首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A master equation theory is formulated to describe the dependence of the fluorescence yield (phi) in photosynthetic systems on the number of photons (Y) absorbed per photosynthetic unit (or domain). This theory is applied to the calculation of the dependence of the fluorescence yield on Y in (a) fluorescence induction, and (b) singlet exciton-triplet excited-state quenching experiments. In both cases, the fluorescence yield depends on the number of previously absorbed photons per domain, and thus evolves in a nonlinear manner with increasing Y. In case a, excitons transform the photosynthetic reaction centers from a quenching state to a nonquenching state, or a lower efficiency of quenching state; subsequently, absorbed photons have a higher probability of decaying by radiative pathways and phi increases as Y increases. In case b, ground-state carotenoid molecules are converted to long-lived triplet excited-state quenchers, and phi decreases as Y increases. It is shown that both types of processes are formally described by the same theoretical equations that relate phi to Y. The calculated phi (Y) curves depend on two parameters m and R, where m is the number of reaction centers (or ground-state carotenoid molecules that can be converted to triplets), and R is the ratio phi (Y leads to infinity)/(Y leads to 0). The finiteness of the photosynthetic units is thus taken into account. The m = 1 case corresponds to the "puddle" model, and m leads to infinity to the "lake," or matrix, model. It is shown that the experimental phi (Y) curves for both fluorescence induction and singlet-triplet exciton quenching experiments are better described by the m leads to infinity cases than the m = 1 case.  相似文献   

2.
Modulated chlorophylla fluorescence is useful for eco-physiological studies of lichens as it is sensitive, non-invasive and specific to the photobiont. We assessed the validity of using fluorescence yield to predict CO2 gain in cyano-lichens, by simultaneous measurements of CO2 gas exchange and chlorophylla fluorescence in five species withNostoc-photobionts. For comparison, O2 evolution and fluorescence were measured in isolated cells ofNostoc, derived fromPeltigera canina (Nostoc PC). At irradiances up to the growth light level, predictions from fluorescence yield underestimated true photosynthesis, to various extents depending on species. This reflected the combined effect of a state transition in darkness, which was not fully relaxed until the growth light level was reached, and a phycobilin contribution to the minimum fluorescence yield (Fo). Above the growth light level, the model progressively overestimated assimilation, reflecting increased electron flow to oxygen under excess irradiance. In cyanobacteria, this flow maintains photosystem II centres open even up to photoinhibitory light levels without contributing to CO2 fixation. Despite this we show that gross CO2 gain may be predicted from fluorescence yield also in cyanolichens when the analysis is made near the acclimated growth light level. This level can be obtained even when measurements are performed in the field, since it coincides with a minimum in non-photochemical fluorescence quenching (NPQ). However, the absolute relation between fluorescence yield and gross CO2 gain varies between species. It may therefore be necessary to standardise the fluorescence prediction for each species with CO2 gas exchange.Abbreviations CCM CO2-Concentrating mechanism - Chl chlorophyll - Ci inorganic carbon - 0 convexity (curvature of the light response curve) - ETR electron transport rate - Fo minimum fluorescence yield - Fm maximal fluorescence yield - Fs fluorescence yield at steady-state photosynthesis - Fv variable fluorescence yield - Fv/Fm dark ratio of variable to maximal fluorescence yield after dark adaptation - FvFmmax ratio of variable to maximal fluorescence yield in the absence of quenching - CO2 maximum quantum yield of CO2 assimilation - PS quantum yield of photosystem II photochemistry - GP gross photosynthesis - I irradiance (mol quanta·m–2·s–1) - NPQ non photochemical fluorescence quenching - qp photochemical fluorescence quenching  相似文献   

3.
The recent results of Campillo et al. and Mauzerall on the quenching of the fluorescence of chlorophyll a in Chlorella pyrenoidosa as a function of the intensity of the laser excitation pulses are rationalized by applying a model invoking singlet-singlet exciton annihilation.  相似文献   

4.
5.
We have measured the singlet-singlet quenching of the bacteriochlorophyll (BChl) fluorescence yield as a function of excitation intensity in a number of antenna complexes isolated from photosynthetic bacteria. Our results show that the lithium dodecyl sulfate (LDS)-B875, LDS-B800 – 850 and lauryldimethylamine N-oxide complexes of Rhodopseudomonas sphaeroides contain 8, greater than 25 and greater than 600 BChl a molecules, respectively. The size of the Rhodopspirillum rubrum B880 complex is greater than 70 BChl a and that of the water-soluble BChl a complex from Prosthecochloris aestuarii about 20–25 BChl a. These results are discussed in relation to current models of the arrangement of antenna complexes within the photosynthetic membranes.  相似文献   

6.
The relationship between the empirical fluorescence index F/Fm and the quantum yield of linear electron flow, s, was investigated in isolated spinach thylakoids. Conditions were optimised for reliable determination of F/Fm and s with methyl viologen or ferricyanide as electron acceptors under coupled and uncoupled conditions. Ascorbate in combination with methyl viologen was found to stimulate light-induced O2-uptake which is not reflected in F/Fm and interpreted to reflect superoxide reduction by ascorbate. In the absence of ascorbate, the plot of F/Fm vs. s was mostly linear, except for the range of high quantum yields, i.e. at rather low photon flux densities. With ferricyanide as acceptor, use of relatively low concentrations (0.1–0.3 mM) was essential for correct Fm-determinations, particularly under uncoupled conditions. Under coupled and uncoupled conditions the same basic relationship between F/Fm and s was observed, irrespective of s being decreased by increasing light intensity or by DCMU-addition. The plots obtained with methyl viologen and ferricyanide as acceptors were almost identical and similar to corresponding plots reported previously by other researchers for intact leaves. It is concluded that the index F/Fm can be used with isolated chloroplasts for characterisation of such types of electron flow which are difficult to assess otherwise, as e.g. O2 dependent flux. The origin of the non-linear part of the relationship is discussed. An involvement of inactive PS II centers with separate units and inefficient QA-QB electron transfer is considered likely.Abbreviations AsA - ascorbate - DCMU - 3-(3,4-dichlorophenyl)-1,1-dimethylurea - MDA - monodehydroascorbate - MV - methyl viologen - PAR - photosynthetically active radiation - SOD - superoxide dismutase This paper is dedicated to David Walker who after 40 years in the field of photosynthesis is now retiring from his duties at Sheffield University.  相似文献   

7.
8.
9.
A fluorescence video imaging system utilizing relatively inexpensive commercial components is described. The instrument utilizes a black and white CCD video camera detector, a commercial video imaging board and a IBM-AT compatible computer. The color output of the imaging board greatly aids in the users ability to visually discriminate areas of interest in the video field. Software development that enables the user to capture kinetic traces in real time from the video images is also described. The system is used to monitor fluorescence from photosynthetic systems. The usefulness of the system in screening for photosynthetic mutants is also demonstrated. The cost of the system can be kept below $12,000.Abbreviations CCD charge-coupled device - DCMU diuron, 3-[3,4-Dichlorophenyl]1,1-dimethylurea - AGC automatic gain control - LUT look-up table - AOI area of interest - CPU central processing unit - RAM random access memory - ADC analog-to-digital converter - FVIPS fluorescence video image processing software - I/O input/output - F0 dark-level fluorescence - OIDPSMT characteristic transient components, where O is dark level, I is intermediary peak, D is dip, P is peak of fast transient, S is quasi-steady state level, M is second maximum, T is terminal level  相似文献   

10.
Mechanisms of fluorescence quenching of aromatic chromophores by water are reviewed. The mechanisms include polarity of chromophore environment, proton or electron transfer between the excited chromophore and water. A hypothesis is proposed that the quenching can be a result of chromophore-solvent hydrogen bond breaking in the excited state.  相似文献   

11.
Evidence is presented which suggests that N-methylphenazonium methosulfate suppresses the fluorescence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-poisoned chloroplasts by two mechanisms: (i) indirectly, by catalyzing the buildup of the phosphorylating potential XE across the thylaknid membrane; (ii) directly, by interacting with excited chlorophyll molecules.Arguments in support of direct quenching are as follows: (i) N-methylphenazonium methosulfate is an efficient quencher of the fluorescence of chlorophyll a in methanol; (ii) the dark-irreversible portion of the light-induced fluorescence lowering in the presence of N-methylphenazonium-methosulfate increases with the concentration of the cofactor, (iii) N-methylphenazonium methosulfate lowers the fluorescence of chloroplasts at an excitation that is too weak to allow formation of XE.Ascorbate-reduced N-methylphenazonium methosulfate (PMS-SQ) is a more efficient direct quencher of chloroplast fluorescence than oxidized PMS because the thylakoid membrane is more permeable to the reduced species. The permeability to these quenchers is enhanced by the light-induced protonation of the membrane, and suppressed by added Mg2+. Different permeability barriers appear to exist for the direct and for the XE-mediated quenching by N-methylphenazonium methosulfate, since the latter is known to be insensitive to the presence of Mg2+.  相似文献   

12.
Diatoms are an important group of primary producers in the aquatic environment. They are able to acclimate to fast changes in the light intensity by various mechanisms including a rise in non-photochemical fluorescence quenching (NPQ). The latter has been attributed to the xanthophyll cycle (XC) following activation of diadinoxanthin de-epoxidase by the acidification of the thylakoid lumen. To examine whether fluorescence quenching in the diatom Phaeodactylum tricornutum depends on the ΔpH generated by the photosynthetic electron transport, we arrested the latter by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). This treatment hardly affected the NPQ or XC, even when methylviologen was present. Dissipation of the ΔpH by 2,4-dinitrophenol inhibited the XC but did not alter NPQ. Similar results, i.e. inhibition of the XC but normal fluorescence quenching, were observed when the experiments were performed at 3°C. Measurements of thermoluminescence showed that excess light treatment caused a marked decline in the signals obtained as a result of recombination of QB- with the S3 state of the Mn cluster; this was also observed in cells treated with DCMU (recombination of QA- with S2). Light treatment also diminished the QA- re-oxidation signals. The data suggest that changes in PSII core centre itself due to exposure to excess light conditions play an important part in the acclimation of P. tricornutum to the changing light conditions.  相似文献   

13.
Many cells and cell fragments are known to assume specific alignments with respect to an applied magnetic field. One indicator of this alignment is a difference between the intensities of fluorescence observed in polarizations parallel and perpendicular to the magnetic filed. We calculate these two intensities using a model that assumes axially symmetric membranes and that covers a wide variety of shapes from flat disk to right cylinder. The fluorescence is assumed to originate at chromophores randomly exicted but nonrandomly oriented in the membranes. The membrane alignment is assumed to be due to the net torque on a nonrandom distribution of diamagnetically anisotropic molecules. The predicted results are consistent with most magnetoorientation data from green cells, but we are able to show that Chlorella data are not consistent with the hypothesis that the membranes have, and maintain, a cuplike configuration.  相似文献   

14.
15.
Fucoxanthin-chlorophyll complexes (FCP) from the centric diatom Cyclotella meneghiniana were isolated and the trimeric FCPa complex was reconstituted into liposomes at different lipid to Chl a ratios. The fluorescence yield of the complexes in different environments was calculated from room temperature fluorescence emission spectra and compared to the aggregated state of FCPa. FCPa surrounded by high amounts of lipids resembled detergent solubilised complexes and with decreasing lipid levels, i.e. in a situation where protein contacts were increasingly favoured, the fluorescence yield of FCPa gradually decreased. In addition, the yield displayed a strong pH-dependency in case of lower lipid contents. The further reduction in fluorescence yield brought about by the conversion of diadinoxanthin to diatoxanthin was pH independent and only depended on the amount of diatoxanthin synthesised. The implications of these data for non-photochemical quenching in centric diatoms are discussed.  相似文献   

16.
  1. 1. Light-induced changes in the fluorescence transient (685nm) of spinach chloroplast fragments at room temperature wereinvestigated in an attempt to correlate these changes with photoinactivationin photosystem II.
  2. 2. Parallel decreases in the steady-statelevel of fluorescenceand in the variable fraction, observedunder aerobic light-treatment,were not related processes butseparate reactions as indicatedby an anaerobic-interruptionexperiment where the decrease inthe steady-state level occurredonly after the disappearanceof induction.
  3. 3. Anaerobic light-treatmentcaused an increase in the initiallevel of fluorescence parallelto photoinactivation in photosystemII, and a more rapid partialdecrease in the teady-state levelof fluorescence.
  4. 4. Thesteady-state level of fluorescence showed pronouncedpH dependency,and had an optimum at about pH 6.5, while theinitial levelwas practically independent of environmental pHwithin a neutralrange. Aerobic or anaerobic light-treatmentcompletely eliminatedpH dependency.
  5. 5. Effects of electron acceptors, dichlorophenyl-dimethylurea,dithionite, and of electron donors for photosystem II on thefluorescence transient of photoinactivatedchloroplast fragmentswere investigated. Based on the data presented here, it seemsreasonable to assume that photoinactivation in photosystem IIis closely related to the state of reaction centers in the photosystem.
(Received July 8, 1970; )  相似文献   

17.
The quenching of variable fluorescence yield (qN) and the quenching of dark level fluorescence yield (q0) directly atributable to high-energy-state fluorescence quenching (qE) was studied to distinguish between energy dissipation in the antenna and light harvesting complexes (antenna quenching) and energy dissipation at the reaction centres (reaction centre quenching). A consistent relationship was obtained between qN and q0 in barley leaves, the green alga Dunaliella C9AA and in pea thylakoids with 2,3,5,6-tetramethyl-p-phenylene diamine (DAD) as mediator of cyclic electron flow around PS 1. This correlated well with the relationship obtained using m-dinitrobenzene (DNB), a chemical model for antenna quenching, to quench fluorescence in Dunaliella C9AA or pea thylakoids. The results also correlated reasonably well with theoretical predictions by the Butler model for antenna quenching, but did not correlate with the predictions for reaction centre quenching. It is postulated that qE quenching therefore occures in the antenna and light harvesting complexes, and that the small deviation from the Butler prediction is due to PS 2 heterogeneity.Abbreviations 9-aa 9-aminoacridine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA Ethylenediaminetetra-acetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid - Mes 2-(N-morpholino) prophanesulfonate - PS 1 photosystem 1 - PS 2 photosystem 2 - QA and QB primary and secondary stable electron acceptors of photosystem 2 - qN non-photochemical fluorescence quenching coefficient - qE high-energy-state fluorescence quenching coefficient - q0 quenching coefficient for F0 - F0 dark level fluorescence yield - Fm maximum fluorescence yield - Fv variable fluorescence yield - Fv/Fm ratio of variable to total fluorescence yield - DAD 2,3,5,6-tetramethyl-p-phenylene diamine - DNB m-dinitrobenzene  相似文献   

18.
We estimated the relative florescence quantum yield (Φ) of 8‐methoxy‐3‐[1‐(4,5‐dicarbomethoxy‐1,2,3‐triazoloacetyl)]coumarin [8MDTC] using a single‐point method with quinine sulfate in 0.1 M of sulfuric acid used as a standard reference. The fluorescence lifetimes, radiative and non‐radiative decay rate constants are calculated. Relative quantum yields were found to be less in the non‐polar solvents, indicating that the solute exhibits less fluorescence in a non‐polar environment. The fluorescence quenching of [8MDTC] by aniline was studied at room temperature by examining the steady state in five different solvents in order to explore various possible quenching mechanisms. The experimental results show a positive deviation in Stern–Volmer plots in all solvents. Ground state complex and sphere of action static quenching models were used to interpret the results. Many quenching rate parameters were calculated using these models. The values of these parameters suggest that the sphere of action static quenching model agrees well with the experimental results. Further, a finite sink approximation model was used to check whether these bimolecular reactions were diffusion limited or not. The values of the distance parameter R′ and the diffusion coefficient D were determined and are compared with the values of the encounter distance R and diffusion coefficient D calculated using the Stokes–Einstein equation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800 +A0 ? with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800 +A0 ?, some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.  相似文献   

20.
The pathways of energy dissipation of excessive absorbed energy in cyanobacteria in comparison with that in higher plants are discussed. Two mechanisms of non-photochemical quenching in cyanobacteria are described. In one case this quenching occurs as light-induced decrease of the fluorescence yield of long-wavelength chlorophylls of the photosystem I trimers induced by inactive reaction centers: P700 cation-radical or P700 in triplet state. In the other case, non-photochemical quenching in cyanobacteria takes place with contribution of water-soluble protein OCP (containing 3′-hydroxyechinenone) that induces reversible quenching of allophycocyanin fluorescence in phycobilisomes. The possible evolutionary pathways of the involvement of carotenoid-binding proteins in non-photochemical quenching are discussed comparing the cyanobacterial OCP and plant PsbS protein. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 10, pp. 1385–1395.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号