首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The phosphorylation invivo of RNA polymerase II after isoproterenol stimulation of confluent rat C6 glioma cell cultures has been investigated. Glioma cells were incubated in the presence of Na2H32PO4 and stimulated for 1 hour with the β-adrenergic agonist isoproterenol. The phosphorylation pattern was analyzed after purification of RNA polymerase II by immunoprecipitation, SDS-polyacrylamide gel electrophoresis and autoradiography. Isoproterenol markedly increased [32P]phosphate incorporation into the 214,000 dalton RNA polymerase subunit. Analysis of the phosphate acceptor amino acid revealed the presence of only [32P]phosphoserine. The data demonstrates an isoproterenol-induced structural modification of RNA polymerase II.  相似文献   

2.
The mechanism of isoproterenol and N6,O2'-dibutyryl adenosine 3':5'-monophosphate (dibutyryl cAMP) induction of lactate dehydrogenase (EC 1.1.1.27) was investigated in the C6 rat glioma cell line. [3H]Leucine-labeled lactate dehydrogenase in noninduced and induced cells was quantitatively immunoprecipitated with rabbit anti-rat lactate dehydrogenase-5 antiserum. The immunoprecipitates were analyzed for 3H-labeled lactate dehydrogenase by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels and isoelectrofocusing. Using this technique, it was shown that isoproterenol + 3-isobutyl-1-methylxanthine and dibutyryl cAMP cause an increase of the [3H]leucine incorporation into glioma cell lactate dehydrogenase. Analysis of the kinetics of induction and deinduction revealed no change in the rate of degradation of lactate dehydrogenase in the presence and absence of inducing agent, indicating that the induction was due to an increase in the rate of synthesis of the enzyme. The increased rate of synthesis was prevented by actinomycin D. Isoproterenol + 3-isobutyl-1-methylxanthine increased only the specific rate of synthesis of lactate dehydrogenase-5 isozyme and of the M subunit. The mechanism was further studied by assaying the level of functional mRNA coding for lactate dehydrogenase in a reticulocyte cell-free protein-synthesizing system using glioma cell poly(A)-containing RNA isolated from either isoproterenol or dibutyryl cAMP-induced cells. Analysis of the immunoprecipitated translation product by isoelectrofocusing revealed that isoproterenol or dibutyryl cAMP produced an approximately 8-fold stimulation of the poly(A) + RNA-directed synthesis of the lactate dehydrogenase M subunit. These data demonstrate that isoproterenol and dibutyryl cAMP control the level of functionally active lactate dehydrogenase mRNA in glioma cells which, in turn, determines the extent of synthesis of the lactate dehydrogenase M subunit.  相似文献   

3.
The phosphorylative modification in vivo of histones after shortterm (0 to 60 min) isoproterenol stimulation of confluent rat C6 glioma cell cultures has been investigated. Analysis of the phosphorylation patterns after the purification and separation of histones by SDS/polyacrylamide gel electrophoresis revealed significantly increased phosphorylation of histones H1-1 and H3 and a decrease of the phosphorylation of histones H1-3, H2A, and H2B. There was no apparent effect of isoproterenol on the net phosphorylation of histones H1-2 and H4. The data suggest an effect of isoproterenol on the phosphorylative modification of glioma cell histones via modulation of nuclear phosphorylating and dephosphorylating activities.  相似文献   

4.
Skeletal muscle dihydropyridine-sensitive calcium channels are in vitro substrates for cAMP-dependent protein kinase. In the present work, alpha 1 subunits were isolated from cultured skeletal muscle cells by immunoprecipitation with a specific monoclonal antibody under conditions where proteolysis and dephosphorylation were prevented. Two forms of alpha 1 subunit, 200 and 160 kDa, were identified by back phosphorylation in vitro with cAMP-dependent protein kinase, specific immunoprecipitation, and phosphopeptide mapping. Treatment of cells with forskolin, isoproterenol, calcitonin gene-related peptide, or 8-bromo-cAMP to increase intracellular cAMP reduced 32P incorporation into all phosphopeptides in vitro by 60-80% indicating that increases in cAMP caused endogenous phosphorylation of all sites on both alpha 1(200) and alpha 1(160) to nearly maximal levels. The extents of basal and stimulated phosphorylation in vivo were estimated by back phosphorylation methods to be 35-40% and 83-86%, respectively. In muscle cells metabolically labeled with 32P, 3 mol of phosphate were incorporated into alpha 1 subunits. Forskolin stimulated 32P incorporation into alpha 1 subunits 1.6-fold. Taken together, our results show that skeletal muscle cells contain two forms of the alpha 1 subunit which both are basally phosphorylated on cAMP-dependent phosphorylation sites and are further phosphorylated in response to agents that increase intracellular cAMP.  相似文献   

5.
6.
The counterregulatory action of catecholamines on insulin-stimulated glucose transport and its relation to glucose transporter phosphorylation were studied in isolated rat adipose cells. Plasma membranes exhibiting reduced glucose transport activity were prepared as described previously (Joost, H. G., Weber, T. M., Cushman, S. W., and Simpson, I. A. (1986) J. Biol. Chem. 261, 10033-10036) from cells treated with insulin, and subsequently with isoproterenol and adenosine deaminase. In these membranes, transporter affinity for cytochalasin B binding was significantly reduced (KD = 133.5 +/- 14 versus 89.8 +/- 11 nM, means +/- S.E.) with no change in number of sites or immunoreactivity of the transporter on Western blots. Reconstituted plasma membrane transport was significantly lower with isoproterenol treatment (0.50 +/- 0.12 versus 0.97 +/- 0.27 nmol/mg protein/10 s). In contrast, transport activity reconstituted from corresponding intracellular transporters (from low density microsomes) was unchanged (5.4 +/- 2.2 versus 6.9 +/- 1.2 nmol/mg protein/10 s). Thus, the intrinsic activity change of the transporter produced by catecholamines appears to reflect a structural modification that is confined to the plasma membrane and not recycled into the intracellular compartment. In cells equilibrated with [32P]phosphate, neither insulin nor isoproterenol induced [32P]phosphate incorporation into the glucose transporter immunoprecipitated from plasma membranes. Conversely, phorbol 12-myristate 13-acetate stimulated significant incorporation of [32P]phosphate into the glucose transporter in insulin-stimulated cells without any change in plasma membrane transport activity or transporter concentration. Thus, the phosphorylation state of the glucose transporter does not seem to be involved in either signaling transporter translocation or triggering changes in transporter intrinsic activity.  相似文献   

7.
On the phosphorylation of yeast RNA polymerases A and B   总被引:8,自引:0,他引:8  
In exponentially growing cells, RNA polymerase B is exclusively form BI enzyme with several phosphorylated subunits: B220, B23 and possibly B44.5. In RNA polymerase A an average of fifteen phosphate groups are distributed on the five phosphorylated subunits: A190 (6), A43 (4), A34.5 (2), A23 (1-2) and A19 (1-2). Phosphorylation of enzyme A by a yeast protein kinase in vitro adds less than 1 mol phosphate/mol enzyme but occurs essentially at the physiological sites, as shown by a comparison of the peptide patterns obtained by limited proteolysis of subunits 32P-labelled in vivo and in vitro. No evidence was found in favor of a modulation of RNA polymerase activity in vitro or in vivo via phosphorylation.  相似文献   

8.
We have studied the effects of adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase on the phosphorylative and functional modification of bovine adrenal tyrosine hydroxylase. Incubation of partially purified tyrosine hydroxylase with cAMP-dependent protein kinase in the presence of [gamma32P]ATP and 5 micron cAMP led to a 3- to 5-fold activation of tyrosine hydroxylase and to incorporation of [32P]phosphate into protein. When tyrosine hydroxylase preparations activated by exposure to enzymatic phosphorylating conditions were analyzed by sucrose density gradient centrifugation, polyacrylamide gel electrophoresis, and gel electrofocusing, the radioactivity of 32P was coincident with the activity of tyrosine hydroxylase, suggesting incorporation of 32P from [gamma-32P]ATP into tyrosine hydroxylase. Polyacrylamide gel electrophoresis of the phosphorylated tyrosine hydroxylase preparation in the presence of 0.1% sodium dodecyl sulfate revealed that the 60,000-dalton polypeptide subunit of tyrosine hydroxylase served as the phosphate acceptor.  相似文献   

9.
Association of poly(A) polymerase with U1 RNA   总被引:3,自引:0,他引:3  
Previous studies (Stetler, D. A., and Jacob, S. T. (1984) J. Biol. Chem. 259, 7239-7244) have shown that poly(A) polymerase from adult rat liver (liver-type) is structurally and immunologically distinct from the corresponding rat hepatoma (tumor-type) enzyme. When hepatoma 7777 (McA-RH 7777) cells were labeled with [32P]inorganic phosphate, followed by immunoprecipitation with anti-hepatoma poly(A) polymerase antibodies and analysis of the RNAs in the immunoprecipitate, only one labeled small nuclear RNA corresponding to U1 RNA was found. Preimmune sera did not form a complex with U1 RNA. Hepatoma poly(A) polymerase antisera did not immunoprecipitate U1 RNA or any other small nuclear RNA from a cell line (H4-11-EC3) which does not contain the tumor-type poly(A) polymerase. Immunoblot analysis of hepatoma 7777 nuclear extract or purified poly(A) polymerase with anti-ribonucleoprotein antisera did not show any cross-reactivity of the latter sera with poly(A) polymerase. The major RNA immunoprecipitated from the hepatoma nuclear extracts using trimethyl cap (m3G) antisera corresponded to the RNA immunoprecipitated with poly(A) polymerase antisera. These data indicate that U1 RNA is closely associated with poly(A) polymerase and suggest the potential involvement of this RNA in the cleavage/polyadenylation of mRNA precursor.  相似文献   

10.
RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.  相似文献   

11.
A monospecific polyclonal antiserum to the surface cAMP receptor of Dictyostelium has been developed by immunization with purified receptor immobilized on particles of polyacrylamide and on nitrocellulose paper. In Western blots, the antiserum displays high affinity and specificity for both the R (Mr 40,000) and D (Mr 43,000) forms of the receptor previously identified by photoaffinity labeling with 8-azido-[32P] cAMP. These bands, labeled with the photoaffinity label or with 32 Pi, were quantitatively and specifically immunoprecipitated, supporting co-purification data that all represent the same polypeptide. The R form, found in unstimulated cells, contained at least 0.2 mol of phosphate/mol of receptor. The D form, generated by cAMP stimulation of intact cells, contained at least 4 mol of phosphate/mol of receptor. In the absence of detergents, the receptor was exclusively located on membranes. The receptor was solubilized effectively in Triton X-100 and sedimented as a broad peak of 5-7 S on sucrose velocity gradients. Western blots of membranes isolated at different times after starvation indicate that the appearance of cell surface cAMP binding sites during the aggregation stage of development (5-6 h) is due to de novo synthesis of receptor protein. Pulse labeling with [35S]methionine indicated that the receptor is most rapidly synthesized during the preaggregation stage of development (1-3 h), prior to its maximal accumulation in membranes. The serum specifically immunoprecipitates a polypeptide of Mr 37,000 from an in vitro translation reaction using RNA isolated from preaggregation stage cells. The time course of expression of the mRNA coding for the Mr 37,000 polypeptide parallels the rate of receptor synthesis in vivo.  相似文献   

12.
Rat pheochromocytoma (PC12) cells grown in the presence or absence of nerve growth factor (NGF) were pulse-labeled with [35S]methionine or 32Pi, and neurofilament subunits were recovered by immunoprecipitation from cellular extracts. The neurofilament subunits, with apparent molecular masses on sodium dodecyl sulfate-polyacrylamide gels of 68 kDa (light, L), 145 kDa (medium, M), and 200 kDa (heavy, H), were all found to be expressed in PC12 cells grown in the absence and presence of NGF. H was expressed at very low levels and in a form that migrated more rapidly on sodium dodecyl sulfate gels than H from rat brain. M was synthesized as a more rapidly migrating precursor that underwent modification within 3 h after labeling to a slower migrating form that co-migrated with M from rat brain. Analysis of the different M species by two-dimensional gel electrophoresis indicated that they also had different isoelectric points consistent with differences in phosphate content. NGF treatment resulted in increased L synthesis and, to a lesser degree, M synthesis, but had no effect on H synthesis. NGF also increased the stability of the modified form of M. All three subunits were 32P-labeled, and NGF increased the incorporation of 32P into M and H. Neurofilament subunits were also immunoprecipitated from a soluble fraction of [35S]methionine-labeled PC12 cells. This soluble pool of subunits differed from the cytoskeleton-associated pool in the relative proportions of individual subunits, M being the predominant form in the former and L in the latter.  相似文献   

13.
When saponin-permeabilized rat parotid acinar cells were incubated with [adenylate-32P]NAD+, labelling of proteins (33, 27 and 23 kDa) in particulate fractions of the cells was stimulated by isoproterenol. The effect of isoproterenol was completely blocked by a beta-antagonist. Both forskolin or cAMP mimicked the effect of isoproterenol on the labelling. However, an inhibitor of cAMPdPK failed to induce complete inhibition of the effects of isoproterenol, forskolin and cAMP. When the labelled proteins were treated with snake venom phosphodiesterase, neither [32P]5'-AMP nor [32P]phosphoribosyladenosine was released. These results suggest that covalent modification of proteins with NAD+, which is distinct from ADP-ribosylation and cAMPdPK-dependent phosphorylation, is coupled to beta-receptor-cAMP signalling system in rat parotid acinar cells.  相似文献   

14.
Agents known to elevate intracellular cyclic AMP (cAMP) in cultured mesangial cells (e.g., isoproterenol with and without isobutylmethylxanthine (MIX] inhibit vasopressin-induced contraction. Since contraction of these cells in response to vasopressin is accompanied by release of inositol trisphosphate and increased intracellular ionized calcium, we wanted to determine whether cAMP is exerting its relaxing effect by altering phosphoinositide metabolism. Isoproterenol and MIX did not diminish the release of inositol trisphosphate in response to vasopressin. However, the stimulated 32P incorporation into phospholipids seen with vasopressin treatment was diminished by prior treatment with isoproterenol-MIX. Since incorporation of 32P into phospholipids is not only dependent on phospholipid synthesis but also on the amount of label in the gamma-phosphate of ATP, we determined the specific activity of 32P in ATP. We found that suppression of 32P incorporation into phospholipids in cells treated with isoproterenol-MIX was paralleled by a decline of specific activity of 32P in ATP. Furthermore, the changes in ATP specific activity were paralleled by similar changes in phosphate uptake into the cells. Thus, diminished phosphate uptake (transport) could account for the decline of 32P content in phospholipids and ATP following treatment of mesangial cells with isoproterenol-MIX.  相似文献   

15.
Summary Rabbit antibodies against Artemia RNA polymerase II have been raised and utilized to study the immunological relationships between the subunits from RNA polymerases I, II and III from this organism and RNA polymerase II from other eukaryotes. We describe here for the first time the subunit structure of Artemia RNA polymerases I and III. These enzymes have 9 and 13 subunits respectively. The anti-RNA polymerase II antibodies recognize two subunits of 19.4 and 18 kDa common to the three enzymes, and another subunit of 25.6 kDa common to RNA polymerases II and III. The antibodies against Artemia RNA polymerase II also react with the subunits of high molecular weight and with subunits of around 25 and 33 kDa of RNA polymerase II from other eukaryotes (Drosophila melanogaster, Chironomus thummi, triticum (wheat) and Rattus (rat)). This interspecies relatedness is a common feature of eukaryotic RNA polymerases.Abbreviations RNAp RNA polymerase - DPT diazophenylthioether - SDS sodium dodecylsulfate  相似文献   

16.
Retinoylation (retinoic acid acylation) is a post-translational modification of proteins occurring in a variety of eukaryotic cell lines. There are at least 20 retinoylated proteins in the human myeloid leukemia cell line HL60 (N. Takahashi and T.R. Breitman (1990) J. Biol. Chem. 265, 19, 158-19, 162). Here we found that some retinoylated proteins may be cAMP-binding proteins. Five proteins, covalently labeled by 8-azido-[32P]cAMP which specifically reacts with the regulatory subunits of cAMP-dependent protein kinase, comigrated on two-dimensional polyacrylamide gel electrophoresis with retinoylated proteins of Mr 37,000 (p37RA), 47,000 (p47RA), and 51,000 (p51RA) labeled by [3H]retinoic acid treatment of intact cells. Furthermore, p47RA coeluted on Mono Q anion exchange chromatography with the type I cAMP-dependent protein kinase holoenzyme and p51RA coeluted on Mono Q anion exchange chromatography with the type II cAMP-dependent protein kinase holoenzyme. An antiserum specific to RI, the cAMP-binding regulatory subunit of type I cAMP-dependent protein kinase, immunoprecipitated p47RA. An antiserum specific to RII, the cAMP-binding regulatory subunit of type II cAMP-dependent protein kinase, immunoprecipitated p51RA. These results indicate that both the RI and the RII regulatory subunits of cAMP-dependent protein kinase are retinoylated. Thus, an early event in RA-induced differentiation of HL60 cells may be the retinoylation of subpopulations of both RI and RII.  相似文献   

17.
We have studied cAMP-dependent phosphorylation of sodium channels in rat brain neurons maintained in primary culture. In back phosphorylation studies, cells were treated with drugs to increase intracellular cAMP and sodium channels were solubilized and isolated by immunoprecipitation. Surface and intracellular pools of sodium channels were isolated separately. Purified channels were then phosphorylated with [gamma-32P]ATP by the catalytic subunit of cAMP-dependent protein kinase to incorporate 32P into available cAMP-dependent phosphorylation sites. The amount of 32P incorporated in vitro is inversely proportional to the extent of endogenous phosphorylation. Incubation of cells with forskolin (0.1-100 microM), 8-Br-cAMP (0.1-10 mM), or isobutylmethylxanthine (0.01-1.0 mM) inhibited subsequent incorporation of 32P into isolated sodium channels by 70-80%, indicating that treatment of cells with these drugs had increased endogenous phosphorylation to nearly maximum levels. The phosphopeptides phosphorylated in vivo and in vitro were identical. To examine the magnitude of basal phosphorylation and the extent of stimulated phosphorylation, the amount of 32P incorporated into sodium channels from control and stimulated cells was compared to that from matched samples which had been dephosphorylated with calcineurin. Sodium channels from control cells incorporated approximately 2-fold more 32P after dephosphorylation, indicating that cAMP-dependent sites on the channel are at least 47% phosphorylated in the basal state. Sodium channels from forskolin-treated cells incorporated 7-8-fold more 32P after dephosphorylation, indicating that cAMP-dependent phosphorylation sites are 80-90% phosphorylated after stimulation. Cell surface and intracellular pools of sodium channels were phosphorylated similarly. In cells metabolically labeled with 32P, cell surface sodium channels incorporated 2.7 mol of phosphate/mol of channel. Forskolin stimulated 32P incorporation into sodium channels 1.3-fold, consistent with the results obtained by back phosphorylation. We conclude that the rat brain sodium channel is substantially phosphorylated in both the cell surface and intracellular pools in vivo in unstimulated rat brain neurons, and the extent of phosphorylation is increased to 80-90% of maximum phosphorylation by agents that elevate intracellular cAMP.  相似文献   

18.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

19.
Preincubation of turkey erythrocytes with beta-adrenergic agonists leads to an attenuation of the responsiveness of adenylate cyclase to subsequent hormonal stimulation. Recently, our laboratory has shown (Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. D., Caron, M. G., and Lefkowitz, R. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3173-3177) using 32Pi incorporation that phosphorylation of the beta-adrenergic receptor accompanies this desensitization process. We now report that, as determined from intracellular [gamma-32P] ATP specific activity measurements, this phosphorylation reaction occurs in a stoichiometric fashion. Under basal conditions there exists 0.75 +/- 0.1 mol of phosphate per mol of receptor whereas under maximally desensitized conditions this ratio increases to 2.34 +/- 0.13 mol/mol. This phosphorylation of the receptor is dose-dependent with respect to isoproterenol and exhibits a dose-response curve coincidental with that for isoproterenol-induced desensitization of adenylate cyclase. The time courses for receptor phosphorylation and adenylate cyclase desensitization are identical. In addition, the rate of resensitization of adenylate cyclase activity is comparable to the rate of return of the phosphate/receptor stoichiometries to control levels. Both the phosphorylation and desensitization reactions are pharmacologically specific as indicated by the high degree of stereoselectivity, rank order of catecholamines, and blockade by the specific beta-adrenergic antagonist, propranolol. Incubation of turkey erythrocytes with cAMP and cAMP analogs maximally activates cAMP-dependent protein kinase but only partially mimics isoproterenol in promoting phosphorylation of the receptor in concordance with their partial effects in inducing desensitization. Conversely, activators or inhibitors of Ca2+/calmodulin kinase or protein kinase C do not affect the isoproterenol-induced desensitization. These results indicate that desensitization of turkey erythrocyte adenylate cyclase is highly correlated with phosphorylation of the beta-adrenergic receptor and that these events are mediated, at least partially, by cAMP.  相似文献   

20.
The levels of cAMP-dependent protein kinases were measured in developing rat brain by a variety of methods. The regulatory subunit (R) was measured both by [3H]cAMP binding and by 8-N3-[32P]cAMP incorporation. The catalytic subunit (C) was measured by an assay of histone kinase activity. Data were calculated per mg protein. Neither R nor C levels changed significantly in either membranes or cytosol during development. The ratio of R to C was essentially unity in the cerebra of both newborn (2-day-old) and adult (40-day-old) rats. Polyacrylamide-gel electrophoresis resolved two regulatory subunits (R-I) and (R-II) which were derived from the Type I and Type II cAMP-dependent protein kinases, respectively. 8-N3-[32P]cAMP incorporation into Proteins R-I and R-II indicated that the amounts of Proteins R-I and R-II did not change significantly in either membranes or cytosol during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号