首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apoptosis, autophagy, and more   总被引:19,自引:0,他引:19  
Cell death has been subdivided into the categories apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). The boundary between Type I and II has never been completely clear and perhaps does not exist due to intrinsic factors among different cell types and the crosstalk among organelles within each type. Apoptosis can begin with autophagy, autophagy can end with apoptosis, and blockage of caspase activity can cause a cell to default to Type II cell death from Type I. Furthermore, autophagy is a normal physiological process active in both homeostasis (organelle turnover) and atrophy. “Autophagic cell death” may be interpreted as the process of autophagy that, unlike other situations, does not terminate before the cell collapses. Since switching among the alternative pathways to death is relatively common, interpretations based on knockouts or inhibitors, and therapies directed at controlling apoptosis must include these considerations.  相似文献   

2.
3.
Follicles are important in oocyte maturation. Successful estrous cycle requires remodeling of follicular cells, and proper execution of programmed cell death is crucial for normal follicular development. The objectives of the present study were to understand programmed cell death during follicle development, to analyze the differential follicle development patterns, and to assess the patterns of apoptosis and autophagy expression during follicle development in normal and miniature pigs. Through the analysis of differential patterns of programmed cell death during follicular development in porcine, MAP1LC3A, B and other autophagy-associated genes (ATG5, mTOR, Beclin-1) were found to increase in normal pigs, while it decreased in miniature pigs. However, for the apoptosis-associated genes, progression of genes during follicular development increased in miniature pigs, while it decreased in normal pigs. Thus, results show that normal and miniature pigs showed distinct patterns of follicular remodeling manifesting that programmed cell death largely depends on the types of pathway during follicular development (Type II or autophagy for normal pigs and Type I or apoptosis for miniature pigs).  相似文献   

4.
《Autophagy》2013,9(2):85-90
Autophagy is a dynamic process of protein degradation which is typically observed during nutrient deprivation. Recently, interest in autophagy has been renewed among oncologists, because different types of cancer cells undergo autophagy after various anticancer therapies. This type of non-apoptotic cell death has been documented mainly by observing morphological changes, e.g., numerous autophagic vacuoles in the cytoplasm of dying cells. Thus, autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. In multiple studies, autophagy has been inhibited pharmacologically or genetically, resulting in contrasting outcomes—survival or death—depending on the specific context. Interestingly, the regulatory pathways of autophagy share several molecules with the oncogenic pathways activated by tyrosine kinase receptors. Tumor suppressors such as Beclin 1, PTEN, and p53 also play an important role in autophagy induction. Taken together, these accumulating data may lead to development of new cancer therapies that manipulate autophagy.  相似文献   

5.
Kondo Y  Kondo S 《Autophagy》2006,2(2):85-90
Autophagy is a dynamic process of protein degradation, which is typically observed during nutrient deprivation. Recently, interest in autophagy has been renewed among oncologists, because different types of cancer cells undergo autophagy after various anticancer therapies. This type of nonapoptotic cell death has been documented mainly by observing morphological changes, e.g., numerous autophagic vacuoles in the cytoplasm of dying cells. Thus, autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. In multiple studies, autophagy has been inhibited pharmacologically or genetically, resulting in contrasting outcomes--survival or death--depending on the specific context. Interestingly, the regulatory pathways of autophagy share several molecules with the oncogenic pathways activated by tyrosine kinase receptors. Tumor suppressors such as Beclin 1, PTEN and p53 also play an important role in autophagy induction. Taken together, these accumulating data may lead to development of new cancer therapies that manipulate autophagy.  相似文献   

6.
《Autophagy》2013,9(5):669-679
Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy induced apoptosis. In this study, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in preautopghagosomal and autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression and the number of GFP-LC3-II-labeled autophagosome (punctuated pattern) positive cells and autophagic cell death (p  相似文献   

7.
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.  相似文献   

8.
Programmed cell death in plants: distinguishing between different modes   总被引:1,自引:0,他引:1  
Programmed cell death (PCD) in plants is a crucial componentof development and defence mechanisms. In animals, differenttypes of cell death (apoptosis, autophagy, and necrosis) havebeen distinguished morphologically and discussed in these morphologicalterms. PCD is largely used to describe the processes of apoptosisand autophagy (although some use PCD and apoptosis interchangeably)while necrosis is generally described as a chaotic and uncontrolledmode of death. In plants, the term PCD is widely used to describemost instances of death observed. At present, there is a vastarray of plant cell culture models and developmental systemsbeing studied by different research groups and it is clear fromwhat is described in this mass of literature that, as with animals,there does not appear to be just one type of PCD in plants.It is fundamentally important to be able to distinguish betweendifferent types of cell death for several reasons. For example,it is clear that, in cell culture systems, the window of timein which ‘PCD’ is studied by different groups varieshugely and this can have profound effects on the interpretationof data and complicates attempts to compare different researcher'sdata. In addition, different types of PCD will probably havedifferent regulators and modes of death. For this reason, inplant cell cultures an apoptotic-like PCD (AL-PCD) has beenidentified that is fairly rapid and results in a distinct corpsemorphology which is visible 4–6 h after release of cytochromec and other apoptogenic proteins. This type of morphology, distinctfrom autophagy and from necrosis, has also been observed inexamples of plant development. In this review, our model systemand how it is used to distinguish specifically between AL-PCDand necrosis will be discussed. The different types of PCD observedin plants will also be discussed and the importance of distinguishingbetween different forms of cell death will be highlighted. Key words: Apoptosis, apoptosis-like programmed cell death (AL-PCD), Arabidopsis, autophagy, mitochondria, necrosis, programmed cell death (PCD) Received 5 June 2007; Revised 13 September 2007 Accepted 20 September 2007  相似文献   

9.
丁伟  尚蕾  熊鲲 《现代生物医学进展》2015,15(12):2345-2348
神经元的死亡是许多神经系统疾病如阿尔茨海默病、帕金森病、急性青光眼等发生发展过程中的重要事件,传统认为,细胞死亡有凋亡、自噬、坏死三种方式,凋亡和自噬为程序性的细胞死亡,坏死为非程序性的死亡途径。而近年来的研究发现了一种名为程序性坏死(necroptosis)的可调控的坏死,因此,对这些可调控的细胞死亡的研究对治疗这类神经系统疾病有重要的意义。大量研究发现,在能量代谢和自由基代谢中占据着重要地位的线粒体在细胞死亡过程中也发挥重要作用。本文对线粒体在神经元凋亡、自噬和程序性坏死中的生物学作用的最新进展做一综述。  相似文献   

10.
Programmed cell death can be divided into several categories including type I (apoptosis) and type II (autophagic death). The Bcl-2 family of proteins are well-characterized regulators of apoptosis, and the multidomain pro-apoptotic members of this family, such as Bax and Bak, act as a mitochondrial gateway where a variety of apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double knockout mice are resistant to apoptosis, we found that these cells still underwent a non-apoptotic death after death stimulation. Electron microscopic and biochemical studies revealed that double knockout cell death was associated with autophagosomes/autolysosomes. This non-apoptotic death of double knockout cells was suppressed by inhibitors of autophagy, including 3-methyl adenine, was dependent on autophagic proteins APG5 and Beclin 1 (capable of binding to Bcl-2/Bcl-x(L)), and was also modulated by Bcl-x(L). These results indicate that the Bcl-2 family of proteins not only regulates apoptosis, but also controls non-apoptotic programmed cell death that depends on the autophagy genes.  相似文献   

11.
Autophagy, a lysosomal degradation pathway for cellular constituents and organelles, is an adaptive and essential process required for cellular homeostasis. Although autophagy functions as a survival mechanism in response to cellular stressors such as nutrient or growth factor deprivation, it can also lead to a non-apoptotic form of programmed cell death (PCD) called autophagy-induced cell death or autophagy-associated cell death (type II PCD). Current evidence suggests that cell death through autophagy can be induced as an alternative to apoptosis (type I PCD), with therapeutic purpose in cancer cells that are resistant to apoptosis. Thus, modulating autophagy is of great interest in cancer research and therapy. Natural polyphenolic compounds that are present in our diet, such as rottlerin, genistein, quercetin, curcumin, and resveratrol, can trigger type II PCD via various mechanisms through the canonical (Beclin-1 dependent) and non-canonical (Beclin-1 independent) routes of autophagy. The capacity of these compounds to provide a means of cancer cell death that enhances the effects of standard therapies should be taken into consideration for designing novel therapeutic strategies. This review focuses on the autophagy- and cell death-inducing effects of these polyphenolic compounds in cancer.  相似文献   

12.
Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy-induced apoptosis. Here, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression, the number of GFP-LC3-II-labeled autophagosome positive cells and autophagic cell death (p < 0.05). Furthermore, doxorubicin at a high dose (IC(95), 1 microM) induced apoptosis but at a low dose (IC(50), 0.07 microM) induced only autophagy and Beclin-1 expression. When combined with Bcl-2 siRNA, doxorubicin (IC(50)) enhanced autophagy as indicated by the increased number cells with GFP-LC3-II-stained autophagosomes (punctuated pattern positive). These results provided the first evidence that targeted silencing of Bcl-2 induces autophagic cell death in MCF-7 breast cancer cells and that Bcl-2 siRNA may be used as a therapeutic strategy alone or in combination with chemotherapy in breast cancer cells that overexpress Bcl-2.  相似文献   

13.
《Autophagy》2013,9(6):660-661
Eukaryotic elongation factor-2 (eEF-2) kinase, also known as calmodulin-dependent protein kinase III, is a unique calcium/calmodulin-dependent enzyme. eEF-2 kinase can act as a negative regulator of protein synthesis and a positive regulator of autophagy under environmental or metabolic stresses. Akt, a key downstream effector of the PI3K signaling pathway that regulates cell survival and proliferation, is an attractive therapeutic target for anticancer treatment. Akt inhibition leads to activation of both apoptosis, type I programmed cell death and autophagy, a cellular degradation process via lysosomal machinery (also termed type II programmed cell death). However, the underlying mechanisms that dictate functional relationship between autophagy and apoptosis in response to Akt inhibition remain to be delineated. Our recent study demonstrated that inhibition of eEF-2 kinase can suppress autophagy but promote apoptosis in tumor cells subjected to Akt inhibition, indicating a role of eEF-2 kinase as a controller in the crosstalk between autophagy and apoptosis. Furthermore, inhibition of eEF-2 kinase can reinforce the efficacy of a novel Akt inhibitor, MK-2206, against human glioma. These findings may help optimize the use of Akt inhibitors in the treatment of cancer and other diseases.  相似文献   

14.
Cheng Y  Yan L  Ren X  Yang JM 《Autophagy》2011,7(6):660-661
Eukaryotic elongation factor-2 (eEF-2) kinase, also known as calmodulin-dependent protein kinase III, is a unique calcium/calmodulin-dependent enzyme. eEF-2 kinase can act as a negative regulator of protein synthesis and a positive regulator of autophagy under environmental or metabolic stresses. Akt, a key downstream effector of the PI3K signaling pathway that regulates cell survival and proliferation, is an attractive therapeutic target for anticancer treatment. Akt inhibition leads to activation of both apoptosis, type I programmed cell death and autophagy, a cellular degradation process via lysosomal machinery (also termed type II programmed cell death). However, the underlying mechanisms that dictate functional relationship between autophagy and apoptosis in response to Akt inhibition remain to be delineated. Our recent study demonstrated that inhibition of eEF-2 kinase can suppress autophagy but promote apoptosis in tumor cells subjected to Akt inhibition, indicating a role of eEF-2 kinase as a controller in the crosstalk between autophagy and apoptosis. Furthermore, inhibition of eEF-2 kinase can reinforce the efficacy of a novel Akt inhibitor, MK-2206, against human glioma. These findings may help optimize the use of Akt inhibitors in the treatment of cancer and other diseases.  相似文献   

15.
16.
Lu B  Capan E  Li C 《Autophagy》2007,3(2):158-159
The population size of the T cells is tightly regulated. The T cell number drastically increases in response to their specific antigens. Upon antigen clearance, the T cell number decreases over time. Apoptosis, also called type I programmed cell death, plays an important role in eliminating T cells. The role of autophagic cell death, also called type II programmed cell death, is unclear in T cells. Our recent work demonstrated that autophagy is induced in both Th1 and Th2 cells. Both TCR signaling and IL-2 increase autophagy in T cells, and JNK MAP kinases are required for the induction of autophagy in T cells, whereas caspases and mTOR inhibit autophagy in T cells. Autophagy is required for mediating growth factor withdrawal-dependent cell death in T cells. Here, we hypothesize that autophagic cell death plays an important role in T cell homeostasis.  相似文献   

17.
Steroid regulation of autophagic programmed cell death during development   总被引:18,自引:0,他引:18  
Apoptosis and autophagy are morphologically distinct forms of programmed cell death. While autophagy occurs during the development of diverse organisms and has been implicated in tumorigenesis, little is known about the molecular mechanisms that regulate this type of cell death. Here we show that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy. Expression of p35 prevents DNA fragmentation and partially inhibits changes in the cytosol and plasma membranes of dying salivary glands, suggesting that caspases are involved in autophagy. The steroid-regulated BR-C, E74A and E93 genes are required for salivary gland cell death. BR-C and E74A mutant salivary glands exhibit vacuole and plasma membrane breakdown, but E93 mutant salivary glands fail to exhibit these changes, indicating that E93 regulates early autophagic events. Expression of E93 in embryos is sufficient to induce cell death with many characteristics of apoptosis, but requires the H99 genetic interval that contains the rpr, hid and grim proapoptotic genes to induce nuclear changes diagnostic of apoptosis. In contrast, E93 expression is sufficient to induce the removal of cells by phagocytes in the absence of the H99 genes. These studies indicate that apoptosis and autophagy utilize some common regulatory mechanisms.  相似文献   

18.
Apoptosis is a physiological method of cell death commonly referred to as programmed cell death. However, non-apoptotic programmed cell death, such as autophagy and programmed necrosis, has been characterized by morphological criteria. In view of the human therapeutic use of DEX, and considering that no difference in the number and/or affinity of glucocorticoid receptors in activated and non-activated lymphocytes has been reported, we decided to evaluate the effect of DEX on fresh peripheral blood mononuclear cells (PBMC). Transmission electron microscopy showed that DEX can significantly induce apoptosis in non-activated PBMC. It was also observed by transmission electron microscopy that, independently of DEX treatment, PBMC also died by a process marked by extreme vacuolization and increase in cellular volume; these cells were erroneously classified as viable by flow cytometry using the 7-AAD assay. It is concluded that the DEX pro-apoptotic effect is not restricted to activated PBMC and, therefore, DEX-induced apoptosis could play either homeostatic (activated PBMC) or immunosuppressive (non-activated PBMC) roles.  相似文献   

19.
Apoptosis (type I) and autophagy (type II) are both highly regulated forms of programmed cell death and play crucial roles in physiological processes such as the development, homeostasis and selective, moderate to massive elimination of cells, if needed. Accumulating evidence suggests that cancer cells, including pancreatic cancer cells, in general tend to have reduced autophagy relative to their normal counterparts and premalignant lesions, supporting the contention that defective autophagy provides resistance to metabolic stress such as hypoxia, acidity and chemotherapeutics, promotes tumor cell survival and plays a role in the process of tumorigenesis. However, the mechanisms underlying the reduced capability of undergoing autophagy in pancreatic cancer remain elusive. In a recent study, we demonstrated a novel mechanism for regulation of autophagy in pancreatic ductal carcinoma cells. We found that protein kinase C-delta (PKC delta) constitutively suppresses autophagy through induction of tissue transglutaminase (TG2). Inhibition of PKC delta/TG2 signaling resulted in significant autophagic cell death that was mediated by Beclin 1. Elevated expression of TG2 in pancreatic cancer cells has been implicated in the development of drug resistance, metastatic phenotype and poor patient prognosis. In conclusion, our data suggest a novel role of PKC delta/TG2 in regulation of autophagy, and that TG2 may serve as an excellent therapeutic target in pancreatic cancer cells.  相似文献   

20.
Apoptosis is a morphologically defined form of programmed cell death (PCD) that is mediated by the activation of members of the caspase family. Analysis of death-receptor signaling in lymphocytes has revealed that caspase-dependent signaling pathways are also linked to cell death by nonapoptotic mechanisms, indicating that apoptosis is not the only form of PCD. Under physiological and pathological conditions, cells demonstrate a high degree of flexibility in cell-death responses, as is reflected in the existence of a variety of mechanisms, including necrosis-like PCD, autophagy (or type II PCD), and accidental necrosis. In this review, we discuss recent data suggesting that canonical apoptotic pathways, including death-receptor signaling, control caspase-dependent and -independent cell-death pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号