首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CTLH complex is a large, highly conserved eukaryotic complex composed of eight proteins that has been associated to several cellular functions, more often described as an E3 ubiquitin ligase complex involved in protein degradation through ubiquitination but also via vacuole-dependent degradation. A common feature observed in several components of this complex is the presence of the domains lissencephaly-1 homology (LisH) and C-terminal to LisH (CTLH). The LisH domain is found in several proteins involved in chromosome segregation, microtubule dynamics, and cell migration. Also, this domain participates in protein dimerization, besides affecting protein half-life, and influencing in specific cellular localization. Among the proteins found in the CTLH complex, Twa1 (Two-hybrid-associated protein 1 with RanBPM), also known as Gid8 (glucose-induced degradation protein 8 homolog) is the smallest, being a good model for structural studies by NMR. In this work we report the chemical shift assignments of the homodimeric LisH domain of Twa1, as a first step to determine its solution structure.  相似文献   

2.
3.
Human uracil N-glycosylase isoform 2—UNG2 consists of an N-terminal intrinsically disordered regulatory domain (UNG2 residues 1–92, 9.3 kDa) and a C-terminal structured catalytic domain (UNG2 residues 93–313, 25.1 kDa). Here, we report the backbone 1H, 13C, and 15N chemical shift assignment as well as secondary structure analysis of the N-and C-terminal domains of UNG2 representing the full-length UNG2 protein.  相似文献   

4.
The ATP-dependent chromatin-remodelling enzyme Chd1 is a 168-kDa protein consisting of a double chromodomain, Snf2-related ATPase domain, and a C-terminal DNA-binding domain. Here, we show the DNA-binding domain is required for Saccharomyces cerevisiae Chd1 to bind and remodel nucleosomes. The crystal structure of this domain reveals the presence of structural homology to SANT and SLIDE domains previously identified in ISWI remodelling enzymes. The presence of these domains in ISWI and Chd1 chromatin-remodelling enzymes may provide a means of efficiently harnessing the action of the Snf2-related ATPase domain for the purpose of nucleosome spacing and provide an explanation for partial redundancy between these proteins. Site directed mutagenesis was used to identify residues important for DNA binding and generate a model describing the interaction of this domain with DNA. Through inclusion of Chd1 sequences in homology searches SLIDE domains were identified in CHD6-9 proteins. Point mutations to conserved amino acids within the human CHD7 SLIDE domain have been identified in patients with CHARGE syndrome.  相似文献   

5.
Thioredoxins (Trx) are ubiquitous proteins that regulate several biochemical processes inside the cell. Trx is an important player, displaying oxidoreductase activity and helping to keep and regulate the oxidative state of the cellular environment. Trx also participates in the regulation of many cellular functions, such as DNA synthesis, protection against oxidative stress, cell cycle and signal transduction. The oxidized Trx is the target for another set of proteins, such as thioredoxin reductase (TrR), which used the reductive potential of NADPH. The oxidized state of Trx also plays important role in regulation of redox state in the cells. In this regard, the oxidized form of Trx is a putative conformer that contributes to the cellular redox environment. Here we report the chemical shift assignments (1H, 13C and 15N) in solution at 15 °C. We also showed the secondary structure analysis of the oxidized form of yeast thioredoxin (yTrx1) as basis for future NMR studies of protein–target interactions and dynamics. The assignment was done at low concentration (200 µM) because it is important to keep intact the water cavity.  相似文献   

6.
The transforming growth factor beta induced protein (TGFBIp) is a major protein component of the human cornea. Mutations occurring in TGFBIp may cause corneal dystrophies, which ultimately lead to loss of vision. The majority of the disease-causing mutations are located in the C-terminal domain of TGFBIp, referred as the fourth fascilin-1 (FAS1-4) domain. In the present study the FAS1-4 Ala546Thr, a mutation that causes lattice corneal dystrophy, was investigated in dimethylsulfoxide using liquid-state NMR spectroscopy, to enable H/D exchange strategies for identification of the core formed in mature fibrils. Isotope-labeled fibrillated FAS1-4 A546T was dissolved in a ternary mixture 95/4/1 v/v/v% dimethylsulfoxide/water/trifluoroacetic acid, to obtain and assign a reference 2D 1H–15N HSQC spectrum for the H/D exchange analysis. Here, we report the near-complete assignments of backbone and aliphatic side chain 1H, 13C and 15N resonances for unfolded FAS1-4 A546T at 25 °C.  相似文献   

7.
Vibrio cholerae is the bacterial causative agent of the human disease cholera. Non-pathogenic bacterium can be converted to pathogenic following infection by a filamentous phage, CTXΦ, that carries the cholera toxin encoding genes. A crucial step during phage infection requires a direct interaction between the CTXΦ minor coat protein (pIIICTX) and the C-terminal domain of V. cholerae TolA protein (TolAIIIvc). In order to get a better understanding of TolA function during the infection process, we have initiated a study of the V. cholerae TolAIII domain by 2D and 3D heteronuclear NMR. With the exception of the His-tag (H123–H128), 97 % of backbone 1H, 15N and 13C resonances were assigned and the side chain assignments for 92 % of the protein were obtained (BMRB deposit with accession number 25689).  相似文献   

8.
Efficient trafficking of ubiquitinated receptors (cargo) to endosomes requires the recruitment of adaptor proteins that exhibit ubiquitin-binding domains for recognition and transport. Tom1 is an adaptor protein that not only associates with ubiquitinated cargo but also represents a phosphoinositide effector during specific bacterial infections. This phosphoinositide-binding property is associated with its N-terminal Vps27, Hrs, STAM (VHS) domain. Despite its biological relevance, there are no resonance assignments of Tom1 VHS available that can fully characterize its molecular interactions. Here, we report the nearly complete 1H, 15N, and 13C backbone resonance assignments of the VHS domain of human Tom1.  相似文献   

9.
Single-stranded DNA-binding proteins (SSBs) are highly important in DNA metabolism and play an essential role in all major DNA repair pathways. SSBs are generally characterised by the presence of an oligonucleotide binding (OB) fold which is able to recognise single-stranded DNA (ssDNA) with high affinity. We discovered two news SSBs in humans (hSSB1 and hSSB2) that both contain a single OB domain followed by a divergent spacer region and a charged C-terminus. We have extensively characterised one of these, hSSB1 (NABP2/OBFC2B), in numerous important DNA processing events such as, in DNA double-stranded break repair and in the response to oxidative DNA damage. Although the structure of hSSB1 bound to ssDNA has recently been determined using X-ray crystallography, the detailed atomic level mechanism of the interaction of hSSB1 with ssDNA in solution has not been established. In this study we report the solution-state backbone chemical shift assignments of the OB domain of hSSB1. In addition, we have utilized NMR to map the DNA-binding interface of hSSB1, revealing major differences between recognition of ssDNA under physiological conditions and in the recently determined crystal structure. Our NMR data in combination with further biophysical and biochemical experiments will allow us to address these discrepancies and shed light onto the structural basis of DNA-binding by hSSB1 in solution.  相似文献   

10.
11.
The pathogenic bacterium Staphylococcus aureus has evolved to actively evade many aspects of the human innate immune system by expressing a series of secreted inhibitory proteins. Among these, the extracellular adherence protein (Eap) has been shown to inhibit the classical and lectin pathways of the complement system. By binding to complement component C4b, Eap is able to inhibit formation of the CP/LP C3 pro-convertase. Secreted full-length, mature Eap consists of four ~98 residue domains, all of which adopt a similar beta-grasp fold, and are connected through a short linker region. Through multiple biochemical approaches, it has been determined that the third and fourth domains of Eap are responsible for C4b binding. Here we report the backbone and side-chain resonance assignments of the 11.3 kDa fourth domain of Eap. The assignment data has been deposited in the BMRB database under the accession number 26726.  相似文献   

12.
Chromatin-remodeling proteins have a pivotal role in normal cell function and development, catalyzing conformational changes in DNA that ultimately result in changes in gene expression patterns. Chromodomain helicase DNA-binding protein 4 (CHD4), the defining subunit of the nucleosome remodeling and deacetylase (NuRD) complex, is a nucleosome-remodeling protein of the SNF2/ISWI2 family, members of which contain two chromo domains and an ATP-dependent helicase module. CHD3, CHD4 and CHD5 also contain two contiguous PHD domains and have an extended N-terminal region that has not previously been characterized. We have identified a stable domain in the N-terminal region of CHD4 and report here the backbone and side chain resonance assignments for this domain at pH 7.5 and 25 °C (BMRB No. 18906).  相似文献   

13.
Osteopontin (OPN) is a 33.7 kDa intrinsically disordered protein and a member of the SIBLING family of proteins. OPN is bearing a signal peptide for secretion into the extracellular space, where it exerts its main physiological function, the control of calcium biomineralization. It is often involved in tumorigenic processes influencing proliferation, migration and survival, as well as the adhesive properties of cancer cells via CD44 and integrin signaling pathways. Here we report the nearly complete NMR chemical shift assignment of recombinant human osteopontin.  相似文献   

14.
Thirty-one proteins are known to form extracellular fibrillar amyloid in humans. Molecular information about many of these proteins in their monomeric, intermediate or fibrillar form and how they aggregate and interact to form the insoluble fibrils is sparse. This is because amyloid proteins are notoriously difficult to study in their soluble forms, due to their inherent propensity to aggregate. Using recent developments in fast NMR techniques, band-selective excitation short transient and band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence we have been able to assign a 5 kDa full-length amyloidogenic protein called medin. Medin is the key protein component of the most common form of localised amyloid with a proposed role in aortic aneurysm and dissection. This assignment will now enable the study of the early interactions that could influence initiation and progression of medin aggregation. The chemical shifts have been deposited in the BioMagRes-Bank accession Nos. 25399 and 26576.  相似文献   

15.
Periostin, an extracellular matrix protein, is secreted by fibroblasts and is overexpressed in various types of cancers. The four internal repeat fasciclin 1 (FAS1) domains of human periostin play crucial roles in promoting tumor metastasis and progression via interaction with cell surface integrins. Among four FAS1 domains of human periostin, the fourth FAS1 domain (FAS1-IV) was prepared for NMR study, since only FAS1-IV was highly soluble, and showed a well-dispersed 2D 1H-15N HSQC spectrum. Here, we report nearly complete backbone and side chain resonance assignments and a secondary structural analysis of the FAS1-IV domain as first steps toward the structure determination of FAS1-IV of human periostin.  相似文献   

16.
17.
Deubiquitinase USP20/VDU2 has been identified as a regulator of multiple proteins including hypoxia-inducible factor (HIF)-1α, β2-adrenergic receptor, and tumor necrosis factor receptor associated factor 6 etc. It contains four structural domains, including an N-terminal zinc-finger ubiquitin binding domain (ZnF-UBP) that potentially helps USP20 to recruit its ubiquitin substrates. Here we report the 1H, 13C and 15N backbone and side-chain resonance assignments of the ZnF-UBP domain of USP20/VDU2. The BMRB accession number is 26901. The secondary structural elements predicted from the NMR data reveal a global fold consisting of three α-helices and four β-strands. The complete assignments can be used to explore the protein dynamics of the USP20 ZnF-UBP and its interactions with monoubiquitin and ubiquitin chains.  相似文献   

18.
K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1HN, 15N, and 13C resonance assignments for the 19.3 kDa (aa 1–169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RASG12C-GDP), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1H–15N correlations have been assigned for all non-proline residues, except for the first methionine residue.  相似文献   

19.
Phosphoenolpyruvate binding to the C-terminal domain (EIC) of enzyme I of the bacterial phosphotransferase system (PTS) initiates a phosphorylation cascade that results in sugar translocation across the cell membrane and controls a large number of essential pathways in bacterial metabolism. EIC undergoes an expanded to compact conformational equilibrium that is regulated by ligand binding and determines the phosphorylation state of the overall PTS. Here, we report the backbone 1H, 15N and 13C chemical shift assignments of the 70 kDa EIC dimer from the thermophilic bacterium Thermoanaerobacter tengcongensis. Assignments were obtained at 70 °C by heteronuclear multidimensional NMR spectroscopy. In total, 90% of all backbone resonances were assigned, with 264 out of a possible 299 residues assigned in the 1H–15N TROSY spectrum. The secondary structure predicted from the assigned backbone resonance using the program TALOS+ is in good agreement with the X-ray crystal structure of T. tengcongensis EIC. The reported assignments will allow detailed structural and thermodynamic investigations on the coupling between ligand binding and conformational dynamics in EIC.  相似文献   

20.
We have identified a plasma membrane Na+/H+ exchanger from durum wheat, designated TdSOS1. Heterologous expression of TdSOS1 in a yeast strain lacking endogenous Na+ efflux proteins showed complementation of the Na+- and Li+-sensitive phenotype by a mechanism involving cation efflux. Salt tolerance conferred by TdSOS1 was maximal when co-expressed with the Arabidopsis protein kinase complex SOS2/SOS3. In vitro phosphorylation of TdSOS1 with a hyperactive form of the Arabidopsis SOS2 kinase (T/DSOS2∆308) showed the importance of two essential serine residues at the C-terminal hydrophilic tail (S1126, S1128). Mutation of these two serine residues to alanine decreased the phosphorylation of TdSOS1 by T/DSOS2∆308 and prevented the activation of TdSOS1. In addition, deletion of the C-terminal domain of TdSOS1 encompassing serine residues at position 1126 and 1128 generated a hyperactive form that had maximal sodium exclusion activity independent from the regulatory SOS2/SOS3 complex. These results are consistent with the presence of an auto-inhibitory domain at the C-terminus of TdSOS1 that mediates the activation of TdSOS1 by the protein kinase SOS2. Expression of TdSOS1 mRNA in young seedlings of the durum wheat variety Om Rabia3, using different abiotic stresses (ionic and oxidative stress) at different times of exposure, was monitored by RT–PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号