首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the tadpole larvae of the ascidian Halocynthia roretzi, six motor neurons, Moto-A, -B, and -C (a pair of each), are localized proximal to the caudal neural tube and show distinct morphology and innervation patterns. To gain insights into early mechanisms underlying differentiation of individual motor neurons, we have isolated an ascidian homologue of Islet, a LIM type homeobox gene. Earliest expression of Islet was detected in a pair of bilateral blastomeres on the dorsal edge of the late gastrula. At the neurula stage, this expression began to disappear and more posterior cells started to express Islet. Compared to expression of a series of motor neuron genes, it was confirmed that early Islet-positive blastomeres are the common precursors of Moto-A and -B, and late Islet-positive cells in the posterior neural tube are the precursors of Moto-C. Overexpression of Islet induced ectopic expression of motor neuron markers, suggesting that Islet is capable of regulating motor neuron differentiation. Since early expression of Islet colocalizes with that of HrBMPb, the ascidian homologue of BMP2/4, we tested a role of BMP in specification of the motor neuron fate. Overexpression of HrBMPb led to expansion of Lim and Islet expression toward the central area of the neural plate, and microinjection of mRNA coding for a dominant-negative BMP receptor weakened the expression of these genes. Our results suggest that determination of the ascidian motor neuron fate takes place at late gastrula stage and local BMP signaling may play a role in this step.  相似文献   

2.
3.
Patterning along the anteroposterior axis is a critical step during animal embryogenesis. Although mechanisms of anteroposterior patterning in the neural tube have been studied in various chordates, little is known about those of the epidermis. To approach this issue, we investigated patterning mechanisms of the epidermis in the ascidian embryo. First we examined expression of homeobox genes (Hrdll-1, Hroth, HrHox-1 and Hrcad) in the epidermis. Hrdll-1 is expressed in the anterior tip of the epidermis that later forms the adhesive papillae, while Hroth is expressed in the anterior part of the trunk epidermis. HrHox-1 and Hrcad are expressed in middle and posterior parts of the epidermis, respectively. These data suggested that the epidermis of the ascidian embryo is patterned anteroposteriorly. In ascidian embryogenesis, the epidermis is exclusively derived from animal hemisphere cells. To investigate regulation of expression of the four homeobox genes in the epidermis by vegetal hemisphere cells, we next performed hemisphere isolation and cell ablation experiments. We showed that removal of the vegetal cells before the late 16-cell stage results in loss of expression of these homeobox genes in the animal hemisphere cells. Expression of Hrdll-1 and Hroth depends on contact with the anterior-vegetal (the A-line) cells, while expression of HrHox-1 and Hrcad requires contact with the posterior-vegetal (the B-line) cells. We also demonstrated that contact with the vegetal cells until the late 32-cell stage is sufficient for animal cells to express Hrdll-1, Hroth and Hrcad, while longer contact is necessary for HrHox-1 expression. Contact with the A-line cells until the late 32-cell stage is also sufficient for formation of the adhesive papillae. Our data indicate that the epidermis of the ascidian embryo is patterned along the anteroposterior axis by multiple inductive influences from the vegetal hemisphere cells and provide the first insight into mechanisms of epidermis patterning in the chordate embryos.  相似文献   

4.
We isolated 5' flanking regions of four genes, Ci-Galphai1, Ci-arr, Ci-vAChTP, and Ci-vGAT, each of which is expressed in distinct sets of neurons in the central nervous system of the ascidian Ciona intestinalis, and we examined their function by introducing green fluorescent protein (GFP)-fusion constructs into Ciona embryos. The reporter gene driven by the 5' flanking region of Ci-Galphai1, Ci-arr, and Ci-vAChTP recapitulated the endogenous gene expression patterns, while that of Ci-vGAT can drive GFP expression in particular subsets of neurons expressing the endogenous gene. Deletion analysis revealed that the Ci-Galphai1 promoter consists of multiple regulatory modules controlling the expression in different types of cells. The GFP fluorescence enabled visualization of cell bodies and axons of different sets of neurons in ascidian larvae. These promoters can be a powerful tool for studying molecular mechanisms of neuronal development as well as neuron networks and functions in ascidians.  相似文献   

5.
6.
Ascidians, along with other urochordates, are the most evolutionarydistant group from vertebrates to display definitive chordate-specificcharacters, such as a notochord, dorsal hollow nerve cord, pharynxand endostyle. Most solitary ascidians have a biphasic lifehistory that has partitioned the development of these charactersbetween a planktonic microscopic tadpole larva (notochord anddorsal nerve cord) and a larger sessile adult (pharynx and endostyle).Very little is known of the molecular axial patterning processesoperating during ascidian postlarval development. Two axialpatterning homeobox genes Otx and Cdx are expressed in a spatiallyrestricted manner along the ascidian anteroposterior axis duringembryogenesis and postlarval development (i.e., metamorphosis).Comparisons of these patterns with those of homologous cephalochordateand vertebrate genes suggest that the novel ascidian biphasicbody plan was not accompanied by a deployment of these genesinto new pathways but by a heterochronic shift in tissue-specificexpression. Studies examining the role of all-trans retinoicacid (RA) in axial patterning in chordates also contribute toour understanding of the role of homeobox genes in the developmentof larval and adult ascidian body plans. Our studies demonstratethat RA does not regulate axial patterning in the developingascidian larval neuroaxis in a manner homologous to that foundin vertebrates. Although RA may regulate the expression of someascidian homeobox genes, ectopic application of RA does notappear to alter the morphology of the larval CNS. However, treatmentwith similar or lower concentrations of RA, have a profoundeffect on postlarval development and the juvenile body plan.These changes are correlated to a dramatic reduction of Otxexpression. Through these RA-induced effects we infer that whileRA may regulate the expression of some homeobox genes duringembryogenesis it has a far more dramatic impact on postlarvaldevelopment where regulative processes predominate.  相似文献   

7.
Axon pathfinding and target choice are governed by cell type-specific responses to external cues. Here, we show that in the Drosophila embryo, motorneurons with targets in the dorsal muscle field express the homeobox gene even-skipped and that this expression is necessary and sufficient to direct motor axons into the dorsal muscle field. Previously, it was shown that motorneurons projecting to ventral targets express the LIM homeobox gene islet, which is sufficient to direct axons to the ventral muscle field. Thus, even-skipped complements the function of islet, and together these two genes constitute a bimodal switch regulating axonal growth and directing motor axons to ventral or to dorsal regions of the muscle field.  相似文献   

8.
不同卵裂球发育命运的特化、亦即胚胎细胞的分化是动物胚胎发育的重要特征。多数胚胎细胞尽管形态特征完全一致,却具有完全不同的发育命运。预示着:在这些细胞中存在有决定发育命运的因素———决定子。本工作克隆了青岛文昌鱼LIM类同源框基因的同源框片段。目的在于揭示决定子的分子本质。青岛近海采集性成熟的成年青岛文昌鱼,收集未受精卵、受精卵以及各个不同时期的胚胎,液氮冻存备用。分别制备总RNA。根据其它动物LIM类同源框基因的序列设计引物(Tab.1),连续进行RTPCR和PCR两次扩增。其中,原肠胚来源的第二次PCR产物经电泳鉴定(Fig.1)后,酶切、克隆入质粒、测序、将该片段所在的基因命名为Bblim基因,该片段称为Bblim同源框。根据Bblim基因同源框的核苷酸序列推导出其相应的氨基酸序列(Fig.2),与其它LIM类同源框基因进行比较(Fig.3)后,认为:Bblim基因可归入lim3类基因。比较胚胎发育各个不同时期第二次PCR产物的含量———即Bblim基因的转录(Fig.4),提示:该基因可能在受·精·后·和·原·肠·形·成·期·前·后·两个发育阶段起作用。此外,Bblim基因的同源域与海鞘Hrlim的  相似文献   

9.
10.
The ascidian larva contains tubular neural tissue, one of the prominent anatomical features of the chordates. The cell-cleavage pattern and cell maps of the nervous system have been described in the ascidian larva in great detail. Cell types in the neural tube, however, have not yet been defined due to the lack of a suitable molecular marker. In the present work, we identified neuronal cells in the caudal neural tube of theHalocynthiaembryo by utilizing a voltage-gated Na+channel gene, TuNa I, as a molecular marker. Microinjection of a lineage tracer revealed that TuNa I-positive neurons in the brain and in the trunk epidermis are derived from the a-line of the eight-cell embryo, which includes cell fates to epidermal and neural tissue. On the other hand, TuNa I-positive cells in the more caudal part of the neural tissue were not stained by microinjection into the a-line. These neurons are derived from the A-line, which contains fates of notochord and muscle, but not of epidermis. Electron microscopic observation confirmed that A-line-derived neurons consist of motor neurons innervating the dorsal and ventral muscle cells. Isolated A-line blastomeres have active membrane excitability distinct from those of the a-line-derived neuronal cells after culture under cleavage arrest, suggesting that the A-line gives rise to a neuronal cell distinct from that of the a-lineage. TuNa I expression in the a-line requires signals from another cell lineage, whereas that in the A-line occurs without tight cell contact. Thus, there are at least two distinct neuronal lineages with distinct cellular behaviors in the ascidian larva: the a-line gives rise to numerous neuronal cells, including sensory cells, controlled by a mechanism similar to vertebrate neural induction, whereas A-line cells give rise to motor neurons and ependymal cells in the caudal neural tube that develop in close association with the notochord or muscle lineage, but not with the epidermal lineage.  相似文献   

11.
Cnidarians represent the first animal phylum with an organized nervous system and a complex active behavior. The hydra nervous system is formed of sensory-motoneurons, ganglia neurons and mechanoreceptor cells named nematocytes, which all differentiate from a common stem cell. The neurons are organized as a nerve net and a subset of neurons participate in a more complex structure, the nerve ring that was identified in most cnidarian species at the base of the tentacles. In order to better understand the genetic control of this neuronal network, we analysed the expression of evolutionarily conserved regulatory genes in the hydra nervous system. The Prd-class homeogene prdl-b and the nuclear orphan receptor hyCOUP-TF are expressed at strong levels in proliferating nematoblasts, a lineage where they were found repressed during patterning and morphogenesis, and at low levels in distinct subsets of neurons. Interestingly, Prd-class homeobox and COUP-TF genes are also expressed during neurogenesis in bilaterians, suggesting that mechanoreceptor and neuronal cells derive from a common ancestral cell. Moreover, the Prd-class homeobox gene prdl-a, the Antp-class homeobox gene msh, and the thrombospondin-related gene TSP1, which are expressed in distinct subset of neurons in the adult polyp, are also expressed during early budding and/or head regeneration. These data strengthen the fact that two distinct regulations, one for neurogenesis and another for patterning, already apply to these regulatory genes, a feature also identified in bilaterian related genes.  相似文献   

12.
We describe here the functional analysis of the C. elegans LIM homeobox gene lim-6, the ortholog of the mammalian Lmx-1a and b genes that regulate limb, CNS, kidney and eye development. lim-6 is expressed in a small number of sensory-, inter- and motorneurons, in epithelial cells of the uterus and in the excretory system. Loss of lim-6 function affects late events in the differentiation of two classes of GABAergic motorneurons which control rhythmic enteric muscle contraction. lim-6 is required to specify the correct axon morphology of these neurons and also regulates expression of glutamic acid decarboxylase, the rate limiting enzyme of GABA synthesis in these neurons. Moreover, lim-6 gene activity and GABA signaling regulate neuroendocrine outputs of the nervous system. In the chemosensory system lim-6 regulates the asymmetric expression of a probable chemosensory receptor. lim-6 is also required in epithelial cells for uterine morphogenesis. We compare the function of lim-6 to those of other LIM homeobox genes in C. elegans and suggest that LIM homeobox genes share the common theme of controlling terminal neural differentiation steps that when disrupted lead to specific neuroanatomical and neural function defects.  相似文献   

13.
14.
15.
Sink H  Rehm EJ  Richstone L  Bulls YM  Goodman CS 《Cell》2001,105(1):57-67
At specific choice points in the periphery, subsets of motor axons defasciculate from other axons in the motor nerves and steer into their muscle target regions. Using a large-scale genetic screen in Drosophila, we identified the sidestep (side) gene as essential for motor axons to leave the motor nerves and enter their muscle targets. side encodes a target-derived transmembrane protein (Side) that is a novel member of the immunoglobulin superfamily (IgSF). Side is expressed on embryonic muscles during the period when motor axons leave their nerves and extend onto these muscles. In side mutant embryos, motor axons fail to extend onto muscles and instead continue to extend along their motor nerves. Ectopic expression of Side results in extensive and prolonged motor axon contact with inappropriate tissues expressing Side.  相似文献   

16.
The hindbrain of the chick embryo contains three classes of motor neurons: somatic, visceral, and branchial motor. During development, somata of neurons in the last two classes undergo a laterally directed migration within the neuroepithelium; somata translocate towards the nerve exit points, through which motor axons are beginning to extend into the periphery. All classes of motor neuron are immunopositive for the SC1/DM-GRASP cell surface glycoprotein. We have examined the relationship between patterns of motor neuron migration, axon outgrowth, and expression of the SC1/DM-GRASP mRNA and protein, using anterograde or retrograde axonal tracing, immunohistochemistry, and in situ hybridization. We find that as motor neurons migrate laterally, SC1/DM-GRASP is down-regulated, both on neuronal somata and axonal surfaces. Within individual motor nuclei, these lateral, more mature neurons are found to possess longer axons than the young, medial cells of the population. Labelling of sensory or motor axons growing into the second branchial arch also shows that motor axons reach the muscle plate first, and that SC1/DM-GRASP is expressed on the muscle at the time growth cones arrive. 1994 John Wiley & Sons, Inc.  相似文献   

17.
18.
19.
The zfh-1 and zfh-2 genes of D. melanogaster encode novel proteins containing both homeodomain and C2-H2 zinc-finger DNA-binding motifs. Antisera against these proteins were used to investigate their expression patterns during embryonic development. The zfh-1 gene is expressed in the mesoderm of early embryos and in a number of mesodermally-derived structures of late embryos, including the dorsal vessel, support cells of the gonads, and segment-specific arrays of adult muscle precursors. In addition, zfh-1 is expressed in the majority of identified motor neurons of the developing CNS. The mesodermal zfh-1 expression requires the products of the twist and snail genes. The zfh-2 gene displays a more limited expression pattern, largely restricted to the CNS of late embryos. Ubiquitous zfh-1 expression in transgenic flies bearing an hsp70-zfh-1 construct has specific developmental consequences, including embryonic CNS defects as well as adult eye and bristle abnormalities. The expression patterns of zfh-1 and zfh-2 suggest that both genes may be involved in Drosophila neurogenesis and that zfh-1 may have additional functions in mesoderm development.  相似文献   

20.
The homeobox gene Hb9, like its close relative MNR2, is expressed selectively by motor neurons (MNs) in the developing vertebrate CNS. In embryonic chick spinal cord, the ectopic expression of MNR2 or Hb9 is sufficient to trigger MN differentiation and to repress the differentiation of an adjacent population of V2 interneurons. Here, we provide genetic evidence that Hb9 has an essential role in MN differentiation. In mice lacking Hb9 function, MNs are generated on schedule and in normal numbers but transiently acquire molecular features of V2 interneurons. The aberrant specification of MN identity is associated with defects in the migration of MNs, the emergence of the subtype identities of MNs, and the projection of motor axons. These findings show that HB9 has an essential function in consolidating the identity of postmitotic MNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号