首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD(P)-dependent glucose-1-dehydrogenase (GDH) has been used for glucose determination and NAD(P)H production in bioreactors. Thermostable glucose dehydrogenase exhibits potential advantage for its application in biological processes. The function of the putative GDH gene (ST1704, 360-encoding amino acids) annotated from the total genome analysis of a thermoacidophilic archeaon Sulfolobus tokodaii strain 7 was investigated to develop more effective application of GDH. The gene encoding S. tokodaii GDH was cloned and the activity was expressed in Escherichia coli, which did not originally possess GDH. This shows that the gene (ST1704) codes the sequence of GDH. The enzyme was effectively purified from the recombinant E. coli with three steps containing a heat treatment and two successive chromatographies. The native enzyme (molecular mass: 160 kDa) is composed of a tetrameric structure with a type of subunit (41 kDa). The enzyme utilized both NAD and NADP as the coenzyme. The maximum activity for glucose oxidation in the presence of NAD was observed around pH 9 and 75 °C in the presence of 20 mM Mg2+. The enzyme showed broad substrate specificity: several monosaccarides such as 6-deoxy- -glucose, 2-amino-2-deoxy- -glucose and -xylose were oxidized as well as -glucose as the electron donor. -Mannose, -ribose and glucose-6-phosphate were inert as the donor. The enzyme showed high thermostability: remarkable loss of activity was not observed up to 80 °C by incubation for 15 min at pH 8.0. In addition, the enzyme was stable in a wide pH range of 5.0–10.5 by incubation at 37 °C. From the steady-state kinetic analysis, the enzyme reaction of -glucose oxidation proceeds via a sequential ordered Bi–Bi mechanism: NAD and -glucose bind to the enzyme in this order and then -glucono-1,5-lactone and NADH are released from the enzyme in this order. The amino acid sequence alignment showed that S. tokodaii GDH exhibited high homology with the Sulfolobus solfataricus hypothetical glucose dehydrogenase and a Thermoplasma acidophilum one.  相似文献   

2.
To increase the NAD(P)H-dependent xylitol production in recombinant Saccharomyces cerevisiae harboring the xylose reductase gene from Pichia stipitis, the activity of glucose 6-phosphate dehydrogenase (G6PDH) encoded by the ZWF1 gene was amplified to increase the metabolic flux toward the pentose phosphate pathway and NADPH regeneration. Compared with the control strain, the specific G6PDH activity was enhanced approximately 6.0-fold by overexpression of the ZWF1 gene. Amplification in the G6PDH activity clearly improved the NAD(P)H-dependent xylitol production in the recombinant S. cerevisiae strain. With the aid of an elevated G6PDH level, maximum xylitol concentration of 86 g/l was achieved with productivity of 2.0 g/l h in the glucose-limited fed-batch cultivation, corresponding to 25% improvement in volumetric xylitol productivity compared with the recombinant S. cerevisiae strain containing the xylose reductase gene only.  相似文献   

3.
Termitomyces clypeatus produces cellobiose dehydrogenase (CDHtc) in cellulose medium with the highest yield (55.88 U mL−1) among all the reported fungal species. The enzyme has been isolated and purified from the culture filtrate.

CDHtc was found to be a very thermolabile enzyme with the temperature optimum at 30 °C, while it exhibited a wide range of pH stability from pH 2.0 to 8.0. Lactose was efficiently converted to lactobionic acid in presence of the enzyme. Addition of glucose in the cellulose medium on the first day of growth induced a lag period in enzyme production but ultimately facilitated earlier CDHtc production and the yield was also comparable to that achieved in the cellulose medium.  相似文献   


4.
A lipase gene lipA and its chaperone gene lipB were cloned from Burkholderia cepacia strain G63. The lipA was composed of 1092 bp, encoding 363 amino acid residues, and the lipB composed of 1035 bp, corresponding to 344 amino acid residues. The significant amino acid similarity with Pseudomonas cepacia lipase revealed that this enzyme could be classified into the lipolytic subfamily I.2. The lipA and lipB genes were cloned into pBBR1Tp vector and conjugated into B. cepacia strains G63 with the help of pRK2013. The recombinant strain was fermented in 10 l bioreactor and the lipase was purified by a combination of ammonium sulfate fractionation, DEAE ion-exchange chromatography and gel filtration. The purified lipase kept stable at a temperature range of 40–70 °C. After incubated at 70 °C, the optimal temperature of this enzyme, for 10 h it remained 86.1% of its activity. The enzyme was also highly tolerant to a series of organic solution. Incubated in 50% methanol solution up to 48 h, the enzyme still kept 98.3% of its activity. The transesterification activity of soybean oil to fatty acid methyl esters (FAMEs) reached 87.8% after 72 h, indicating that it is a potential biocatalyzer for biodiesel production.  相似文献   

5.
A recombinant yeast Pichia pastoris carrying the gene encoding epoxide hydrolase (EH) of Rhodotorula glutinis was constructed and used for producing (S)-styrene oxide by enantioselective hydrolysis of racemic mixtures of styrene oxides. The EH gene was obtained by PCR amplification of cDNA of R. glutinis and integrated into the chromosomal DNA of P. pastoris to express EH under the control of AOX promoter. The recombinant yeast has a high hydrolytic activity toward (R)-styrene oxide as 358 nmol min−1 (mg cell)−1, which is about 10-fold higher than that of wild type R. glutinis. When kinetic resolution was conducted by the recombinant yeast at a high initial epoxides concentration of 526 mM that constitutes an epoxide–water two-liquid phase, chiral (S)-styrene oxide with an enantiomeric excess (e.e.) higher than 98% was obtained as 36% yield (theoretical, 50%) at 16 h.  相似文献   

6.
The therapeutic enzyme asparaginase, which is used for the treatment of acute lymphoblastic leukaemia, is industrially produced by the bacteria Escherichia coli or Erwinia crysanthemi. In spite of its effectiveness as a therapeutic agent, the drug causes severe immunological reactions. As asparaginase is also produced by the yeast Saccharomyces cerevisiae, this microorganism could be considered for the production of the enzyme, providing an alternative antitumoral agent. In this study the ASP3 gene, that codes for the periplasmic, nitrogen regulated, asparaginase II from S. cerevisiae, was cloned and expressed in the methylotrophic yeast Pichia pastoris, under the control of the AOX1 gene promoter. Similarly to S. cerevisiae the heterologous enzyme was addressed to the P. pastoris cell periplasmic space. Enzyme yield per dry cell mass reached 800 U g−1, which was seven fold higher than that obtained using a nitrogen de-repressed ure2 dal80 S. cerevisiae strain. High cell density cultures performed with P. pastoris harbouring the ASP3 gene using a 2 l instrumented bioreactor, where biomass concentration reached 107 g l−1, resulted in a dramatic increase in volumetric yield (85,600 U l−1) and global volumetric productivity (1083 U l−1 h−1).  相似文献   

7.
A bacterial flavin-containing monooxygenase (FMO) gene was cloned from Methylophaga aminisulfidivorans MPT, and a plasmid pBlue 2.0 was constructed to express the bacterial fmo gene in E. coli. To increase the production of bio-indigo, upstream sequence size of fmo gene was optimized and response surface methodology was used. The pBlue 1.7 plasmid (1686 bp) was prepared by the deletion of upstream sequence of pBlue 2.0. The recombinant E. coli harboring the pBlue 1.7 plasmid produced 662 mg l−1 of bio-indigo in tryptophan medium after 24 h of cultivation in flask. The production of bio-indigo was optimized using a response surface methodology with a 2n central composite design. The optimal combination of media constituents for the maximum production of bio-indigo was determined as tryptophan 2.4 g l−1, yeast extract 4.5 g l−1 and sodium chloride 11.4 g l−1. In addition, the optimum culture temperature and pH were 30 °C and pH 7.0, respectively. Under the optimized conditions mentioned above, the recombinant E. coli harboring pBlue 1.7 plasmid produced 920 mg of bio-indigo per liter in optimum tryptophan medium after 24 h of cultivation in fermentor. The combination of truncated insert sizes and culture optimization resulted in a 575% increase in the production of bio-indigo.  相似文献   

8.
Ubiquinone (UQ), a lipid-soluble component, acts as a mobile component of the respiratory chain by playing an essential role in the electron transport system in many organisms, and has been widely used in pharmaceuticals due to its antioxidant property. The biosynthesis of UQ involves 10 sequential reactions brought about by various enzymes. In this study, dps gene, which encodes decaprenyl diphosphate synthase, involved in ubiquinone biosynthesis from Agrobacterium tumefaciens, and coq2 gene of Saccharomyces cerevisiae, ppt1 gene of Schizosaccahromyces pombe and ubiA gene of Escherichia coli, all of them encoding 4-hydroxybenzoate:polyprenyl diphosphate (4-HB:PPP) transferase, were reconfigured into an operon under the control of a single promoter to yield various plasmids including pBIV-dps, pBIV-dpsq, pBIV-dpsp and pBIV-dpsca. The recombinant A. tumefaciens containing dps-ubiC-ubiA gene showed the highest level ubiquinone production than that of the other recombinants and the nonrecombinant bacterium. In an aerobic fed-batch fermentation, A. tumefaciens containing the pBIV-dpsca plasmid produced 25.2 mg of ubiquinone-10 per liter which was 1.68 times higher than that of nonrecombinant type. While in microaerobic fed-batch fermentation, recombinant cell pBIV-dpsca produced 30.8 mg L−1 of ubiquinone-10. Compared to the original A. tumefaciens, the ubiquinone-10 yield and productivities of the recombinant bacterium pBIV-dpsca increased 88.9% and 77.7%, respectively, under microaerobic fed-batch conditions.  相似文献   

9.
纤维二糖可有效诱导丝状真菌产纤维素酶,前期研究表明匍枝根霉Rhizopus stolonifer TP-02具有纤维二糖合成酶(CBS),可以尿苷二磷酸葡萄糖(UDPG)为糖基供体合成纤维二糖,从而开启纤维素酶的自诱导合成途径。为研究R. stolonifer中纤维二糖的胞内合成途径,通过重叠PCR在GDP-葡糖焦磷酸化酶基因ggp中引入硫胺吡啶抗性基因ptrA,分别转化原菌TP-02和△ugp突变株,构建△ggp和△ugp/ggp突变株。利用液质联用(LC-MS)检测突变株的胞内糖组分,发现ggp的缺失对胞内纤维二糖合成的影响较弱,但同时缺失ugp则将直接导致二糖合成受阻。RT-qPCR结果显示△ggp突变株中纤维素酶基因转录水平较原株TP-02下调20%左右,而△ugp/ggp突变株中被测基因的转录水平则出现了高达80%左右的下调。同时对突变株纤维素酶表达水平进行研究,发现△ugp/ggp突变株中几乎检测不到纤维素酶活力。结果显示,UDPG为R. stolonifer胞内合成纤维二糖的主要糖基供体,而GDPG可能是UDPG的替代物,在UDPG不足时维持胞内二糖合成。此外,利用生物信息学方法对CBS结构功能深入分析,经丙氨酸扫描确定其合成纤维二糖的关键作用残基为Asp210和Asp300,为后续进一步研究及理性改造提供方向和理论依据。  相似文献   

10.
A genetically engineered Pichia pastoris FPHY34 strain containing a 1.3 kb thermostable phytase gene (fphy) evolved by DNA shuffling was constructed and screened. Expression and purification conditions for the recombinant phytase were developed in this study. The effect of Pi on recombinant phytase expression and cell growth of P. pastoris FPHY34 was tested in shake flask culture. Optimization of carbon sources for cell growth and methanol feeding strategies for phytase expression in P. pastoris FPHY34 was carried out in a 50-L fermenter by fed-batch fermentation. The purification of phytase was investigated by micro-filtration and ultra-filtration followed by desalting, ion-exchange chromatography, and gel filtration in the ÄKTA system. It showed that the optimum inorganic phosphorus is 13.6 g L−1 and that glucose can be used as a substrate for P. pastoris cell growth instead of glycerol; the biomass yield of glycerol (YX/S) is slightly higher than that of glucose. Different profiles of lag phase and respiratory quotient (RQ) displayed between glucose and glycerol as the sole carbon source. The maximum phytase activity in per millimetre reached 2508 U mL−1 at a methanol feed rate of 3.0 mL L−1 h−1 after 80 h period of induction. A purification factor of 41.1 with a 32% yield was achieved after chromatographic purification. The specific enzyme activity was 80 U mg−1 and 3281 U mg−1 in that supernatant fraction and after gel filtration purification, respectively. The strain P. pastoris FPHY34 showed a promising application in phytase industrial production.  相似文献   

11.
The methylotrophic yeast Pichia pastoris is an attractive heterologous protein expression host, mainly for genes from higher eukaryotes. However, no successful examples for the expression of bacterial gene encoding pectate lyase in P. pastoris have been reported. The present study reports for the first time the cloning and functional expression of the bacterial Bacillus subtilis gene encoding alkaline pectate lyase in P. pastoris. A molecular weight of 43,644 Da was calculated from the deduced amino acid sequence. A pectate lyase activity as high as 100 U/ml was attained in the fermentation broth of P. pastoris GS 115, which was about 10 times higher than when the gene is expressed in Escherichia coli. The recombinant pectate lyase was purified to homogeneity and maximal activity of the enzyme was observed at 65 °C, and pH 9.4. The recombinant enzyme showed a wider pH and thermal stability spectrum than the purified pectate lyase from B. subtilis WSHB04-02. Pectate lyase activity slightly increased in the presence of Mg2+ (ion) but decreased in the presence of other metal ions. Analysis of polygalacturonic acid degradation products by electrospray ionization-mass spectrometry revealed that the degradation products were unsaturated trigalacturonic acid and unsaturated bigalacturonic acid, which confirms that the enzyme catalyzes a trans-elimination reaction.  相似文献   

12.
Bacillus species carrying subC gene encoding serine alkaline protease (SAP) enzyme were developed in order to increase the yield and selectivity in the bioprocess for SAP production. For this aim, subC gene was cloned into pHV1431 Escherichia coliBacillus shuttle vector, and transferred into nine host Bacillus species, i.e. B. alvei, B. amyloliquefaciens, B. badius, B. cereus, B. coagulans, B. firmus, B. licheniformis, B. sphaericus and B. subtilis. The influence of the host Bacillus species on SAP production on a defined medium with glucose was investigated in bioreactor systems. For each of the recombinant (r-) Bacillus species, effects of initial glucose concentration on cell growth and SAP production were investigated; and, physiological differences and similarities between the wild-type and r-Bacillus species are discussed. The highest biomass concentration was obtained with r-B. coagulans as 3.8 kg m−3 at the initial glucose concentration of CGo=20 kg m−3 and the highest volumetric SAP activity was obtained with r-B. amyloliquefaciens as 1650 U cm−3 at CGo=20 kg m−3. Overall SAP activity per amount of substrate consumed was the highest for r-B. sphaericus (137 U g−1 cm−3) and r-B. licheniformis (130 U g−1 cm−3). Among the r-Bacillus species the highest activity increase compared to the wild types was obtained with r-B. sphaericus while the lowest increase was obtained with r-B. amyloliquefaciens and r-B. licheniformis due to high SAP production potential of the wild-type strains. During storage of the host microorganisms, r-B. alvei and r-B. amyloliquefaciens were not able to bear the recombinant plasmid, probably, due to the restriction enzymes synthesized. Due to the highest stable volumetric activities r-B. licheniformis (950 U cm−3) and r-B. sphaericus (820 U cm−3) appear to be the favorable hosts for the production of SAP. All the r-Bacillus species excreted organic acids oxaloacetic and succinic acids, but, none excreted the amino acid valine. The variations in by-product distributions with each recombinant organism were also discussed.  相似文献   

13.
The structural gene (leudh) coding for leucine dehydrogenase from Bacillus sphaericus IFO 3525 was cloned into Escherichia coli cells and sequenced. The open reading frame coded for a protein of 39.8 kDa. The deduced amino acid sequence of the leucine dehydrogenase from B. sphaericus showed 76–79% identity with those of leucine dehydrogenases from other sources. About 16% of the amino acid residues of the deduced amino acid sequence were different from the sequence obtained by X-ray analysis of the B. sphaericus enzyme. The recombinant enzyme was purified to homogeneity with a 79% yield. The enzyme was a homooctamer (340 kDa) and showed the activity of 71.7 μmol·min−1·mg−1) of protein. The mutant enzymes, in which more than six amino acid residues were deleted from the C-terminal of the enzyme, showed no activity. The mutant enzyme with deletion of four amino acid residues from the C-terminal of the enzyme was a dimer and showed 4.5% of the activity of the native enzyme. The dimeric enzyme was more unstable than the native enzyme, and the Km values for -leucine and NAD+ increased. These results suggest that the Asn-Ile-Leu-Asn residues of the C-terminal region of the enzyme play an important role in the subunit interaction of the enzyme.  相似文献   

14.
Xylitol is a well-known sugar substitute with low-calorie and anti-cariogenic characteristics. An effort of biological production of xylitol from xylose was made in repeated fed-batch and cell-recycle fermentations of recombinant Saccharomyces cerevisiae BJ3505/δXR harboring the xylose reductase gene from Pichia stipitis. Batch fermentation with 20 g/l xylose and 18 g/l glucose resulted in 9.52 g/l dry cell mass, 20.1 g/l xylitol concentration and approximately 100% conversion yield. Repeated fed-batch operation to remove 10% of culture broth and to supplement an equal volume of 200 g/l xylose was designed to improve xylitol production. In spite of a sudden drop of cell concentration, an increase in dry cell mass led to high accumulation of xylitol at 48.7 g/l. To overcome loss of xylitol-producing biocatalysts in repeated fed-batch fermentation, cell-recycle equipment of hollow fiber membrane was implemented into a xylitol production system. Cell-recycle operation maintained concentration of the recombinant cells high inside a bioreactor. Final dry cell mass of 22.0 g/l, 116 g/l xylitol concentration, 2.34 g/l h overall xylitol productivity were obtained in cell-recycle fermentation supplemented with xylose and yeast extract solution, which were equivalent to 2.3-, 5.8- and 3.8-fold increases compared with the corresponding values of batch-type xylitol production parameters.  相似文献   

15.
We have developed the economical and convenient biocatalytic process for the preparation of (R)-1,3-butanediol (BDO) by stereo-specific microbial oxido-reduction on an industrial scale. (R)-1,3-BDO is an important chiral synthon for the synthesis of various optically active compounds such as azetidinone derivatives lead to penem and carbapenem antibiotics.

We studied on two approaches to obtain (R)-1,3-BDO. The first approach was based on enzyme-catalyzed asymmetric reduction of 4-hydroxy-2-butanone; the second approach was based on enantio-selective oxidation of the undesired (S)-1,3-BDO in the racemate. As a result of screening for yeasts, fungi and bacteria, the enzymatic resolution of racemic 1,3-BDO by the Candida parapsilosis IFO 1396, which showed differential rates of oxidation for two enantiomers, was found to be the most practical process to produce (R)-1,3-BDO with high enantiomeric excess and yield.

We characterized the (S)-1,3-BDO dehydrogenase purified from a cell-free extract of C. parapsilosis. This enzyme was found to be a novel secondary alcohol dehydrogenase (CpSADH). We have attempted to clone and characterize the gene encoding CpSADH and express it in Escherichia coli. The CpSADH activity of a recombinant E. coli strain was more than two times higher than that of C. parapsilosis. The production yield of (R)-1,3-BDO from the racemate increased by using the recombinant E. coli strain. Interestingly, we found that the recombinant E. coli strain catalyzed the reduction of ethyl 4-chloro-3-oxo-butanoate to ethyl (R)-4-chloro-3-hyroxy-butanoate with high enantiomeric excess.  相似文献   


16.
A 1.7 kb fragment of lat was obtained from Streptomyces clavuligerus NRRL 3585, and recombinant plasmid pKC1139-lat, which was used to disrupt the lat gene was constructed. pKC1139-lat was introduced into S. clavuligerus by bi-parental conjugation from Escherichia coli ET12567 to S. clavuligerus. The apramcin-resistant transformants were obtained and through homogeneous single-crossover between recombinant plasmid pKC1139-lat and the S. clavuligerus chromosome lat disrupted mutant strains were obtained. The genome of S. clavuligerus NRRL 3585 and the lat disrupted mutants were analyzed by PCR technique, the bioactivity of cephamycin C in the two kinds of strains were also tested. Both results proved that lat was disrupted by the insertion of pKC1139 in the lat disrupted mutants. And the production of clavulanic acid of these two kinds of strains were analyzed by HPLC with different incubation time interval (96 and 120 h), and the yield in the lat mutants was approximately 2.6 fold higher at their highest production point.  相似文献   

17.
The glgP gene encoding α-glucan phosphorylase (α-GP) from the thermopile Thermus caldophilus GK24 has been identified, cloned, and overexpressed in Escherichia coli and used to synthesize d-glucose-1-phospate (G1P) from an inexpensive starch. The enzyme, purified 6.5-fold, was isolated in 31% yield from the transformed E. coli, and gave a single band. The purified enzyme may exist as a homohexamer with an apparent molecular mass of a 550 kDa molecule, consisting of 90 kDa per subunit. The optimal pH and temperature were 7.0 and 70 °C in the α-GP reaction with starch producing G1P. Soluble starch (amylopectin, amylose) turned out to be a better substrate giving a higher yield of G1P than α-1,6-branched α-1,4-glucans (glycogen, potato starch, etc.). As a result, G1P was obtained in a good yield (47%, w/w) from the reaction containing 5% (w/v) soluble starch in 0.7 M potassium phosphate at pH 7.0. T. caldophilus α-GP shows a high tolerance (up to 0.7 M) of potassium phosphate and plays a critical role in shifting the reaction equilibrium in favor of G1P synthesis. The G1P product can be purified simply by ethanol precipitation, after removing the unreacted starch and inorganic phosphate by activated charcoal and magnesium acetate precipitation. It is concluded that T. caldophilus α-GP readily utilized in large scale synthesis of G1P.  相似文献   

18.
Badal C. Saha   《Process Biochemistry》2004,39(12):1871-1876
A newly isolated strain of the fungus, Mucor circinelloides (NRRL 26519), when grown on lactose, cellobiose, or Sigmacell 50 produces complete cellulase (endoglucanase, cellobiohydrolase, and β-glucosidase) system. The extracellular endoglucanase (EG) was purified to homogeneity from the culture supernatant by ethanol precipitation (75%, v/v), CM Bio-Gel A column chromatography, and Bio-Gel A-0.5 m gel filtration. The purified EG (specific activity 43.33 U/mg protein) was a monomeric protein with a molecular weight of 27 000. The optimum temperature and pH for the action of the enzyme were at 55 °C and 4.0–6.0, respectively. The purified enzyme was fully stable at pH 4.0–7.0 and temperature up to 60 °C. It hydrolysed carboxymethyl cellulose and insoluble cellulose substrates (Avicel, Solka-floc, and Sigmacell 50) to soluble cellodextrins. No glucose, cellobiose, and short chain cellooligosaccarides were formed from these substrates. The purified EG could not degrade oat spelt xylan and larch wood xylan. It bound to Avicell, Solka-floc, and Sigmacell 50 at pH 5.0 and the bound enzyme was released by changing the pH to 8.0. The enzyme activity was enhanced by 27±5 and 44±14% by the addition of 5 mM MgCl2 and 0.5 mM CoCl2, respectively, to the reaction mixture. Comparative properties of this enzyme with other fungal EGs are presented.  相似文献   

19.
Spore production of Beauveria bassiana and Metarhizium anisopliae was studied in a novel whey-based culture media. Spore yield and viability were determined for two B. bassiana (GHA-726 and CA-603) and two M. anisopliae (CA-1 and IMI 330189) isolates following production in three whey-based systems: solid, liquid, and a diphasic production system. Our study indicated that whey permeate can be used effectively for production of spores of entomopathogenic fungi. However, spore yield and viability were significantly influenced by fungal isolate, whey concentration, and the type of production process used. Under the conditions defined in the present study, spore yields ranging from 1.3 × 109–10 × 1011 spores l−1 of whey medium could be obtained depending on the strain and production process used. Our study revealed that spores produced by all strains in whey-based solid and liquid media showed between 73–99 % viability; germination rates were comparable with those obtained using the standard SDA medium. In the two-stage production process, the viabilities of conidia produced by GHA-726, CA-603, and CA-1 were 35–86, 32–98, and 6–29 %, respectively; viability was correlated with whey concentration and isolates. Whey permeate can be used as a growth substrate for mass production of biocontrol fungi. We hypothesize that spore yield and viability could be improved by careful selection of whey content in the medium, incorporation of critical additives and optimization of culture conditions.  相似文献   

20.
The gene encoding an NADPH-dependent menadione reductase of Candida macedoniensis AKU4588 was cloned and sequenced. A 1035 bp nucleotide fragment (mer) was confirmed to be the gene encoding the enzyme based on the agreement of N-terminal and internal amino acid sequences. The mer encodes 345 amino acid residues, and the deduced amino acid sequence shows high similarity with those of hypothetical proteins from Debaryomyces, Candida and Saccharomyces, and ketoreductase from Zygosaccharomyces. It includes NADPH-binding motif GXXGXXA in its N-terminal region. These findings suggest that the enzyme belongs to the dihydroflavonol-4-reductase superfamily. An expression vector, pETMER, which contains the full length of the mer, was constructed. Escherichia coli cells harboring pETMER exhibits a 127-fold increase in specific menadione-reducing activity under the control of T7 promoter as compared with that of C. macedoniensis.

The asymmetric reduction of 4-chloro-3-oxobutanoate ethyl ester to (S)-4-chloro-3-hydroxybutanoate ethyl ester (CHBE) with E. coli cells, in which both the mer and the glucose dehydrogenase gene were co-expressed, as a catalyst was investigated. The (S)-CHBE formed amounted to 1680 mM (281 mg/ml), the molar yield being 92.2%. The optical purity of the product was 91.6% enantiomeric excess for the (S)-isomer. The calculated turnover number of NADP+ added to CHBE formed was 12,900 mol/mol.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号