首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Several studies have demonstrated that connexin 43 (Cx43) mediates signals important for osteoblast function and osteogenesis. The role of gap junctional communication in bone resorption is less clear. We have investigated the expression of Cx43 mRNA in osteoclasts and bone resorption cultures and furthermore, the functional importance of gap junctional communication in bone resorption. RT-PCR analysis demonstrated Cx43 mRNA expression in mouse bone marrow cultures and in osteoclasts microisolated from the marrow cultures. Cx43 mRNA was also expressed in bone resorption cultures with osteoclasts and osteoblasts/stromal cells incubated for 48h on devitalized bone slices. An up-regulation of Cx43 mRNA was detected in parathyroid (PTH)-stimulated (0.1 nM) bone resorption. Two inhibitors of gap junction communication, 18alpha-glycyrrhetinic acid (30 microM) and oleamide (100 microM), significantly inhibited PTH- and 1,25-(OH)(2)D(3)-stimulated osteoclastic pit formation. In conclusion, our data indicate a functional role for gap junction communication in bone resorption.  相似文献   

4.
The importance of connexins is implicated in proliferation and differentiation of cells. In skeletal muscle cells, connexin43 (Cx43) has been identified as the major connexin, and gap-junctional communication mediated by connexins has been shown to be required for their myogenic differentiation. In addition, inhibition of connexin function has been shown to induce transdifferentiation of osteoblasts to an adipocytic phenotype. In the present study, we examined whether the inhibition of connexin function could induce phenotypic changes in skeletal muscle cells. Treatment of skeletal muscle cells with an inhibitor of connexin function, 18alpha-glycyrrhetinic acid (AGRA), resulted in a reduction in the number of MyoD-positive cells and complete inhibition of myotube formation, concomitantly with an increase in the number of C/EBPalpha-positive cells. AGRA-treated cells cultured in adipogenic differentiation medium could give rise to mature adipocytes that express both PPARgamma and C/EBPalpha. The presence of AGRA during adipogenic differentiation did not inhibit adipogenesis of skeletal muscle cells. AGRA treatment did not affect Cx43 expression in skeletal muscle cells but reduced its phosphorylation. These results indicate that inhibition of connexin function induces phenotypic changes of skeletal muscle cells to enter adipogenesis.  相似文献   

5.
Brefeldin A and ilimaquinone are compounds known to affect Golgi structure and function. In particular, the transport of proteins is blocked either at the level of exit from endoplasmic reticulum (brefeldin) or at cis-Golgi (ilimaquinone). Brefeldin caused a slow decrease in gap-junctional communication and a slow loss of all phosphorylated forms of connexin43 in hamster and rat fibroblasts, while ilimaquinone caused an abrupt decrease in gap-junctional communication and rapid loss of only the slowest migrating phosphorylated connexin43 band (P2). Ilimaquinone caused these effects prior to any significant Golgi fragmentation, especially in hamster fibroblasts. Concurrently, ilimaquinone minimally affected protein secretion, while brefeldin caused an instantaneous decrease. These results show that ilimaquinone inhibits gap-junctional communication in connexin43-expressing cells by a mechanism not dependent on Golgi fragmentation or block in protein transport.  相似文献   

6.
A major form of cell-cell communication is mediated by gap junctions, aggregations of intercellular channels composed of connexins (Cxs), which are responsible for exchange of low molecular weight (<1200 Da) cytosolic materials. These channels are a growing family of related proteins. This study was designed to determine the ontogeny of connexin 43 (Cx43) during early stages of follicular development in prepubertal porcine ovaries. A partial-length (412 base) cDNA clone was obtained from mature porcine ovaries and determined to have 98% identity with published porcine Cx43. Northern blot analysis demonstrated a 4.3-kb mRNA in total RNA isolated from prepubertal and adult porcine ovaries. In-situ hybridization revealed that Cx43 mRNA was detectable in granulosa cells of primary follicles but undetectable in dormant primordial follicles. The intensity of the signal increased with follicular growth and was greatest in the large antral follicles. Immunohistochemical evaluation indicated that Cx43 protein expression correlated with the presence of Cx43 mRNA. These results indicate that substantial amounts of Cx43 are first expressed in granulosa cells following activation of follicular development and that this expression increases throughout follicular growth and maturation. These findings suggest an association between the enhancement of intercellular gap-junctional communication and onset of follicular growth.  相似文献   

7.
8.
In the present study, we have analyzed the direct effects of cytokines, which mediate the acute-phase response in liver, on connexin expression and gap-junctional intercellular communication in immortalized MHSV12 mouse hepatocytes. When these cells were stimulated for 24 h with interleukin 1 and interleukin 6, the amount of connexin26 (Cx26) mRNA increased together with β?fibrinogen mRNA, as expected for this positive acute-phase gene. In contrast, connexin32 (Cx32) mRNA expression was not affected under these conditions. Indirect immunfluorescence revealed a drastic decrease in Cx32 signals, whereas slightly more Cx26 signals were found. Stronger stimulation with interleukin 1 and tumor necrosis factor α gave a dose-dependent increase in steady state levels of Cx26 and β-fibrinogen mRNA, but no further change in Cx32 mRNA level was seen. However, when Cx32 protein was analyzed on immunoblots, we found a 5-fold decrease in expression even at low cytokine doses that did not affect Cx32 mRNA expression. Under these conditions, cell to cell transfer of Lucifer yellow, microinjected into immortalized hepatocytes, was decreased by 70%, suggesting that intercellular communication through Cx32 channels was partially inhibited earlier than other genetic alterations characteristic of the acute-phase response. Thus, the major hepatic gap junction protein was largely downregulated at the beginning of the experimental inflammatory reaction, but about 30% of gap-junctional intercellular communication was maintained. This suggests that, during the acute-phase response, the second hepatic Cx26 protein may compensate in part for the downregulation of the Cx32 protein.  相似文献   

9.
10.
Transition of arterial smooth muscle cells from the contractile to the synthetic phenotype in vivo is associated with up-regulation of the gap-junctional protein, connexin43 (Cx43). However, the role of increased Cx43 expression in relation to the characteristic features of the synthetic phenotype – altered growth, differentiation or synthetic activity – has not previously been defined. In the present study, growth was induced in cultured human aortic smooth muscle cells by treatment with thrombin and with PDGF-bb; growth arrest was induced by serum deprivation and contact inhibition. Alterations in Cx43 expression and gap-junctional communication were analyzed in relation to expression of markers for contractile differentiation and extracellular matrix synthesis. Treatment with thrombin, but not PDGF-bb, led to up-regulation of Cx43 gap junctions, increased synthetic activity yet also enhanced contractile differentiation. Inhibition of growth by deprivation of serum growth factors in sub-confluent cultures had no effect on Cx43 expression or contractile differentiation. Growth arrest by contact inhibition led to progressive reduction in Cx43 expression, in parallel with progressive increase in expression of differentiation markers but no alteration in synthetic activity. Of a range of stimuli examined, only thrombin had the combined effect of increasing Cx43 gap-junction communication, growth and synthesis, yet it also enhanced contractile differentiation. Down-regulation of Cx43 and improved contractile differentiation occurred only when growth arrest was induced through the contact–inhibition pathway, though, in this instance, synthesis remained undiminished. We conclude that Cx43 levels, though having common correlates, are not exclusively linked to the cell phenotype or the state of growth.  相似文献   

11.
A typical feature of astrocytes is their high degree of intercellular communication through gap junction channels. Using different models of astrocyte cultures and astrocyte/neuron cocultures, we have demonstrated that neurons upregulate gap-junctional communication and the expression of connexin 43 (Cx43) in astrocytes. The propagation of intercellular calcium waves triggered in astrocytes by mechanical stimulation was also increased in cocultures. This facilitation depends on the age and number of neurons, indicating that the state of neuronal differentiation and neuron density constitute two crucial factors of this interaction. The effects of neurons on astrocytic communication and Cx43 expression were reversed completely after neurotoxic treatments. Moreover, the neuronal facilitation of glial coupling was suppressed, without change in Cx43 expression, after prolonged pharmacological treatments that prevented spontaneous synaptic activity. Altogether, these results demonstrate that neurons exert multiple and differential controls on astrocytic gap-junctional communication. Since astrocytes have been shown to facilitate synaptic efficacy, our findings suggest that neuronal and astrocytic networks interact actively through mutual setting of their respective modes of communication.  相似文献   

12.
Undifferentiated mesenchymal cells in the limb bud integrate a complex array of local and systemic signals during the process of cell condensation and chondrogenic differentiation. To address the relationship between bone morphogenetic protein (BMP) signaling and gap junction-mediated intercellular communication, we examined the effects of BMP-2 and a gap junction blocker 18 alpha glycyrrhetinic acid (18alpha-GCA) on mesenchymal cell condensation and chondrogenic differentiation in an in vitro chondrogenic model. We find that connexin43 protein expression significantly correlates with early mesenchymal cellular condensation and chondrogenesis in high-density limb bud cell culture. The level of connexin43 mRNA is maximally upregulated 48 h after treatment with recombinant human BMP-2 with corresponding changes in protein expression. Inhibition of gap junction-mediated intercellular communication with 2.5 microM 18alpha-GCA decreases chondrogenic differentiation by 50% at 96 h without effects on housekeeping genes. Exposure to 18alpha-GCA for only the first 24-48 h after plating does not affect condensation or later chondrogenic differentiation suggesting that gap junction-mediated intercellular communication is not critical for the initial phase of condensation but is important for the onset of differentiation. 18alpha-GCA can also block the chondrogenic effects of BMP-2 without effects on cell number or connexin43 expression. These observations demonstrate 18alpha-GCA-sensitive regulation of intercellular communication in limb mesenchymal cells undergoing chondrogenic differentiation and suggest that BMP-2 induced chondrogenic differentiation may be mediated in part through the modulation of connexin43 expression and gap junction-mediated intercellular communication.  相似文献   

13.
We analyzed the expression, phosphorylation, and localization of the major cardiac gap-junction protein connexin 43 (Cx43) during the establishment of a synchronized contraction in confluent monolayers of primary cultured neonatal rat cardiac myocytes, combined with a functional assay of gap junctions by the microinjection-dye transfer method. Monitoring of the beating rate and synchronization by Fotonic Sensor showed that at Day 1 of culture cardiac myocytes contracted spontaneously but irregularly, that the contractile rate increased with culture time, and that a synchronized contraction was gradually formed. At Day 7, the confluent cells exhibited synchronous contraction with a relatively constant rate (125 ± 20 beats/min). Cardiac myocytes expressed a large amount of Cx43 mRNA even at Day 1 and maintained the expression until at least Day 7. Immunofluorescence of Cx43 showed that the localization of Cx43-positive spots was mostly restricted to cell-cell contacts between myocytes and that few Cx43-positive spots were present between myocytes and fibroblasts or between fibroblasts. The amount of Cx43 protein, the proportion of phosphorylated forms to the nonphosphorylated one, and the number and total area of Cx43-positive spots increased with culture time. Gap-junctional intercellular communication measured by dye transfer assay was also increased with culture time and correlated well with the number and total area of Cx43-positive spots. Our systematic study suggests that a concerted action of the expression, phosphorylation, and localization of Cx43 and gap-junctional intercellular communication plays a major role in the reestablishment of synchronous beating of cultured neonatal rat cardiac myocytes.  相似文献   

14.
15.
Histological analysis revealed that Sertoli cell specific knockout of the predominant testicular gap junction protein connexin 43 results in a spermatogenic arrest at the level of spermatogonia or Sertoli cell-only syndrome, intratubular cell clusters and still proliferating adult Sertoli cells, implying an important role for connexin 43 in the Sertoli and germ cell development. This study aimed to determine the (1) Sertoli cell maturation state, (2) time of occurrence and (3) composition, differentiation and fate of clustered cells in knockout mice. Using immunohistochemistry connexin 43 deficient Sertoli cells showed an accurate start of the mature markers androgen receptor and GATA-1 during puberty and a vimentin expression from neonatal to adult. Expression of anti-Muellerian hormone, as a marker of Sertoli cell immaturity, was finally down-regulated during puberty, but its disappearance was delayed. This observed extended anti-Müllerian hormone synthesis during puberty was confirmed by western blot and Real-Time PCR and suggests a partial alteration in the Sertoli cell differentiation program. Additionally, Sertoli cells of adult knockouts showed a permanent and uniform expression of GATA-1 at protein and mRNA level, maybe caused by the lack of maturing germ cells and missing negative feedback signals. At ultrastructural level, basally located adult Sertoli cells obtained their mature appearance, demonstrated by the tripartite nucleolus as a typical feature of differentiated Sertoli cells. Intratubular clustered cells were mainly formed by abnormal Sertoli cells and single attached apoptotic germ cells, verified by immunohistochemistry, TUNEL staining and transmission electron microscopy. Clusters first appeared during puberty and became more numerous in adulthood with increasing cell numbers per cluster suggesting an age-related process. In conclusion, adult connexin 43 deficient Sertoli cells seem to proliferate while maintaining expression of mature markers and their adult morphology, indicating a unique and abnormal intermediate phenotype with characteristics common to both undifferentiated and differentiated Sertoli cells.  相似文献   

16.
Receptor activator of NF-kappaB ligand (RANKL) is crucial in osteoclastogenesis but signaling events involved in osteoclast differentiation are far from complete and other signals may play a role in osteoclastogenesis. A more direct pathway for cellular crosstalk is provided by gap junction intercellular channel, which allows adjacent cells to exchange second messengers, ions, and cellular metabolites. Here we have investigated the role of gap junction communication in osteoclastogenesis in mouse bone marrow cultures. Immunoreactive sites for the gap junction protein connexin 43 (Cx43) were detected in the marrow stromal cells and in mature osteoclasts. Carbenoxolone (CBX) functionally blocked gap junction communication as demonstrated by a scrape loading Lucifer Yellow dye transfer technique. CBX caused a dose-dependent inhibition (significant > or = 90 microM) of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells formed in 7- to 8-day marrow cultures stimulated by parathyroid hormone (PTH; 10 nM) or forskolin (FSK; 1 microM). Furthermore, CBX (100 microM) significantly inhibited prostaglandin E2 (PGE2; 10 microM) and 1,25(OH)2-vitamin D3 stimulated osteoclast differentiation in the mouse bone marrow cultures. Consequently, quantitative real-time polymerase chain reaction (PCR) analysis demonstrated that CBX downregulated the expression of osteoclast phenotypic markers, but without having any significant effects on RANK, RANKL, and osteoprotegerin (OPG) mRNA expression. However, the results demonstrated that CBX significantly inhibits RANKL-stimulated (100 ng/ml) osteoclastogenesis in the mouse bone marrow cultures. Taken together, our results suggests that gap junctional diffusion of messenger molecules interacts with signaling pathways downstream RANKL in osteoclast differentiation. Further studies are required to define the precise mechanisms and molecular targets involved.  相似文献   

17.
Our previous work has shown that in vascular tissues the elastic medial regions express high levels of the gap junctional protein, connexin43, but low levels of desmin, while the muscular medial regions express low levels of connexin43 but high levels of desmin. It is uncertain, however, whether this regional difference at the tissue level extends down to the level of the individual cell, or reflects an averaged relationship of groups of cells of different connexin43 and desmin expression. The present study has addressed this question using cultured porcine aortic smooth muscle cells. Immunoconfocal microscopic analysis of single-labeled cells showed that while smooth muscle alpha-actin, calponin and vimentin were positively labeled in the majority of medial smooth muscle cells both in intact porcine aorta and corresponding cultured cells, desmin and connexin43 labeling was highly heterogeneous. In the cultured cells, 0.3-0.5% of cells were found to be desmin-positive, and quantitative analysis after double labeling for desmin and connexin43 revealed that the desmin-positive cells were smaller, and contained significantly lower numbers and smaller sizes of connexin43 gap-junctional spots than did desmin-negative cells. Our findings demonstrate that an inverse expression pattern of connexin43 and desmin holds true at the level of the individual cell. This suggests a close relationship between intrinsic phenotypic control and the regulation of connexin43 expression in the arterial smooth muscle cell.  相似文献   

18.
Osteoprotegerin (OPG) and osteoclast differentiation factor (ODF) are crucial regulators of osteoclastogenesis. To determine the biological role of interleukin (IL)-18 produced by stromal/osteoblastic cells in osteoclastogenesis, we examined the effects of IL-18 on the OPG and ODF mRNA levels in these cells. When bone marrow stromal ST2 cells, osteoblastic MC3T3-E1 cells, and mouse calvarial osteoblasts were stimulated with IL-18, the expression of OPG mRNA, but not ODF mRNA, was transiently increased, its expression reaching a maximal level at 3 h after the beginning of the culture. In accordance with this observation, all these cells expressed the mRNAs of two IL-18 receptor components and MyD88, an adapter molecule involved in IL-18 signaling. Moreover, in these cells, mitogen-activated protein kinase was phosphorylated after stimulation with IL-18. These results suggest that stromal/osteoblastic cells are IL-18-responsive cells and that IL-18 may inhibit osteoclastogenesis by up-regulating OPG expression, without stimulation of ODF production, in stromal/osteoblastic cells.  相似文献   

19.
20.
Differential expression of connexin 43 in mouse mammary cells   总被引:2,自引:0,他引:2  
In this study we have employed suppressive subtractive hybridization (SSH) analysis to investigate differential gene expression in primary mouse mammary epithelial cells (PMMEC) cultured under mildly apoptotic/quiescent and differentiating conditions. Among a small group of genes whose expression was differentially regulated was connexin 43. In vitro, connexin 43 mRNA and protein were detectable in PMMEC cultured under proliferative or mildly apoptotic conditions. The level of connexin 43 mRNA expression in vivo was also investigated. High levels of expression were found to be associated with the periods of greatest glandular plasticity (pubertal expansion of the mammary tree, early pregnancy and during early involution). Thus, terminally differentiated cells in vivo and in vitro did not express connexin 43 mRNA suggesting that connexin 43 expression, and perhaps facilitated gap junction communication, is associated with undifferentiated progenitor cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号