis   总被引:10,自引:8,他引:2       下载免费PDF全文
Conjugal transfer of three IncP1 plasmids and one IncFII plasmid into strains of the ethanol-producing bacterium Zymomonas mobilis was obtained. These plasmids were transferred at high frequencies from Escherichia coli and Pseudomonas aeruginosa into Z. mobilis and also between different Z. mobilis strains, using the membrane filter mating technique. Most of the plasmids were stably maintained in Z. mobilis, although there was some evidence of delayed marker expression. A low level of chromosomal gene transfer, mediated by plasmid R68.45, was detected between Z. mobilis strains. Genetic evidence suggesting that Z. mobilis may be more closely related to E. coli than to Pseudomonas or Rhizobium is discussed.  相似文献   

12.
13.
The obligately fermentative aerotolerant bacterium Zymomonas mobilis was shown to possess oxidative phosphorylation activity. Increased intracellular ATP levels were observed in aerated starved cell suspension in the presence of ethanol or acetaldehyde. Ethanolconsuming Z. mobilis generated a transmembrane pH gradient. ATP synthesis in starved Z. mobilis cells could be induced by external medium acidification of 3.5–4.0 pH units. Membrane vesicles of Z. mobilis coupled ATP synthesis to NADH oxidation. ATP synthesis was sensitive to the protonophoric uncoupler CCCP both in starved cells and in membrane vesicles. The H+-ATPase inhibitor DCCD was shown to inhibit the NADH-coupled ATP synthesis in membrane vesicles. The physiological role of oxidative phosphorylation in this obligately fermentative bacterium is discussed.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - CCCP carbonyl cyanide m-chlorophenylhydrazone  相似文献   

14.
The production of ethanol by Zymomonas mobilis NRRL B-4286 was studied in fed-batch cultures. Initial percent (w/v) glucose, rate of feed, and quantity of 50%; (w/v) glucose feed were varied. Glucose inhibition of growth rate occurred at concentrations greater than 8% (w/) Feed was begun after 4 h incubation. Feed volume was ca. 36%; of starting batch volume to get ca. 10%; (w/v) ethanol at harvest. The range of feed rates studied varied from 16%; batch volume/h (glucose concentration increased to an inhibitory level) to 4%; batch volume/h (glucose concentration dropped rapidly to zero and was limiting). Increasing feed volume to 46%; of starting volume at the best feed rate (ca. 10%; feed volume/h) increased final ethanol concentration to 11.3%; (w/v). However, the resultant increase in fermentation time from ca. 21 to 29 h decreased ethanol volumetric productivity from 5.2 to 4.6 g/L h.  相似文献   

15.
The bacterium Zymomonas mobilis is a potentially useful organism for the commercial production of ethanol as it is capable of more than double the rate of alcohol production by yeast. However, industrial application of this bacterium has been restricted in part due to the disadvantages of its limited substrate range (glucose, fructose and sucrose) and by-product formation. Progress in strain improvement and genetic manipulation of this ethanologen is reviewed. Methodologies for gaining reproducible gene transfer in Z. mobilis have recently been developed. Genetic modification has led to its growth on the additional substrates lactose and mannitol. Additionally, a range of by-product negative mutants have also been isolated. Further interest has focused on transfer of Z. mobilis genes to other fermentive organisms in order to gain enhanced product formation. Overall, these genetic approaches should lead to development of novel strains of Z. mobilis and other genera, capable of the use of starch, cellulose and xylan in a manner attractive for industrial ethanol production, besides facilitating over production of products from E. coli strains with enhanced capability to grow at high density.  相似文献   

16.
Summary Zymomonas mobilis cells were immobilized on pellets of alumina (Al2O3) by entrapment based on electrostatic forces. Entrapped cells produced 52 g/l-1 ethanol every 24 h for many successive fermentation batches, when inoculated in batch synthetic media containing 12% glucose. It was shown that the rate of growth, ethanol production and glucose utilization increased when Al2O3 was added in the growth medium. This increase was dependent upon the concentration of Al2O3. The optimum conditions for immobilization of Z. mobilis on Al2O3 were established. Reduction in productivity and yield was not observed for up to 15 successive fermentation batches using the same entrapped cells.  相似文献   

17.
A bacterium that stereospecifically produces l-valine from 5-isopropylhydantoin was isolated + from soil. It was identified as Bacillus brevis and given the number AJ-12299. l-Valine productivity from l-, d- or dl-5-isopropylhydantoin by B. brevis AJ-12299 was rather low because this bacterium had l-valine degrading-activity. In contrast, the productivity was improved by a mutant the l-valine degradation pathway of which was genetically blocked, and the 5-isopropylhydantoin consumed was stoichiometrically converted to l-valine. The optimal temperature and pH of the reaction were 30°C and 7.0~7.5. The enzyme involved in the reaction was inducible and was strongly induced by the addition of 5-isopropylhydantoin. In addition to l-valine production, this bacterium also produced various aliphatic and aromatic l-amino acids from the corresponding 5-substituted hydantoins.  相似文献   

18.
《FEBS letters》1985,193(2):185-188
The enzyme 6-phosphogluconolactonase (EC 3.1.1.31) is present at high levels in Zymomonas mobilis cells. A simple procedure for its isolation involving dye-ligand chromatography and gel filtration has resulted in a 500-fold purification with high recovery. The purified enzyme is a monomer of 26 kDa, and has a high catalytic efficiency with kcatKm of 9 × 107 M−1 s−1 at 25° C. Two assay procedures for the enzyme are compared, and a simple method of obtaining a solution of 6-phosphoglucono-δ-lactone relatively free of other metabolites is presented.  相似文献   

19.
Summary Zymomonas mobilis Z 7 fermented 100 to 200 g.l- 1 sucrose in cane juice to ethanol without addition of cofactors or mineral salts in 1 ltr laboratory and 100 ltr pilot plant fermenters. Ethanol yields (Eyield) were from 60 to 88% with fermentation times of 20 to 29 h at 35 °C.Nomenclature Vs max g.1-1 .h-1 maximum sucrose hydrolysis rate - Vg max g.1-1 .h-1 maximum glucose uptake rate - Vfmax g.1-1 .h-1 maximum fructose uptake rate - Ve max g.1-1 .h-1 maximum ethanol production rate - Sh g.1-1 sucrose hydrolyzed at tferm - Gu g.1-1 glucose utilized at tferm - Fu g.1-1 fructose utilized at tferm - Emax g.1-1 ethanol produced at tferm - Gi g.1-1 initial free glucose (before sucrose hydrolysis) - Eyield g.g-1 ethanol produced divided by the theoretical ethanol yield from sucrose hydrolyzed - tferm h fermentation time to ethanol max  相似文献   

20.
Expression Vector for Zymomonas mobilis   总被引:16,自引:2,他引:14       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号