首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
In this study, we provide a detailed analysis of tree growth and water status in relation to climate of three major species of forest trees in lower regions of Bavaria, Southern Germany: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and common oak (Quercus robur). Tree-ring chronologies and latewood δ13C were used to derive measures for drought reaction across trees of different dimensions: growth reduction associated with drought years, long-term growth/climate relations and stomatal control on photosynthesis. For Scots pine, growth/climate relations indicated a stronger limitation of radial growth by high summer temperatures and low summer precipitation in smaller trees in contrast to larger trees. This is corroborated by a stronger stomatal control on photosynthesis for smaller pine trees under average conditions. In dry years, however, larger pine trees exhibited stronger growth reductions. For Norway spruce, a significantly stronger correlation of tree-ring width with summer temperatures and summer precipitation was found for larger trees. Additionally, for Norway spruce there is evidence for a change in competition mode from size-asymmetric competition under conditions with sufficient soil water supply to a more size-symmetric competition under dry conditions. Smaller oak trees showed a weaker stomatal control on photosynthesis under both dry and average conditions, which is also reflected by a significantly faster recovery of tree-ring growth after extreme drought events in smaller oak trees. The observed patterns are discussed in the context of the limitation-caused matter partitioning hypothesis and possible species-specific ontogenetic modifications.  相似文献   

2.
This research examines the regeneration dynamics of Nothofagus dombeyi and Austrocedrus chilensis in A. chilensis-dominated forests growing near the eastern limit of N. dombeyi where precipitation is limiting. In these forests the widespread decline and mortality of overstory A. chilensis trees, known as ‘mal del ciprés’ (cypress sickness), generates large canopy gaps in which new individuals establish. Our objective was to study the population dynamics of N. dombeyi and A. chilensis in these forests to investigate the influences of overstory tree death and climatic variation on establishment. We sampled 6 symptomatic A. chilensis stands and used dendrochronological techniques to reconstruct basal area development and regeneration establishment over time. Bivariate event analysis was performed to examine the temporal relationships between tree establishment and mortality events and climatic variation. Overstory A. chilensis trees established as post-fire cohorts, with subsequent establishment of A. chilensis and N. dombeyi during the past 50–60 years. Regeneration in the past two decades was primarily N. dombeyi. The establishment of both A. chilensis and N. dombeyi was synchronous with overstory tree mortality events, but it was more consistent among stands and prolonged for N. dombeyi. Establishment of A. chilensis was not associated with climatic events but N. dombeyi establishment was synchronous with droughts, possibly related to climate-driven mortality creating canopy gaps or reducing competition within gaps. We have demonstrated that N. dombeyi has the ability to establish in post-fire A. chilensis-dominated forests resulting in mixed-species, uneven-aged forests. The ongoing increase in the abundance of N. dombeyi relative to A. chilensis represents a shift in composition and increased complexity in stand structure driven by ‘mal del ciprés’ and climatic variation.  相似文献   

3.
在气候变暖背景下,树木径向生长对气候因子的响应会随区域干湿变化而有所差异。秦岭属于气候敏感区和生态脆弱区,南北气候特征差异明显,分析气候变化背景下树木径向生长对气候因子及干旱事件的响应,对准确预测未来气候变化对树木生长的影响至关重要。为探究该地区不同干湿环境下油松对气候因子及干旱事件响应的特点及差异,共采集秦岭中西部南北坡共4个样点的油松树轮样芯,利用树木年轮生态学的方法,分析各地油松年表与气候因子之间的关系,通过计算抵抗力、恢复力、恢复弹力等指标探究树木径向生长对干旱事件的应对能力,结果表明:1)在西部和北坡的3个样点,油松径向生长主要与前一年7—9月、当年5—7月的气温呈显著负相关,与当年5月降水呈显著正相关,在中部南坡油松径向生长主要与当年2—4月、9月气温呈显著正相关,与当年4月降水呈显著负相关;2)生长季气温升高所引发的水分亏缺,是研究区西部和北坡油松径向生长受限制的主要原因,且中部南坡油松生长受气温和干旱因子的制约要明显弱于其它3个样点;3)西部北坡油松对干旱的抵抗能力、恢复能力及恢复弹力均弱于西部南坡及中部北坡油松。在未来对研究区树木的管理与保护工作中,应更加关注西部北坡...  相似文献   

4.
Tree-ring chronologies were examined to investigate the influence of climate on radial growth of Pinus nigra in southeastern Spain. We addressed whether drought differentially affected the ring-widths of dominant and suppressed trees and if our results supported the hypothesis that, in a Mediterranean climate, suppressed conifer trees suffer greater growth reductions than dominant trees. Climate–growth relationships were analyzed using response and correlation functions, whereas the effect of drought on trees growth was approached by superposed epoch analysis in 10 dry years. A cool, wet autumn and spring, and/or mild winter enhanced radial growth. Latewood was the most sensitive ring section in both kinds of trees and it was primarily influenced by current year precipitations. Earlywood was mostly influenced by climatic conditions previous to the growing season. In general, May was the most influential month. Pinus nigra was shown to be very drought sensitive tree in the study area. Tree-rings in suppressed trees showed lower growth reductions caused by drought than those of dominant trees. However, dominant trees recovered normal growth faster. Dominant trees showed a more plastic response, and suppression appeared to reduce the effect of climate on tree radial growth. Some possible causes for these effects are discussed. Our results support the essential role of the balance between light and moisture limitations for plant development during droughts and show that it is not appropriate to generalize about the way in which suppression affects climate-growth relationship in conifers.  相似文献   

5.
钟元  郑嘉诚  邱红岩  吕利新 《生态学报》2024,44(3):1221-1230
不同坡向、不同海拔树木生长对极端干旱事件的响应可能不同,然而这方面的认识不足。为此,选取西藏东部珠角拉山阴、阳坡的建群树种川西云杉 (Picea likiangensis var. rubescens) 和大果圆柏 (Juniperus tibetica),在不同海拔高度建立了树轮宽度年表,分析了径向生长的气候响应,以及对极端干旱事件的抵抗力和恢复力。结果表明:阳坡大果圆柏和阴坡川西云杉的树木生长对气候的响应存在相似性,均与前一年3-6月、11-12月气温显著正相关,与当年4-5月气温显著负相关,与当年4-5月降水和帕尔默干旱指数 (PDSI, Palmer Drought Severity Index) 显著正相关 (P <0.05)。阳坡大果圆柏的抵抗力显著低于阴坡川西云杉。随着海拔升高,阴坡川西云杉树木个体的抵抗力和恢复力均显著提高,而阳坡大果圆柏树木个体抵抗力、恢复力在不同海拔无显著区别。结合混合效应模型表明树木抵抗力主要受当年4-5月平均最高气温限制,树木恢复力主要受干旱事件后四年4-5月平均最高气温限制 (P <0.01),说明生长季高温引起的极端干旱是树木径向生长下降的主要原因。  相似文献   

6.
The climate sensitivity of radial growth in European beech (Fagus sylvatica L.) was analyzed within a narrow valley in the Swabian Alb (southwestern Germany). We collected stem disks from three aspects (NE, NW and SW) of trees belonging to different social classes. Common climatic factors limiting growth across the valley were identified using a principal component analysis (PCA). Further, we performed hierarchical cluster analysis (HCA), redundancy analysis (RDA) and bootstrapped correlation analysis to reveal differences in chronologies and climate-growth relationships between aspect and social class. Climatic variables considered in our analyses were monthly and seasonal data on temperature and precipitation, as well as a self-calibrating Palmer drought severity index (sc-PDSI). We identified drought in the period June–August as the most prominent factor limiting growth across the valley. Dominant and co-dominant trees at the NW and SW aspects were found to be particularly drought sensitive, whereas intermediate trees were less susceptible to drought. Underlying causes of established climate–growth relationships are discussed in the context of drought susceptibility, tree-size modulation and tree physiological processes.  相似文献   

7.
阎弘  孙滢洁  周婉莹  刘滨辉 《生态学报》2023,43(10):3958-3970
气候变暖引起干旱事件发生频率和强度增加,由此导致全球部分森林出现衰退和死亡的现象已被广泛报道。然而由于不同地区森林对水分亏缺适应性不同,需要从区域尺度对森林适应干旱事件的特征进行详细研究。在中国东北的森林地区中,大兴安岭在过去几十年中变暖速度最快。以落叶松为主的大兴安岭森林,作为中国唯一的北方森林,具有重要的生态意义。尤其是在全球变暖极大地影响水条件的情况下,了解其对缺水的适应非常重要。通过树木年轮学方法分析比较不同纬度(47°17′—51°17′N)兴安落叶松(Larix gmelinii)径向生长变化率和树木生长对极端干旱的适应性特征(抵抗力(Rt)、恢复力(Rc)和恢复弹力(Rs))。结果表明:不同纬度兴安落叶松对干旱的应对策略呈现共同特征表现为:(1)研究区不同纬度的兴安落叶松生长均与当年生长季7和8月PDSI显著正相关(P<0.05);(2)大径级树木对干旱的抵抗力和恢复弹力更低,对干旱的适应能力更弱。不同纬度兴安落叶松对干旱的应对策略呈现差异性表现:(1)兴安落叶松对干旱的抵抗力和恢复弹力随纬度升高而降低,恢复力随纬度升高而增加;(2)研究区范围内较高纬度的兴安落叶松...  相似文献   

8.
 Increments in the radii of Norway spruce (Picea abies Karst.) and Yezo spruce (Picea jezoensis Carr.) trees that revealed symptoms of a decline in growth were analyzed by dendrochronological methods in an attempt to correlate past reductions in growth with their main causes. The trees were growing at different sites near the industrial district of Tomakomai, Hokkaido. A skeleton plot method was used to construct a series of pointer years that revealed the number of trees with a clear reduction in growth or recovery from such a reduction. An analysis of “abrupt growth changes” demonstrated that at least two periods of growth reduction were common to a large number of Norway spruce trees. The reduction events were related to the records of industrial activity near the forest and meteorological data. The growth reduction in the 1970s coincided with the start of operation of certain local factories, and its extent was related to the distance from the industrial region. By contrast, a reduction in growth in 1984 was detected at all the Norway spruce sites and the extent was approximately the same at all sites. This phenomenon was related to extreme drought conditions. Growth of Yezo spruce trees was less sensitive to industrial activity and to drought than that of Norway spruce. Thus, differences in response to air pollution and drought were observed between the two species. Received: 20 February 1996 / Accepted: 29 April 1996  相似文献   

9.
Climate change may affect tree–pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands’ resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality.  相似文献   

10.
Although growth limitation of trees at Alpine and high-latitude timberlines by prevailing summer temperature is well established, the loss of thermal response of radial tree growth during last decades has repeatedly been addressed. We examined long-term variability of climate–growth relationships in ring width chronologies of Stone pine (Pinus cembra L.) by means of moving response functions (MRF). The study area is situated in the timberline ecotone (ca. 2,000–2,200 m a.s.l.) on Mt. Patscherkofel (Tyrol, Austria). Five site chronologies were developed within the ecotone with constant sample depth (≥19 trees) throughout most of the time period analysed. MRF calculated for the period 1866–1999 and 1901–1999 for ca. 200- and ca. 100-year-old stands, respectively, revealed that mean July temperature is the major and long-term stable driving force of Pinus cembra radial growth within the timberline ecotone. However, since the mid-1980s, radial growth in timberline and tree line chronologies strikingly diverges from the July temperature trend. This is probably a result of extreme climate events (e.g. low winter precipitation, late frost) and/or increasing drought stress on cambial activity. The latter assumption is supported by a <10% increase in annual increments of ca. 50-year-old trees at the timberline and at the tree line in 2003 compared with 2002, when extraordinary hot and dry conditions prevailed during summer. Furthermore, especially during the second half of the twentieth century, influence of climate variables on radial growth show abrupt fluctuations, which might also be a consequence of climate warming on tree physiology.  相似文献   

11.
Abstract Woodpeckers are considered keystone species for webs of cavity nesters and habitat and resource specialists that strongly depend on availability of trees suitable for cavity excavation. Most studies carried out in northern hemisphere temperate coniferous forests emphasize the importance of old growth stages of forests or large dead trees as habitat for cavity builders. We present a study of Nothofagus pumilio tree selection by the magellanic woodpecker (Campephilus magellanicus) that incorporates dendroecological data on long‐term growth trends of trees that provides new insights into the processes that create suitable habitat for cavity excavating species. We analysed 351 cavity and neighbouring control trees in terms of age and radial growth patterns, as well as external tree characteristics. In addition, from a subsample of these trees we developed tree‐ring chronologies for each group using standard methods in order to analyse potential differences in radial growth patterns between cavity and non‐cavity trees. Multivariate models that account for differences between paired cavities versus control trees indicated that growth decline and the degree of crown dieback were the primary variables explaining magellanic woodpecker tree selection for cavity building. In contrast to previous work, neither diameter (above a certain threshold) nor age, were important determinants of selection. Furthermore, trees that became present cavity are those that had synchronously declined in radial growth during the 1943–44 and 1956–57 droughts and the 1985–86 massive caterpillar defoliation. Insect outbreaks and extreme climatic events may episodically reduce vigour, induce partial crown mortality, trigger increased fungal attack and heart rot formation at different tree heights on the bole in a group of trees and thus increase availability of soft substrate and their likelihood of cavity excavation by the magellanic woodpecker. These results underscore the importance of drought/biotically‐induced canopy dieback events in creating habitat for woodpeckers and their dependent cavity users.  相似文献   

12.
Understanding how communities respond to extreme climatic events is important for predicting the impact of climate change on biodiversity. The plant vigor and stress hypotheses provide a theoretical framework for understanding how arthropods respond to stress, but are rarely tested at the community level. Following a record drought, we compared the communities of arthropods on pinyon pine (Pinus edulis) that exhibited a gradient in physical traits related to environmental stress (e.g., growth rate, branch dieback, and needle retention). Six patterns emerged that show how one of the predicted outcomes of climate change in the southwestern USA (i.e., increased drought severity) alters the communities of a foundation tree species. In accordance with the plant vigor hypothesis, increasing tree stress was correlated with an eight to tenfold decline in arthropod species richness and abundance. Trees that were more similar in their level of stress had more similar arthropod communities. Both foliage quantity and quality contributed to arthropod community structure. Individual species and feeding groups differed in their responses to plant stress, but most were negatively affected. Arthropod richness (r 2 = 0.48) and abundance (r 2 = 0.48) on individual trees were positively correlated with the tree’s radial growth during drought. This relationship suggests that tree ring analysis may be used as a predictor of arthropod diversity, which is similar to findings with ectomycorrhizal fungi. A contrast of our findings on arthropod abundance with published data on colonization by mutualistic fungi on the same trees demonstrates that at low stress these two communities respond differently, but at high stress both are negatively affected. These results suggest that the effect of extreme climatic events such as drought on foundation tree species are likely to decrease multi-trophic diversity and shift arthropod community composition, which in turn could cascade to affect other associated taxa.  相似文献   

13.
 Radial growth responses to drought were examined in the tree-ring records of six species growing within two locations of differing land-use history and soil moisture characteristics, and in overstory and understory canopy positions in northern Virginia. Tree species experienced differential ring-width reductions during or immediately following four severe drought periods occurring from 1930 to 1965 and were influenced by climatic variables including annual and summer temperatures, annual precipitation, and annual Palmer Drought Severity Index. Relative growth comparisons averaged across species before and after drought years indicated that understory trees on dry-mesic sites grew 11% faster after drought compared to pre-drought rates while mesic site trees in both canopy positions grew approximately 4% slower. Superposed epoch analysis indicated that Liriodendron tulipifera growing on mesic sites experienced greater ring-width reductions associated with drought than co-occurring, more drought-tolerant Quercus alba and Q. velutina. On dry-mesic sites, L. tulipifera also experienced greatly reduced growth as a result of drought but exhibited significant growth increases following individual drought events. Quercus alba was the only species that exhibited a consistent, significant ring-width decrease associated with all droughts on dry-mesic sites. In contrast, Pinus virginiana was least impacted by drought on dry-mesic sites but was much more impacted by drought on mesic sites, indicating a drought×site interaction for this species. Overstory Carya glabra and Q. alba experienced larger growth decreases during drought on dry-mesic versus mesic sites. Understory tree growth reductions did not differ between site types but were often significantly larger than overstory responses of the same species on mesic sites. Following drought, most trees exhibited growth reductions lasting 2–3 years, although several species experienced reductions lasting up to 6 years. The results of this study suggest that tree rings represent an important long-term proxy for leaf-level ecophysiological measurements of growth responses to drought periods. Received: 31 July 1996 / Accepted: 16 April 1997  相似文献   

14.
Afforestation with the exotic Pinus ponderosa is currently taking place within the natural distributional area of Austrocedrus chilensis, a native conifer of N.W. Patagonia. Annual productivity of the exotic species is double the productivity of the native one. In order to test the hypothesis that these differences in productivity are, at least in part, due to differences in hydraulic characteristics of both species, we measured or estimated several ecophysiological variables in A. chilensis and P. ponderosa trees growing in the same place. Water use (WU) and diameter growth were lower in A. chilensis than in P. ponderosa. Although predawn water potential was relatively constant during the whole growing season, A. chilensis trees showed lower values of this variable than P. ponderosa in a very dry period, suggesting different water sources. Under field conditions, canopy-stomatal (gs) and whole hydraulic conductances, specific hydraulic conductivity and photosynthetic rate (A) were lower in A. chilensis than P. ponderosa. In contrast, instantaneous WU efficiency was higher in A. chilensis than in P. ponderosa. However, gs and A in A. chilensis significantly increased in cut branches of this species suggesting hydraulic limitations on photosynthesis. We hypothesize that hydraulic characteristics of P. ponderosa permit high stomatal conductance for more hours a day than A. chilensis trees, without reaching threshold values of water potential. This can explain, at least in part, differences in C fixation and thus, in productivity between species. In addition, our results suggested a secondary limitation to C fixation in A. chilensis at the photosynthetic apparatus.  相似文献   

15.
杉木(Cunninghamia lanceolata)是亚热带地区主要造林树种之一,其在区域碳循环和缓解气候变化中起着重要的作用。以亚热带地区6个站点(荆关、马鬃岭、分宜、将乐、东风、高峰)杉木人工林为研究对象,建立树轮标准化年表,分析树木年轮年表与气候因子的关系,解析不同研究区杉木径向生长对气候变化的响应机制,探讨不同站点杉木对干旱事件的响应策略,为该地区杉木人工林的经营管理提供理论依据。研究结果表明,6个研究区杉木树轮宽度对气候变化的平均敏感度大于0.15,样本总体代表性大于0.85,均处于可接受水平,表明6个站点的杉木样本具有区域代表性,适用于进行气候相关分析。杉木径向生长主要与生长季的平均温度和降水量、上一年夏季的最低温度正相关,与当年夏季最高温度负相关,高峰站点的径向生长与7—10月的相对湿度显著正相关,其他地点径向生长与月相对湿度相关性较弱,分宜、东风和高峰站的径向生长与干旱指数显著正相关,其他地点的杉木树轮宽度与干旱指数相关性较弱。干旱事件对6个站点杉木生长均产生了负面影响,胸高断面积增长(Basal area increment, BAI)呈先上升后下降的趋势,在生长后...  相似文献   

16.
Question: Does the proximity of shrubs affect seasonal water stress of young Austrocedrus chilensis trees (a native conifer of the Austral Temperate Forest of South America) in xeric sites? Location: A. chilensis xeric forest in northwest Patagonia, Argentina. Methods: We examined the dependence of predawn twig water potential on tree development (seedling to adult) and proximity to nurse shrubs during spring and summer. We analysed spatial associations of seedlings, saplings and adult trees with nurse shrubs, and also evaluated if trees affected shrub canopy vitality. Results: Water stress in Austrocedrus trees was affected by shrub presence. Small trees (i.e.<0.5 m in height) growing in the open were most stressed, particularly in summer. Small trees growing within a shrub canopy had low water stress and little change between spring and summer. The opposite trend, however, was true for the medium‐height category (i.e. 0.5‐1.5 m in height); trees in this size category were more stressed when growing within the shrub canopy than in the open. Larger Austrocedrus trees (i.e.>2 m in height) were not affected by shrub presence. Austrocedrus trees were spatially associated with shrubs in all height classes; however, the percentage of living shrub canopy decreased with tree height. Conclusions: In xeric areas of northwest Patagonia, the strength and direction of interactions between A. chilensis and shrubs, in terms of tree water stress, are dynamic and modulated by tree size and environmental conditions. Overall, positive effects of shrubs on early developmental stages appear to be more important than subsequent negative interactions, since nursing effects could generate a spatial association of shrubs and Austrocedrus trees that persists through later successional stages. These findings shed light on mechanisms behind successional changes, and have important conservation and management implications.  相似文献   

17.
 The present study was carried out to elucidate the response mechanisms of 50-year-old Pinus halepensis Mill. trees to a long-term and severe drought. The amount of water available to trees was artificially restricted for 12 months by covering the soil with a plastic roof. Over the short term a direct and rapid impact of drought was evident on the water relations and gas exchanges of trees: as the soil dried out in the Spring, there was a concurrent decrease of predawn water potential; transpiration was strongly reduced by stomatal closure. Seasonal changes in the water volume fractions of twig and stem xylem were observed and interpreted as the result of cavitation and refilling in the xylem. When droughted trees recovered to a more favourable water status, refilling of embolized xylem was observed; twig predawn water potentials were still negative in the period when the embolism was reversed in the twig xylem. A few months after the removal of the covering, no differences in whole plant hydraulic resistance were observed between droughted and control trees. Needle and shoot elongation and stem radial growth were considerably reduced in droughted trees; no strategy of trees to allocate carbon preferentially to the stem conducting tissues was apparent throughout the experiment. An after-effect of the drought on growth was observed. Received: 4 August 1997 / Accepted: 1 October 1997  相似文献   

18.
Drought-related tree mortality has become a widespread phenomenon. Scots pine (Pinus sylvestris L.) is a boreal species with high ecological amplitude that reaches its southwestern limit in the Iberian Peninsula. Thus, Iberian Scots pine populations are particularly good models to study the effects of the increase in aridity predicted by climate change models. A total of 78 living and 39 dead Scots pines trees were sampled at two sites located in the NE of the Iberian Peninsula, where recent mortality events have been recorded. Annual tree rings were used to (1) date dead trees; (2) investigate if there was an association between the occurrence of tree death and severe drought periods characterized by exceptionally low ratios of summer precipitation to potential evapotranspiration (P/PET); and (3) to compare the growth patterns of trees that died with those of surviving ones. Mixed models were used to describe the relationships between tree growth (in terms of basal area increment, BAI, and the percentage of latewood, LW%) and climate variables. Our results showed a direct association between Scots pine mortality and severe drought periods characterized by low summer water availability. At the two sites, the growth patterns of dead trees were clearly distinguishable from those of the trees that survived. In particular, the BAI of dead trees was more sensitive to climate dryness (low P/PETsummer, high temperatures) and started to decline below the values of surviving neighbors 15–40 years before the time of death, implying a slow process of growth decline preceding mortality.  相似文献   

19.
Prosopis flexuosa trees dominate woodlands in the Central Monte Desert (Mendoza, Argentina), with <200 mm rainfall, exploiting the water table recharged by Andean rivers, and also growing in dunes with no access to the water table. Prosopis woodlands were extensively logged during development of the agricultural oasis, and surface and groundwater irrigation could lower the depth of the water table in the future. We evaluated tree populations with decreasing access to the water table: valley adult trees, valley saplings, and dune adult trees, in order to assess their ecophysiological response to water table accessibility. High and seasonally stable pre-dawn leaf water potentials (−2.2 ± 0.2 to −1.2 ± 0.07 MPa) indicated that valley adults utilize larger and more stable water reservoirs than valley saplings and dune adults (−3.8 ± 0.3 to −1.3 ± 0.07 MPa), with higher midday leaf conductance to water vapor (valley adults ~250; dune adults <60 mmol m−2 s−1), potentially higher CO2 uptake, and increased radial growth rate (valley adults 4.1 ± 0.07; dune adults 2.9 ± 0.02 mm year−1). Trees with poor access to the water table exhibited drought tolerance responses such as midday stomata closure, leaflet closure, and osmotic adjustment. Stomata density decreased in response to drought when leaf expansion was restricted. The combination of phreatophytism and drought tolerance would enlarge P. flexuosa habitats and buffer populations against changes in rainfall dynamics and water table depth.  相似文献   

20.
Czerniakowski, B., Crnov, R., Smith, I. W. and Luck, J.E. 2006. Mundulla Yellows (MY) is a progressive dieback syndrome of Eucalyptus and other native species that was first reported in the 1970s. Despite being observed in Australia for over 30 years, the cause of MY has not been determined. To investigate the role of soil properties in MY, foliage and soil from underneath 40 Eucalyptus camaldulensis Dehnh., E. leucoxylon F. Muell. or E. cladocalyx F. Muell. trees from ten sites in South Australia and Victoria, Australia, were analysed. Soil from sites with symptomatic trees had significantly higher pH, EC and lower available iron when compared to soil from sites with asymptomatic trees. High levels of carbonates (CO32−/HCO3) dominated the aqueous soil extract from sites with symptomatic trees. Foliage analysis of 20 symptomatic trees indicated lower levels of total Fe and Mn and higher levels of Na and Cl, compared to 20 asymptomatic trees. This is the first report that associates soil and nutrients with Mundulla Yellows tree decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号