首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-stranded DNA-binding proteins (SSBs) are required for all known DNA metabolic events such as DNA replication, recombination and repair. While a wealth of structural and functional data is available on the essential human SSB, hSSB1 (NABP2/OBFC2B), the close homolog hSSB2 (NABP1/OBFC2A) remains relatively uncharacterized. Both SSBs possess a well-structured OB (oligonucleotide/oligosaccharide-binding) domain that is able to recognize single-stranded DNA (ssDNA) followed by a flexible carboxyl-tail implicated in the interaction with other proteins. Despite the high sequence similarity of the OB domain, several recent studies have revealed distinct functional differences between hSSB1 and hSSB2. In this study, we show that hSSB2 is able to recognize cyclobutane pyrimidine dimers (CPD) that form in cellular DNA as a consequence of UV damage. Using a combination of biolayer interferometry and NMR, we determine the molecular details of the binding of the OB domain of hSSB2 to CPD-containing ssDNA, confirming the role of four key aromatic residues in hSSB2 (W59, Y78, W82, and Y89) that are also conserved in hSSB1. Our structural data thus demonstrate that ssDNA recognition by the OB fold of hSSB2 is highly similar to hSSB1, indicating that one SSB may be able to replace the other in any initial ssDNA binding event. However, any subsequent recruitment of other repair proteins most likely depends on the divergent carboxyl-tail and as such is likely to be different between hSSB1 and hSSB2.  相似文献   

2.
Single stranded DNA binding proteins (SSBs) are present in all known cellular organisms and are critical for DNA replication, recombination and repair. The SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus (SsoSSB) has an unusual domain structure with a single DNA-binding oligonucleotide binding (OB) fold coupled to a flexible C-terminal tail. This ‘simple’ domain organisation differs significantly from other known SSBs, such as human replication protein A (RPA). However, it is conserved in another important human SSB, hSSB1, which we have recently discovered and shown to be essential in the DNA damage response. In this study we report the solution-state backbone and side-chain chemical shift assignments of the OB domain of SsoSSB. In addition, using the recently determined crystal structure, we have utilized NMR to reveal the DNA-binding interface of SsoSSB. These data will allow us to elucidate the structural basis of DNA-binding and shed light onto the molecular mechanism by which these ‘simple’ SSBs interact with single-stranded DNA.  相似文献   

3.

Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.

  相似文献   

4.
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria, archaea and eukarya. The SSBs share a common core ssDNA-binding domain with a conserved OB (oligonucleotide/oligosaccharide binding) fold. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life. In recent years, there has been an increasing interest in SSBs because they are useful for molecular biology methods and for analytical purposes. In this review, we concentrate on recent advances in the discovery of new sources of SSBs as well as certain aspects of their applications in analytical sciences.  相似文献   

5.
Although structures of single-stranded (ss)DNA-binding proteins (SSBs) have been reported with and without ssDNA, the mechanism of ssDNA binding in eukarya remains speculative. Here we report a 2.5 Angstroms structure of the ssDNA-binding domain of human replication protein A (RPA) (eukaryotic SSB), for which we previously reported a structure in complex with ssDNA. A comparison of free and bound forms of RPA revealed that ssDNA binding is associated with a major reorientation between, and significant conformational changes within, the structural modules--OB-folds--which comprise the DNA-binding domain. Two OB-folds, whose tandem orientation was stabilized by the presence of DNA, adopted multiple orientations in its absence. Within the OB-folds, extended loops implicated in DNA binding significantly changed conformation in the absence of DNA. Analysis of intermolecular contacts suggested the possibility that other RPA molecules and/or other proteins could compete with DNA for the same binding site. Using this mechanism, protein-protein interactions can regulate, and/or be regulated by DNA binding. Combined with available biochemical data, this structure also suggested a dynamic model for the DNA-binding mechanism.  相似文献   

6.
BackgroundHuman Nucleic Acid Binding Protein 1 and 2 (hNABP1 and 2; also known as hSSB2 and 1, respectively) are two newly identified single-stranded (ss) DNA binding proteins (SSB). Both NABP1 and NABP2 have a conserved oligonucleotide/oligosaccharide-binding (OB)-fold domain and a divergent carboxy-terminal domain, the functional importance of which is unknown.MethodsRecombinant hNABP1/2 proteins were purified using affinity and size exclusion chromatography and their identities confirmed by mass spectrometry. Oligomerization state was checked by sucrose gradient centrifugation. Secondary structure was determined by circular dichroism spectroscopy. Nucleic acid binding ability was examined by EMSA and ITC.ResultsBoth hNABP1 and hNABP2 exist as monomers in solution; however, hNABP2 exhibits anomalous behavior. CD spectroscopy revealed that the C-terminus of hNABP2 is highly disordered. Deletion of the C-terminal tail diminishes the DNA binding ability and protein stability of hNABP2. Although both hNABP1 and hNABP2 prefer to bind ssDNA than double-stranded (ds) DNA, hNABP1 has a higher affinity for ssDNA than hNABP2. Unlike hNABP2, hNABP1 protein binds and multimerizes on ssDNA with the C-terminal tail responsible for its multimerization. Both hNABP1 and hNABP2 are able to bind single-stranded RNA, with hNABP2 having a higher affinity than hNABP1.ConclusionsBiochemical evidence suggests that the C-terminal region of NABP1 and NABP2 is essential for their functionality and may lead to different roles in DNA and RNA metabolism.General significanceThis is the first report demonstrating the regulation and functional properties of the C-terminal domain of hNABP1/2, which might be a general characteristic of OB-fold proteins.  相似文献   

7.
Chromatin remodelling proteins are an essential family of eukaryotic proteins. They harness the energy from ATP hydrolysis and apply it to alter chromatin structure in order to regulate all aspects of genome biology. Chromodomain helicase DNA-binding protein 1 (CHD1) is one such remodelling protein that has specialised nucleosome organising abilities and is conserved across eukaryotes. CHD1 possesses a pair of tandem chromodomains that directly precede the core catalytic Snf2 helicase-like domain, and a C-terminal SANT-SLIDE DNA-binding domain. We have identified an additional conserved domain in the C-terminal region of CHD1. Here, we report the backbone and side chain resonance assignments for this domain from human CHD1 at pH 6.5 and 25 °C (BMRB No. 25638).  相似文献   

8.
Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves.  相似文献   

9.
The single-stranded DNA (ssDNA)-binding protein from the radiation-resistant bacterium Deinococcus radiodurans (DrSSB) functions as a homodimer in which each monomer contains two oligonucleotide-binding (OB) domains. This arrangement is exceedingly rare among bacterial SSBs, which typically form homotetramers of single-OB domain subunits. To better understand how this unusual structure influences the DNA binding and biological functions of DrSSB in D. radiodurans radiation resistance, we have examined the structure of DrSSB in complex with ssDNA and the DNA damage-dependent cellular dynamics of DrSSB. The x-ray crystal structure of the DrSSB-ssDNA complex shows that ssDNA binds to surfaces of DrSSB that are analogous to those mapped in homotetrameric SSBs, although there are distinct contacts in DrSSB that mediate species-specific ssDNA binding. Observations by electron microscopy reveal two salt-dependent ssDNA-binding modes for DrSSB that strongly resemble those of the homotetrameric Escherichia coli SSB, further supporting a shared overall DNA binding mechanism between the two classes of bacterial SSBs. In vivo, DrSSB levels are heavily induced following exposure to ionizing radiation. This accumulation is accompanied by dramatic time-dependent DrSSB cellular dynamics in which a single nucleoid-centric focus of DrSSB is observed within 1 h of irradiation but is dispersed by 3 h after irradiation. These kinetics parallel those of D. radiodurans postirradiation genome reconstitution, suggesting that DrSSB dynamics could play important organizational roles in DNA repair.  相似文献   

10.
Single-stranded DNA binding proteins (SSBs) have been identified in all three domains of life. Here, we report the identification of a novel crenarchaeal SSB protein that is distinctly different from its euryarchaeal counterparts. Rather than comprising four DNA-binding domains and a zinc-finger motif within a single polypeptide of 645 amino acids, as for Methanococcus jannaschii, the Sulfolobus solfataricus SSB protein (SsoSSB) has a single DNA-binding domain in a polypeptide of just 148 amino acids with a eubacterial-like acidic C-terminus. SsoSSB protein was purified to homogeneity and found to form tetramers in solution, suggesting a quaternary structure analogous to that of E. coli SSB protein,despite possessing DNA-binding domains more similar to those of eukaryotic Replication Protein A (RPA). We demonstrate distributive binding of SsoSSB to ssDNA at high temperature with an apparent site size of approximately five nucleotides (nt)per monomer. Additionally, the protein is functional both in vitro and in vivo, stimulating RecA protein-mediated DNA strand-exchange and rescuing the ssb-1 lethal mutation of E. coli respectively. We discuss possible evolutionary relationships amongst the various members of the SSB/RPA family.  相似文献   

11.
Single-stranded DNA-binding proteins (SSBs) play vital roles in all aspects of DNA metabolism in all three domains of life and are characterized by the presence of one or more OB fold ssDNA-binding domains. Here, using the genetically tractable euryarchaeon Haloferax volcanii as a model, we present the first genetic analysis of SSB function in the archaea. We show that genes encoding the OB fold and zinc finger-containing RpaA1 and RpaB1 proteins are individually non-essential for cell viability but share an essential function, whereas the gene encoding the triple OB fold RpaC protein is essential. Loss of RpaC function can however be rescued by elevated expression of RpaB, indicative of functional overlap between the two classes of haloarchaeal SSB. Deletion analysis is used to demonstrate important roles for individual OB folds in RpaC and to show that conserved N- and C-terminal domains are required for efficient repair of DNA damage. Consistent with a role for RpaC in DNA repair, elevated expression of this protein leads to enhanced resistance to DNA damage. Taken together, our results offer important insights into archaeal SSB function and establish the haloarchaea as a valuable model for further studies.  相似文献   

12.
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2.  相似文献   

13.
Single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA (ssDNA) and participate in all genetic processes involving ssDNA, such as replication, recombination, and repair. Here we applied atomic force microscopy to directly image SSB-DNA complexes under various conditions. We used the hybrid DNA construct methodology in which the ssDNA segment is conjugated to the DNA duplex. The duplex part of the construct plays the role of a marker, allowing unambiguous identification of specific and nonspecific SSB-DNA complexes. We designed hybrid DNA substrates with 5'- and 3'-ssDNA termini to clarify the role of ssDNA polarity on SSB loading. The hybrid substrates, in which two duplexes are connected with ssDNA, were the models for gapped DNA substrates. We demonstrated that Escherichia coli SSB binds to ssDNA ends and internal ssDNA regions with the same efficiency. However, the specific recognition by ssDNA requires the presence of Mg(2+) cations or a high ionic strength. In the absence of Mg(2+) cations and under low-salt conditions, the protein is capable of binding DNA duplexes. In addition, the number of interprotein interactions increases, resulting in the formation of clusters on double-stranded DNA. This finding suggests that the protein adopts different conformations depending on ionic strength, and specific recognition of ssDNA by SSB requires a high ionic strength or the presence of Mg(2+) cations.  相似文献   

14.
15.
Bacterial single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during cellular DNA replication, recombination and repair reactions. SSBs also form complexes with an array of genome maintenance enzymes via their conserved C-terminal tail (SSB-Ct) elements. In many cases, complex formation with SSB stimulates the biochemical activities of its protein partners. Here, we investigate the mechanism by which Escherichia coli SSB stimulates hydrolysis of ssDNA by Exonuclease I (ExoI). Steady-state kinetic experiments show that SSB stimulates ExoI activity through effects on both apparent k(cat) and K(m). SSB variant proteins with altered SSB-Ct sequences either stimulate more modestly or inhibit ExoI hydrolysis of ssDNA due to increases in the apparent Michaelis constant, highlighting a role for protein complex formation in ExoI substrate binding. Consistent with a model in which SSB stabilizes ExoI substrate binding and melts secondary structures that could impede ExoI processivity, the specific activity of a fusion protein in which ExoI is tethered to SSB is nearly equivalent to that of SSB-stimulated ExoI. Taken together, these studies delineate stimulatory roles for SSB in which protein interactions and ssDNA binding are both important for maximal activity of its protein partners.  相似文献   

16.
The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome.  相似文献   

17.
Walther AP  Gomes XV  Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3963-3973
Human replication protein A (RPA) is a multiple subunit single-stranded DNA-binding protein that is required for multiple processes in cellular DNA metabolism. This complex, composed of subunits of 70, 32, and 14 kDa, binds to single-stranded DNA (ssDNA) with high affinity and participates in multiple protein-protein interactions. The 70-kDa subunit of RPA is known to be composed of multiple domains: an N-terminal domain that participates in protein interactions, a central DNA-binding domain (composed of two copies of a ssDNA-binding motif), a putative (C-X2-C-X13-C-X2-C) zinc finger, and a C-terminal intersubunit interaction domain. A series of mutant forms of RPA were used to elucidate the roles of these domains in RPA function. The central DNA-binding domain was necessary and sufficient for interactions with ssDNA; however, adjacent sequences, including the zinc-finger domain and part of the N-terminal domain, were needed for optimal ssDNA-binding activity. The role of aromatic residues in RPA-DNA interactions was examined. Mutation of any one of the four aromatic residues shown to interact with ssDNA had minimal effects on RPA activity, indicating that individually these residues are not critical for RPA activity. Mutation of the zinc-finger domain altered the structure of the RPA complex, reduced ssDNA-binding activity, and eliminated activity in DNA replication.  相似文献   

18.
Single-stranded DNA binding proteins (SSBs) have been isolated from many organisms, including Escherichia coli, Saccharomyces cerevisiae and humans. Characterization of these proteins suggests they are required for DNA replication and are active in homologous recombination. As an initial step towards understanding the role of the eukaryotic SSBs in DNA replication and recombination, we examined the DNA binding and strand exchange stimulation properties of the S. cerevisiae single-strand binding protein y-RPA (yeast replication protein A). y-RPA was found to bind to single-stranded DNA (ssDNA) as a 115,000 M(r) heterotrimer containing 70,000, 36,000 and 14,000 M(r) subunits. It saturated ssDNA at a stoichiometry of one heterotrimer per 90 to 100 nucleotides and binding occurred with high affinity (K omega greater than 10(9) M-1) and co-operativity (omega = 10,000 to 100,000). Electron microscopic analysis revealed that y-RPA binding was highly co-operative and that the ssDNA present in y-RPA-ssDNA complexes was compacted fourfold, arranged into nucleosome-like structures, and was free of secondary structure. y-RPA was also tested for its ability to stimulate the yeast Sepl and E. coli RecA strand-exchange proteins. In an assay that measures the pairing of circular ssDNA with homologous linear duplex DNA, y-RPA stimulated the strand-exchange activity of Sepl approximately threefold and the activity of RecA protein to the same extent as did E. coli SSB. Maximal stimulation of Sepl occurred at a stoichiometry of one y-RPA heterotrimer per 95 nucleotides of ssDNA. y-RPA stimulated RecA and Sepl mediated strand exchange reactions in a manner similar to that observed for the stimulation of RecA by E. coli SSB; in both of these reactions, y-RPA inhibited the aggregation of ssDNA and promoted the co-aggregation of single-stranded and double-stranded linear DNA. These results demonstrate that the E. coli and yeast SSBs display similar DNA-binding properties and support a model in which y-RPA functions as an E. coli SSB-like protein in yeast.  相似文献   

19.
Recent years have witnessed tremendous progress in our structural and biophysical understanding of how replication protein A (RPA), a major nuclear ssDNA-binding protein (SSB), binds DNA. The four ssDNA-binding domains of RPA have the characteristic OB (oligonucleotide/oligosaccharide-binding) fold and contact DNA with specific polarity via a hierarchy-driven dynamic pathway. A growing mass of data suggest that many aspects of the ssDNA binding mechanism are conserved among SSBs of different origin. However, this conservation is not restricted to the SSB class. The concepts of ssDNA binding by the OB-fold, first derived from the RPA structure, have been successfully applied to the functional characterization of the BRCA2 (breast cancer susceptibility gene 2) protein. The BRCA2 structure, in its turn, has helped to better understand RPA function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号