首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
MOTIVATION: The intensification of DNA sequencing will increasingly unveil uncharacterized species with potential alternative genetic codes. A total of 0.65% of the DNA sequences currently in Genbank encode their proteins with a variant genetic code, and these exceptions occur in many unrelated taxa. RESULTS: We introduce FACIL (Fast and Accurate genetic Code Inference and Logo), a fast and reliable tool to evaluate nucleic acid sequences for their genetic code that detects alternative codes even in species distantly related to known organisms. To illustrate this, we apply FACIL to a set of mitochondrial genomic contigs of Globobulimina pseudospinescens. This foraminifer does not have any sequenced close relative in the databases, yet we infer its alternative genetic code with high confidence values. Results are intuitively visualized in a Genetic Code Logo. Availability and implementation: FACIL is available as a web-based service at http://www.cmbi.ru.nl/FACIL/ and as a stand-alone program.  相似文献   

2.
Between 1946 and 1960, a new phenomenon emerged in the field of bacteriology. “Bacterial sex,” as it was called, revolutionized the study of genetics, largely by making available a whole new class of cheap, fast-growing, and easily manipulated organisms. But what was “bacterial sex?” How could single-celled organisms have “sex” or even be sexually differentiated? The technical language used in the scientific press – the public and inalienable face of 20th century science – to describe this apparently neuter organism was explicit: the cells “copulated,” had “intimate contract,” “conjugal unions,” and engaged in “ménage ã trois” relationships. And yet, to describe bacteria as sexually reproducing organisms, the definition of sex itself had to change. Despite manifold contradictions and the availability of alternative language, the notion of sexually active (even promiscuous) single-celled organisms has persisted, even into contemporary textbooks on cell biology and genetics. In this paper I examine the ways in which bacteria were brought into the genetic fold, sexualized, and given gender; I also consider the issues underlying the durability of “bacterial sex.”  相似文献   

3.
Although the ‘universal’ genetic code is widespread among life-forms, a number of diverse lineages have evolved unique codon reassignments. The proteomes of these organisms and organelles must, by necessity, use the same codon assignments. Likewise, for an exogenous genetic element, such as an infecting viral genome, to be accurately and completely expressed with the host's translation system, it must employ the same genetic code. This raises a number of intriguing questions regarding the origin and evolution of viruses. In particular, it is extremely unlikely that viruses of hosts utilizing the universal genetic code would emerge, via cross-species transmission, in hosts utilizing alternative codes, and vice versa. Consequently, more parsimonious scenarios for the origins of such viruses include the prolonged co-evolution of viruses with cellular life, or the escape of genetic material from host genomes. Further, we raise the possibility that emerging viruses provide the selection pressure favoring the use of alternative codes in potential hosts, such that the evolution of a variant genetic code acts as a unique and powerful antiviral strategy. As such, in the face of new emerging viruses, hosts with codon reassignments would have a significant selective advantage compared to hosts utilizing the universal code.  相似文献   

4.
Usually, most of the typical job shop scheduling approaches deal with the processing sequence of parts in a fixed routing condition. In this paper, we suggest a genetic algorithm (GA) to solve the job-sequencing problem for a production shop that is characterized by flexible routing and flexible machines. This means that all parts, of all part types, can be processed through alternative routings. Also, there can be several machines for each machine type. To solve these general scheduling problems, a genetic algorithm approach is proposed and the concepts of virtual and real operations are introduced. Chromosome coding and genetic operators of GAs are defined during the problem solving. A minimum weighted tardiness objective function is used to define code fitness, which is used for selecting species and producing a new generation of codes. Finally, several experimental results are given.  相似文献   

5.
ABSTRACT. In this paper the concept of “xenosome” is greatly expanded from its current usage, which has been based on its application during the past 10 years by Soldo and co-workers solely to certain bacterial invaders of the cytoplasm in species of a single genus of marine scuticociliales. The author proposes that the term now be considered to embrace all DNA-containing, membrane-bounded bodies or organelles—prokaryotic or eukaryotic in original nature—found within the cytoplasm or nucleus of eukaryotic cells of any or all kinds, whether the occupation (“colonization”) is temporary and transient or permanent and stable. Thus, virulent or pathogenically infectious organisms can be included as well as the commonly recognized cell endosymbionts sensu stricto, which are often mutualistic in nature. Of significance, such “normal” cell organelles as plastids, mitochondria, and even nuclei may also be embraced by this expanded definition of xenosome, based on the conjecture that these inclusions might have been “alien” or “foreign” extracellular, independent, free-living organisms in their own past evolutionary histories. The author's enlarged concept and unifying principle allows more meaningful comparative consideration of the numerous and diverse kinds of xenosome-host interrelationships, many of which involve species of protozoa and algae from a large number of the taxonomic groups comprising the kingdom Protista.  相似文献   

6.
Given the essential functions of these organelles in cell homeostasis, their involvement in incurable diseases and their potential in biotechnological applications, genetic transformation of mitochondria has been a long pursued goal that has only been reached in a couple of unicellular organisms. The challenge led scientists to explore a wealth of different strategies for mitochondrial delivery of DNA or RNA in living cells. These are the subject of the present review. Targeting DNA into the organelles currently shows promise but remarkably a number of alternative approaches based on RNA trafficking were also established and will bring as well major contributions.  相似文献   

7.
The use of human biological specimens in scientific research is the focus of current international public and professional concern and a major issue in bioethics in general. Brain/Tissue/Bio banks (BTB-banks) are a rapid developing sector; each of these banks acts locally as a steering unit for the establishment of the local Standard Operating Procedures (SOPs) and the legal regulations and ethical guidelines to be followed in the procurement and dissemination of research specimens. An appropriat Code of Conduct is crucial to a successful operation of the banks and the research application they handle. What are we still missing ? (1) Adequate funding for research BTB-banks. (2) Standard evaluation protocls for audit of BTB-bank performance. (3) Internationally accepted SOP’s which will facilitate exchange and sharing of specimens and data with the scientific community. (4) Internationally accepted Code of Conduct. In the present paper we review the most pressing organizational, methodological, medico-legal and ethical issues involved in BTB-banking; funding, auditing, procurement, management/handling, dissemination and sharing of specimens, confidentiality and data protection, genetic testing, “financial gain” and safety measures. Taking into consideration the huge variety of the specimens stored in different repositories and the enormous differences in medico-legal systems and ethics regulations in different countries it is strongly recommend that the health-care systems and institutions who host BTB-Banks will put more efforts in getting adequate funding for the infrastructure and daily activities. The BTB-banks should define evaluation protocols, SOPs and their Code of Conduct. This in turn will enable the banks to share the collected specimens and data with the largest possible number of researchers and aim at a maximal scientific spin-off and advance in public health research.  相似文献   

8.
The use of human biological specimens in scientific research is the focus of current international public and professional concern and a major issue in bioethics in general. Brain/Tissue/Bio banks (BTB-banks) are a rapid developing sector; each of these banks acts locally as a steering unit for the establishment of the local Standard Operating Procedures (SOPs) and the legal regulations and ethical guidelines to be followed in the procurement and dissemination of research specimens. An appropriat Code of Conduct is crucial to a successful operation of the banks and the research application they handle. What are we still missing ? (1) Adequate funding for research BTB-banks. (2) Standard evaluation protocls for audit of BTB-bank performance. (3) Internationally accepted SOP’s which will facilitate exchange and sharing of specimens and data with the scientific community. (4) Internationally accepted Code of Conduct. In the present paper we review the most pressing organizational, methodological, medico-legal and ethical issues involved in BTB-banking; funding, auditing, procurement, management/handling, dissemination and sharing of specimens, confidentiality and data protection, genetic testing, “financial gain” and safety measures. Taking into consideration the huge variety of the specimens stored in different repositories and the enormous differences in medico-legal systems and ethics regulations in different countries it is strongly recommend that the health-care systems and institutions who host BTB-Banks will put more efforts in getting adequate funding for the infrastructure and daily activities. The BTB-banks should define evaluation protocols, SOPs and their Code of Conduct. This in turn will enable the banks to share the collected specimens and data with the largest possible number of researchers and aim at a maximal scientific spin-off and advance in public health research.  相似文献   

9.
Mitochondrial genomes of multicellular animals are mostly small, circular molecules in which 13 protein genes, two ribosomal-RNA genes and 22 transfer-RNA genes are closely packed. Substantial rearrangements of genes have only occurred between phylogenetically distant organisms. However, a wealth of genetic novelties are found among these genomes that include modified genetic codes, unorthodox translation initiation codons, and structurally modified RNA components of the mitochondrion's translation system.  相似文献   

10.
11.
The Standard Genetic Code is organized such that similar codons encode similar amino acids. One explanation suggested that the Standard Code is the result of natural selection to reduce the fitness ``load' that derives from the mutation and mistranslation of protein-coding genes. We review the arguments against the mutational load-minimizing hypothesis and argue that they need to be reassessed. We review recent analyses of the organization of the Standard Code and conclude that under cautious interpretation they support the mutational load-minimizing hypothesis. We then present a deterministic asexual model with which we study the mode of selection for load minimization. In this model, individual fitness is determined by a protein phenotype resulting from the translation of a mutable set of protein-coding genes. We show that an equilibrium fitness may be associated with a population with the same genetic code and that genetic codes that assign similar codons to similar amino acids have a higher fitness. We also show that the number of mutant codons in each individual at equilibrium, which determines the strength of selection for load minimization, reflects a long-term evolutionary balance between mutations in messages and selection on proteins, rather than the number of mutations that occur in a single generation, as has been assumed by previous authors. We thereby establish that selection for mutational load minimization acts at the level of an individual in a single generation. We conclude with comments on the shortcomings and advantages of load minimization over other hypotheses for the origin of the Standard Code. Received: 4 April 2001 / Accepted: 22 October 2001  相似文献   

12.
13.
Why is regenerative capacity restricted in higher organisms?   总被引:1,自引:0,他引:1  
Regenerative powers of higher organisms are quite restricted. The theory given here attributes this to a postulated incompatibility between regeneration and the storage of memory. A corollary is that the extent to which these two processes are present in any organism should be inversely correlated; a phylogenetic survey appears to bear this out. The “alternative strategy” model has interesting implications relating to the practical possibilities inherent in “epigenetic” theories of ageing and cancer; these are discussed in the appendix.  相似文献   

14.
Ribosomes are intracellular organelles ubiquitous in all organisms, which translate information from mRNAs to synthesize proteins. They are complex macromolecules composed of dozens of proteins and ribosomal RNAs. Other than translation, some ribosomal proteins also have side‐jobs called “Moonlighting” function. The majority of these moonlighting functions influence cancer progression, early development and differentiation. Recently, we discovered that ribosome is involved in the regulation of cellular transdifferentiation of human dermal fibroblasts (HDFs). In vitro incorporation of ribosomes into HDFs arrests cell proliferation and induces the formation of cell clusters, that differentiate into three germ layer derived cells upon induction by differentiation mediums. The discovery of ribosome induced transdifferentiation, that is not based on genetic modification, find new possibilities for the treatment of cancer and congenital diseases, as well as to understand early development and cellular lineage differentiation.  相似文献   

15.
ABSTRACT Wolfe et al. (2010 . Journal of Field Ornithology 81: 186–194) proposed a coding system for ageing birds based on the sequence of molts and plumages, which is more practical than a calendar‐based system, especially in tropical and southern latitudes where species often breed across 1 January. The Wolfe–Ryder–Pyle (hereafter, W–R–P) three‐letter system is based on recognition of molt cycle (first, second, third, definitive, and so on) and plumage phase (juvenile, supplemental, formative, alternate, and basic). For example, a bird in First Cycle Formative plumage is coded as FCF. We propose the use of two additional code options that further refine age brackets. First, we suggest the use of an “after” or “A” code in place of the “C,” or cycle code, where an earlier molt cycle or plumage can be ruled out. For example, a bird that exhibits Staffelmauser might be aged as after‐third cycle basic, or TAB. Second, we suggest using “pre” or “P” in place of the “C,” or cycle code, when birds are actively molting, such as for birds undergoing the second prebasic molt or SPB. For both codes, we discuss their applicability using examples based on actual banding data. Our proposed codes will improve the utility of the W–R–P system by better refining age brackets and by expanding its applicability to a diverse array of taxa.  相似文献   

16.
Flagella are sophisticated organelles found in many eukaryotic microbes where they perform functions related to motility, signal detection, or cell morphogenesis. In many cases, several flagella are present per cell, and these can have a different composition, length, age, or function, raising the question of how this is managed. When the flagella are equivalent and constructed simultaneously such as in Chlamydomonas or Naegleria, we propose an equal access model where molecular components have free access to each organelle. By contrast, Trypanosoma and Leishmania contain temporally distinct organelles and elongate a new flagellum whilst maintaining the existing one. The equal access model could function providing that the mature flagellum is “locked” so that it can no longer be elongated or shortened. Alternatively, access of flagellar components could be restricted at the level of the basal body, the transition zone, or the loading on intraflagellar transport trains. In organisms that contains flagella of different age and composition such as Giardia, a temporal dimension is necessary, with the production of protein components of flagella spreading over one or more cell cycles. In the future, deciphering the molecular mechanisms involved in these processes should reveal new insights in flagellum assembly and function.  相似文献   

17.
Mitochondrial research is presently one of the fastest growing disciplines in biomedicine. Since the early 1990s, it has become increasingly evident that mitochondrial dysfunction contributes to a large variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Most remarkably, mitochondria, the “power house” of the cell, have also become accepted as the “motor of cell death” reflecting their recognized key role during apoptosis. Based on these recent exciting developments in mitochondrial research, increasing pharmacological efforts have been made leading to the emergence of “Mitochondrial Medicine” as a whole new field of biomedical research. The identification of molecular mitochondrial drug targets in combination with the development of methods for selectively delivering biologically active molecules to the site of mitochondria will eventually launch a multitude of new therapies for the treatment of mitochondria-related diseases, which are based either on the selective protection, repair, or eradication of cells. Yet, while tremendous efforts are being undertaken to identify new mitochondrial drugs and drug targets, the development of mitochondria-specific drug carrier systems is lagging behind. To ensure a high efficiency of current and future mitochondrial therapeutics, colloidal vectors, i.e., delivery systems, need to be developed able to selectively transport biologically active molecules to and into mitochondria within living human cells. Here we review ongoing efforts in our laboratory directed toward the development of different phospholipid- and non-phospholipid-based mitochondriotropic drug carrier systems.  相似文献   

18.
Inferences of population genetic structure are of great importance to the fields of ecology and evolutionary biology. The program structure has been widely used to infer population genetic structure. However, previous studies demonstrated that uneven sampling often leads to wrong inferences on hierarchical structure. The most widely used ΔK method tends to identify the uppermost hierarchy of population structure. Recently, four alternative statistics (medmedk , medmeak , maxmedk and maxmeak ) were proposed, which appear to be more accurate than the previously used methods for both even and uneven sampling data. However, the lack of easy‐to‐use software limits the use of these appealing new estimators. Here, we developed a web‐based user‐friendly software structureselector to calculate the four appealing alternative statistics together with the commonly used Ln Pr(X|K) and ΔK statistics. structureselector accepts the result files of structure , admixture or faststructure as input files. It reports the “best” K for each estimator, and the results are available as HTML or tab separated tables. The program can also generate graphical representations for specific K, which can be easily downloaded from the server. The software is freely available at http://lmme.qdio.ac.cn/StructureSelector/ .  相似文献   

19.
20.
An information theory of the genetic code is given, which deals with the process by which template codes (nucleotides or codons) choose substrate codes (nucleotides or anti-codons) in accordance with the base-pairing rules in the chain elongation phase of polynucleotide or polypeptide synthesis. A definite period of recognition time (τ) required for a template code to discriminate a substrate code is proposed, and an experimental method for determining the time is suggested. A substrate word is defined to be the sequence of substrate codes which have appeared at a recognition site in turn before a substrate code complementary to a template code first appears, and the mean length of substrate words (F) is derived from the mole fractions of template codes and substrate codes. The chain elongation rate is greatest when the mole fractions of template codes is proportional to the square of those of substrate codes to minimize the mean recognition time per word (Fτ). The uncertainty of a template (G) and the uncertainty of a medium (M) respectively are derived from the minimum of the function F. The amount of genetic information contained in a template is measured by the function G. The unit of the amount of genetic information is termed “cit”. The function M, the ratio of the number of all binary collisions to the number of homogeneous binary collisions in a mixture of different molecules, may be the new other “entropy” which represents informational properties of the mixture not represented by thermodynamic entropy of mixing. Both functions (G and M) have maxima when all random variables are equal and they are multiplicative in nature in contrast to entropy which is additive. The multiplicativity of the function G may contribute to the enormous informational capacity of genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号