首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous research has suggested social learning of foragingbehavior can inhibit learning of the optimal behavior pattern.Based on their transmission chain design, we used small groupsof guppies (Poecilia reticulata) to determine the degree towhich the optimal behavior pattern was inhibited by sociallylearned information. A founder group was trained to take a long, energetically costly route to a food source. The members ofthis group were gradually replaced with naive conspecifics.Replicating the findings of the earlier researchers, it wasclear that the behavior of the founders strongly influencedthe behavior of the naive fish, probably through a process oflocal enhancement. When tested as a group, the naive fish chosethe long route to the food source significantly more oftenthan chance. Each naive fish was also tested in isolation.When tested alone, there was a significant tendency to choosethe short route despite following the long route when testedas a group. These results suggest social learning does notinhibit learning of optimal behavior patterns but that a trade-offoccurs when tested in the group condition. It is possible thatthe advantages for an individual fish of swimming with theshoal, and thus following the socially learned route, may haveoutweighed the potential energetic costs of taking this longerroute.  相似文献   

2.
Non-human animals can acquire novel route preferences by following knowledgeable individuals. Such socially learned route preferences can be stably maintained over multiple transmission episodes, sometimes forming long-lived traditions. In humans, preferences for familiar routes or heavily used worn trails over unfamiliar ones have been described in various contexts. However, social learning of route preferences has not been experimentally demonstrated in humans. Here, we demonstrate that social learning and tradition influence route choice. We led adult male and female participants into a room by one of two routes. Participants followed the demonstrated route choices, and later remembered and preferred this choice even when determinably suboptimal (i.e. longer and not preferred by control participants) or when the choice was indicated as arbitrary (the demonstrator took one route to retrieve a poster that had ostensibly fallen). Moreover, route preferences were stably maintained over multiple transmission episodes. We suggest that simple social learning processes, often neglected in human and primate research, can result in long-lived route preferences that may influence a range of additional behaviour patterns.  相似文献   

3.
Predation shortly after release is the main source of mortality among hatchery‐reared fish used to restore or enhance endangered salmonid populations. We found, that hatchery‐reared salmonid young originating from endangered stocks have weak innate responses to their natural fish predators. The ability to avoid predation in fish can be improved through social learning from experienced to naïve individuals. Huge benefits would be achieved, if social learning processes could be successfully applied on a large scale to enhance viability of hatchery fish prior to release into the wild. By using model predators together with chemical cues from real predators we tested if social learning could be used to train hatchery‐reared salmonid young to avoid fish predators. As there are clear differences in social behaviour among the salmonid species, we first examined whether these differences affect the probability and efficiency of learning anti‐predator skills from trained demonstrators. We compared anti‐predator responses of observers (fish trained by using experienced fish as demonstrators) with those of control fish, which had been ‘trained’ by untrained naïve conspecifics. We also examined how the efficiency of social learning depends on the ratio of experienced to naïve fish involved in social transmission trials. The results of these experiments will give guidelines how social learning could be utilized in developing hatchery scale training protocols.  相似文献   

4.
Predation shortly after release is the main source of mortality among hatchery‐reared fish used to restore or enhance endangered salmonid populations. We found, that hatchery‐reared salmonid young originating from endangered stocks have weak innate responses to their natural fish predators. The ability to avoid predation in fish can be improved through social learning from experienced to naïve individuals. Huge benefits would be achieved, if social learning processes could be successfully applied on a large scale to enhance viability of hatchery fish prior to release into the wild. By using model predators together with chemical cues from real predators we tested if social learning could be used to train hatchery‐reared salmonid young to avoid fish predators. As there are clear differences in social behaviour among the salmonid species, we first examined whether these differences affect the probability and efficiency of learning anti‐predator skills from trained demonstrators. We compared anti‐predator responses of observers (fish trained by using experienced fish as demonstrators) with those of control fish, which had been 'trained' by untrained naïve conspecifics. We also examined how the efficiency of social learning depends on the ratio of experienced to naïve fish involved in social transmission trials. The results of these experiments will give guidelines how social learning could be utilized in developing hatchery scale training protocols.  相似文献   

5.
It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.  相似文献   

6.
Animals can use different sources of information when making decisions. Foraging animals often have access to both self-acquired and socially acquired information about prey. The fringe-lipped bat, Trachops cirrhosus, hunts frogs by approaching the calls that frogs produce to attract mates. We examined how the reliability of self-acquired prey cues affects social learning of novel prey cues. We trained bats to associate an artificial acoustic cue (mobile phone ringtone) with food rewards. Bats were assigned to treatments in which the trained cue was either an unreliable indicator of reward (rewarded 50% of the presentations) or a reliable indicator (rewarded 100% of the presentations), and they were exposed to a conspecific tutor foraging on a reliable (rewarded 100%) novel cue or to the novel cue with no tutor. Bats whose trained cue was unreliable and who had a tutor were significantly more likely to preferentially approach the novel cue when compared with bats whose trained cue was reliable, and to bats that had no tutor. Reliability of self-acquired prey cues therefore affects social learning of novel prey cues by frog-eating bats. Examining when animals use social information to learn about novel prey is key to understanding the social transmission of foraging innovations.  相似文献   

7.
Exploration and Social Play in Squirrel Monkeys (Saimiri)   总被引:1,自引:0,他引:1  
Squirrel monkeys (Saimiri) have been studied in a variety oflaboratory and natural environments. The frequency and formof exploration and social play vary considerably among differentenvironments. For example, in some environments, young monkeyshave been observed to play for 3 hr per day; but in one naturalenvironment, not a single bout of social play was seen duringa 10-week intensive study. Numerous intermediate levels of playactivity have been observed. Whereas many theories of play make it appear that play is essentialfor the development of sexual behavior, integrated roles introop structure, control of aggressive responses, social cohesion,etc., the data on squirrel monkeys indicate that social organizationand many normal social behaviors can develop without socialplay. However, the opportunity to play socially provides learningexperiences that increase the variety of each animal's behavioralrepertoire and the subtly of social cues to which it can respond.An adaptive modicum of competence can appear without socialplay, but the opportunity to play socially develops the competenceof animals beyond that modicum.  相似文献   

8.
In small mammals living in highly seasonal environments, observationalstudies show that female home range size and exclusiveness aresmaller in the nonbreeding winter season than in the breedingsummer season. This has led to the notion that nonbreeding femalesare more social and decrease territorial behavior during winter.However, because territoriality decreases with increasing populationdensity, and density normally increases during the breedingseason, the effects of density and season on social structureare usually confounded. To find out which of the 2 factors explainsspace use, we experimentally established 3 high-density and3 low-density root vole (Microtus oeconomus) populations inlate spring and monitored the populations into the nonbreedingwinter season. Population sizes were controlled throughout thebreeding period to minimize seasonal variation in density. Homerange sizes were larger in founder females than in field-bornfemales but did not change with season or density. Area exclusivelyused by individual females was lower in winter than summer,and founder females decreased exclusiveness as density increased.We argue that this seasonal pattern of space use might be causedby variation in benefits of group living, whereas founder femalesalso responded to density-dependent competition by reducingarea exclusively used.  相似文献   

9.
For animals that travel in groups, the directional choices of conspecifics are potentially a rich source of information for spatial learning. In this study, we investigate how the opportunity to follow a locally experienced demonstrator affects route learning by pigeons over repeated homing flights. This test of social influences on navigation takes advantage of the individually distinctive routes that pigeons establish when trained alone. We found that pigeons learn routes just as effectively while flying with a partner as control pigeons do while flying alone. However, rather than learning the exact route of the demonstrator, the paired routes shifted over repeated flights, which suggests that the birds with less local experience also took an active role in the navigational task. The efficiency of the original routes was a key factor in how far they shifted, with less efficient routes undergoing the greatest changes. In this context, inefficient routes are unlikely to be maintained through repeated rounds of social transmission, and instead more efficient routes are achieved because of the interaction between social learning and information pooling.  相似文献   

10.
Despite the well-established involvement of both sensory (“bottom-up”) and cognitive (“top-down”) processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported “far-transfer” to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills.  相似文献   

11.

Background

Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only.

Methodology/Principal Findings

Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer.

Conclusions/Significance

Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with the predictions of the Reverse Hierarchy Theory of perceptual learning and suggest constraints on the use of perceptual-learning regimens during second language acquisition.  相似文献   

12.
Social and genetic factors can influence smoking behavior. Using olfactogustatory stimuli as the sensory cue for intravenous nicotine self‐administration (SA), we previously showed that social learning of nicotine contingent odor cue prevented rats from developing conditioned taste aversion and allowed them to instead establish stable nicotine SA. We hypothesized that genetic factors influenced socially acquired nicotine SA. A heterogeneous stock (HS; N/NIH) of outbred rats was trained to self‐administer nicotine using the social learning protocol. Both male and female HS rats acquired nicotine SA, but females self‐administered more nicotine than males. After extinction, the context previously paired with nicotine SA, in conjunction with socially transmitted drug cues, was sufficient to cause reinstatement of drug‐seeking behavior. Wide variation in both nicotine intake and reinstatement was observed. Using multiple regression analysis, we found that measures of social interaction were significant predictors of nicotine intake and reinstatement of drug seeking in both males and females. Furthermore, measures of depression were predictors of nicotine intake in both males and females, anxiety was a predictor only in males and response to novelty was a predictor only in females. In males, measures of both depression and anxiety predicted nicotine reinstatement. Together, these data supported the ideas that genetically determined propensities for emotional and social phenotypes are significant determinants for nicotine‐reinforced behavior, and that the HS rat is a suitable tool for dissecting genetic mechanisms that may underlie the interaction between social behavior, anxiety, depression and smoking .  相似文献   

13.
Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition—that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, “moss-sponging” and “leaf-sponge re-use,” in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most “cultural” of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.  相似文献   

14.
Vastus lateralismuscle biopsies were obtained from endurance-trained (running ~50km/wk) and untrained (no regular physical exercise) men, and theexpression of an array of insulin-signaling intermediates wasdetermined. Expression of insulin receptor and insulin receptorsubstrate-1 and -2 was decreased 44% (P < 0.05), 57%(P < 0.001), and 77% (P < 0.001),respectively, in trained vs. untrained muscle. The downstream signalingtarget, Akt kinase, was not altered in trained subjects. Components ofthe mitogenic signaling cascade were also assessed. Extracellularsignal-regulated kinase 1/2 mitogen-activated protein kinase expressionwas 190% greater (P < 0.05), whereas p38 mitogen-activatedprotein kinase expression was 32% lower (P < 0.05), intrained vs. untrained muscle. GLUT-4 protein expression was twofoldhigher (P < 0.05), and the GLUT-4 vesicle-associatedprotein, the insulin-regulated aminopeptidase, was increased 4.7-fold(P < 0.05) in trained muscle. In conclusion, the expressionof proteins involved in signal transduction is altered in skeletalmuscle from well-trained athletes. Downregulation of early componentsof the insulin-signaling cascade may occur in response to increasedinsulin sensitivity associated with endurance training.

  相似文献   

15.
Alan Rogers (1988) presented a game theory model of the evolution of social learning, yielding the paradoxical conclusion that social learning does not increase the fitness of a population. We expand on this model, allowing for imperfections in individual and social learning as well as incorporating a "critical social learning" strategy that tries to solve an adaptive problem first by social learning, and then by individual learning if socially acquired behavior proves unsatisfactory. This strategy always proves superior to pure social learning and typically has higher fitness than pure individual learning, providing a solution to Rogers's paradox of nonadaptive culture. Critical social learning is an evolutionarily stable strategy (ESS) unless cultural transmission is highly unfaithful, the environment is highly variable, or social learning is much more costly than individual learning. We compare the model to empirical data on social learning and on spatial variation in primate cultures and list three requirements for adaptive culture.  相似文献   

16.
Recent studies demonstrate that social interactions can have a profound influence on Drosophila melanogaster behavior [1], [2], [3], [4], [5], [6], [7] and [8] and cuticular pheromone patterns [8], [9] and [10]. Olfactory memory performance has mostly been investigated in groups, and previous studies have reported that grouped flies do not interact with each other and behave in the same way as individual flies during short-term memory retrieval [11], [12] and [13]. However, the influence of social effects on the two known forms of Drosophila long-lasting associative memory, anesthesia-resistant memory (ARM) and long-term memory (LTM), has never been reported. We show here that ARM is displayed by individual flies but is socially facilitated; flies trained for ARM interact within a group to improve their conditioned performance. In contrast, testing shows LTM improvement in individual flies rather than in a group. We show that the social facilitation of ARM during group testing is independent of the social context of training and does not involve nonspecific aggregation. Furthermore, we demonstrate that social interactions facilitate ARM retrieval. We also show that social interactions necessary for this facilitation are specifically generated by trained flies: when single flies trained for ARM are mixed with groups of naive flies, they display poor retrieval, whereas mixing with groups trained either for ARM or LTM enhances performance.  相似文献   

17.
This study compared twitch contractile properties of plantar flexor muscles among three groups of 12 subjects each: endurance and power trained athletes and untrained subjects. The posterior tibial nerve was stimulated by supramaximal square wave pulses of 1-ms duration. Power trained athletes had higher twitch maximal force, maximal rates of force development and relaxation and also maximal voluntary contraction (MVC) force. The trained subjects had a smaller twitch maximal force: MVC force ratio and shorter twitch contraction and half-relaxation times than the untrained subjects with no significant differences between the two groups. Thus, the short time for evoked twitches in the athletes compared to the untrained subjects would seem unrelated to the type of training. It is concluded that power training induces a more evident increase of muscle force-generating capacity and speed of contraction and relaxation than endurance training. Accepted: 24 April 1999  相似文献   

18.
The honeybee has a strong learning and memory ability, and is recognized as the best model organism for studying the neurobiological basis of learning and memory. In this study, we analyzed the gene expression difference following proboscis extension response-based olfactory learning in the A. mellifera using a tag-based digital gene expression (DGE) method. We obtained about 5.71 and 5.65 million clean tags from the trained group and untrained group, respectively. A total of 259 differentially expressed genes were detected between these two samples, with 30 genes up-regulated and 229 genes down-regulated in trained group compared to the untrained group. These results suggest that bees tend to actively suppress some genes instead of activating previously silent genes after olfactory learning. Our DGE data provide comprehensive gene expression information for olfactory learning, which will facilitate our understanding of the molecular mechanism of honey bee learning and memory.  相似文献   

19.
This paper contains an investigation of the interaction between protocultural processes in animals, generated by social learning and the processes of biological evolution. It addresses the question of whether mechanisms of social learning and transmission can play an evolutionary role by allowing learned patterns of behavior to spread through animal populations, in the process changing the selection pressures acting on them. Simple models of social transmission and gene-meme coevolution are developed to investigate three hypotheses related to the role of social transmission in animal evolution. Simulations using the models suggest that social transmission would have to be particularly stable and be associated with estremely strong selection, if it were to result in the fixation of alleles. A more likely hypothesis is that social transmission might allow animals to respond adaptively to novelty in their environment, rendering a genetic response unnecessary, or only partially necessary. Socially transmitted traits appear to spread sufficiently rapidly, relative to changes in gene frequency, that it would be quite feasible for a socially transmitted response to an environmental change to occur, preempting a genetic response. Social transmission is probably more likely to slow down evolutionary rates than to speed them up through changing selection pressures. However, cultural and evolutionary processes are likely to interact in complex ways, and a “behavioral drive” effect cannot be ruled out.  相似文献   

20.
The results of two experiments showed that observation of a trained conspecific Atlantic salmon Salmo salar significantly increased the rate at which naïve hatchery-reared fish accepted novel, live prey items, whereas the presence of an untrained conspecific actually decreased learning rates due to social inhibition. Pre-release training involving exposure of hatchery-reared fish to live prey items in the presence of pre-trained demonstrators would result in a significant enhancement in their foraging success on release and help prevent starvation, which is thought to be one of the principal causes of post-release mortality in hatchery-reared fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号